Carnegie Mellon University

Uatabase

Systems
Optimistic

Concurrency Control

15-445/645 FALL 2024) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

$2CMU-DB

15-445/645 (Fall 2024)

LAST CLASS

We discussed concurrency control protocols for
generating conflict serializable schedules without
needing to know what queries a txn will execute.

The two-phase locking (2PL) protocol requires txns
to acquire locks on database objects before they are
allowed to access them.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

OBSERVATION

[f you assume that conflicts between txns are rare
and that most txns are short-lived, then forcing
txns to acquire locks adds unnecessary overhead.

A better concurrency control protocol could be one
that is optimized for the no-conflict case...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

T/0 CONCURRENCY CONTROL

Use timestamps to determine the serializability
order of txns.

[fTS(T;) < TS(T;), then the DBMS must ensure
that the execution schedule is equivalent to the
serial schedule where T; appears before Tj.

Each database object (e.g., tuple) will include
additional fields to keep track of timestamp(s) of the
txns that last accessed/modified them.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TIMESTAMP ALLOCATION

Each txn T, is assigned a unique fixed timestamp

that is monotonically increasing.

— Let TS(T,) be the timestamp allocated to txn T;.
— Different schemes assign timestamps at different times
during the txn.

Multiple implementation strategies:
— System/Wall Clock.

— Logical Counter.
— Hybrid.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TODAY’S AGENDA

Optimistic Concurrency Control
Phantom Reads

[solation Levels
DB Flash Talk: Weaviate

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://weaviate.io/

OPTIMISTIC CONCURRENCY CONTROL (0CC)

T/O PrOtOCOI Where DBMS Creates a On Optimistic Methods for Concurrency

Control

private workspace for each txn.

Carnegie-Mellon University

— Any object read is copied into workspace. i Mieind i Pias

as a control mech In this paper, two families of nonlocking ls are presented.

The methods used are “optimistic” in the sense that they rely mainly on transaction backup as a

— Modifications are applied to workspace. e e S e

Key Words and Phrases: databases, concurrency controls, transaction processing
CR Categories: 4.32,4.33

1. INTRODUCTION

© Consider the problem of providing shared access to a database organized as a
e I l a t x I I CO I l I I l I lts t e collection of objects. We assume that certain distinguished objects, called the
’ roots, are always present and access to any object other than a root is gained only

by first accessing a root and then following pointers to that object. Any sequence
of accesses to the database that preserves the integrity constraints of the data is

compares workspace write set to see it L e et

there are at least two cases where highly concurrent access is desirable.
° ° ° (1) The amount of data is sufficiently great that at any given time only a fraction
of the database can be present in primary memory, so that it is necessary to
whether it conflicts with other txns o e iy L
° (2) Even if the entire database can be present in primary memory, there may be
multiple processors.

In both cases the hardware will be underutilized if the degree of concurrency
is too low.

However, as is well known, unrestricted concurrent access to a shared database
will, in general, cause the integrity of the database to be lost. Most current

L] L]
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
) publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

b b b “ ,, W""mt ‘was su| in y the Nation: ience Foundation under Grant -
is installed into the “global” database. D S

© 1981 ACM 0362-5915/81/0600-0213 $00.75
ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981, Pages 213-226

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://dl.acm.org/citation.cfm?id=319567

0CC PHASES

Phase #1 — Read

— Track the read/write sets of txns and store their writes in a
private workspace.

— DBMS copies every tuple that the txn accesses from the
shared database to its workspace ensure repeatable reads.

Phase #2 — Validation

— Assign the txn a unique timestamp (TS) and then check
whether it conflicts with other txns.

Phase #3 — Write

— If validation succeeds, set the write timestamp (W-TS) to all
modified objects in private workspace and install them into
£2CMU-DB the global database. Otherwise abort txn.

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC EXAMPLE

Schedule
Database
T, T,
BEGIN j Value W-TS
READ
R(A) BEGIN
READ
R(A) -
VALIDATE
WRITE
COMMIT
W(A)
R(A)
VALIDATE
WRITE
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

-—— e . .

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC EXAMPLE
Schedule

Database

A 123 0

4
: Object Value W-TS
|
|
|
|

W(A)

\VALIDATE)

RITE
COo

$2CMU-DB

15-445/645 (Fall 2024)

-—— e . .

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC EXAMPLE

Schedule
. . Database
1 2 [T —————————
BEGIN : Object Value W-TS
A 123 0
BEGIN : 5 - 3
READ I
R(A) S o
VALIDATE
WRITE T, Workspace
COMMIT If """"" \I
W(A) i ObJect Value W-TS "
R(A) (I S I
VALIDATE o N G G
WRITE Smmmmm————— -
COMMIT

$=CMU-DB

15-445/645 (Fall 2024)

-—— e . .

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$=CMU-DB

15-445/645 (Fall 2024)

0CC EXAMPLE

Schedule
T, T,
BEGIN
READ
R(A) BEGIN
READ
RCA)
VALIDATE
WRITE
COMMIT
W(A)
R(A)
VALIDATE
WRITE
COMMIT

'--

Database

A 123 |0

-—— e . .

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$=CMU-DB

15-445/645 (Fall 2024)

0CC EXAMPLE

W(A)
RCA)

VALIDATE

WRITE

COMMIT

Schedule
T, T,

BEGIN

READ

R(A) BEGIN
READ
RCA)
VALIDATE
WRITE
COMMIT

Database

g ———————— \

: Object Value W-TS :

| |

: A 123 0 I

|- - - I

| 1

N . O I N B BN BN BN NN BN BN NN B B . -
T, W/orkspace T, Workspace
o it lrind st S At ldd el

'--

A 123 |0

'---\

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC EXAMPLE

Schedule
T, T,
BEGIN
READ
R(A) BEGIN
READ
RCA)
VALIDATE
WRITE
COMMIT
W(A)
R(A)
VALIDATE
WRITE
COMMIT

$=CMU-DB

15-445/645 (Fall 2024)

'--

Database

A 123

0

-—— e . .

A 123 |0

\
1
1
1
1
1

'---\

A 123 |0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC EXAMPLE

Schedule
Database
T1 T2 [e e e \
BEGIN : Object Value W-TS :
READ (A 123 0 I
R(A) BEGIN e § i :
READ L
R(A) TS(T2)=1 L ———————————————— -o'
»VALIDATE T
WRITE T, \Vorkspace T, Workspace
COMMIT (d=====2-—=- y pEm====L———-
o i i
R(A) 1 |A 123 |0 I 1 |A 123 |0
VALIDATE DL - - e _ _
WRITE G —————————— - - - -
COMMIT

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC EXAMPLE

Schedule
Database
T1 T2 [e e
BEGIN : Object Value W-TS
READ I 1A 123 0
R(A) BEGIN s - .
READ
S LTI L ——— :
VALIDATEY
» WRITE T, Workspace
COMLT I
W(A) i Object Value W-TS I
R(A) 1 |A 123 |0 I
VALIDATE : - - - :
WRITE ——————————— -
COMMIT

$=CMU-DB

15-445/645 (Fall 2024)

-—— e . .

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC EXAMPLE

Schedule
Database
T1 T2 [e e
BEGIN : Object Value W-TS
READ I 1A 123 0
R(A) BEGIN : - - :
READ L
R (A) TS(T2)=1 L ________________ -
VALIDATEYT
WRITE T, Workspace
COMMIT f """"" \
W(A) [l Object Value W-TS :
VALIDATE : - - _ :
WRITE ——————————— -
COMMIT

$=CMU-DB

15-445/645 (Fall 2024)

-—— e . .

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC EXAMPLE

Schedule
Database
T1 T2 [e e
BEGIN : Object Value W-TS
READ I 1A 123 0
R(A) BEGIN : - - :
READ L
R (A) TS(T2)=1 L ________________ -
VALIDATEYT
WRITE T, Workspace
COMMIT f """"" \
W(A) [l Object Value W-TS :
VALIDATE : - - _ :
WRITE ——————————— -
COMMIT

$=CMU-DB

15-445/645 (Fall 2024)

-—— e . .

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC EXAMPLE

Schedule Datab
atavase
T1 T2 [e e
BEGIN : Object Value W-TS
READ I A 123 0
R(A) BEGIN : - . -
READ
R(A) l TS(T2)=1 L ________________ >
VALIDATEYT
WRITE T, \Vorkspace
COMMIT r """"" \
W(A) ! |
R(A) ETS(T1)=2 Pl lase [= ||
VAL IDAT. : - - - :
WRITE ——m e —————— -
COMMIT

$=CMU-DB

15-445/645 (Fall 2024)

-—— e . .

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC EXAMPLE

Schedule
Database
T1 T2 [e e
BEGIN : Object Value W-TS
READ I A 456 2
R(A) BEGIN : - . -
READ L
R (A) TS(T2)=1 L e i e e -
VALIDATEVT
WRITE T, Workspace
COMMIT (A E——— \
W(A) [l Object Value W-TS :
R(CA TS(Tl)=2’ A 456 2 I
VALIDATEY : - - - :
WRITE QS ———— -
COMMIT

$=CMU-DB

15-445/645 (Fall 2024)

-—— e . .

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: READ PHASE

Track the read/write sets of txns and store their
writes in a private workspace.

The DBMS copies every tuple that the txn accesses
from the shared database to its workspace ensure

repeatable reads.
— We can ignore for now what happens if a txn reads/writes
tuples via indexes.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

0CC: VALIDATION PHASE

When txn T, invokes COMMIT, the DBMS checks if

it conflicts with other txns.

— Original OCC algorithm uses serial validation.

— Parallel validation requires each txn check read/write sets
of other txns trying to validate at the same time.

DBMS needs to guarantee only serializable

schedules are permitted.
— Approach #1: Backward Validation
— Approach #2: Forward Validation

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

0CC: VALIDATION PHASE

Forward Validation: Check whether the

committing txn intersects its read/write sets with
any active txns that have not yet committed.

Backward Validation: Check whether the

committing txn intersects its read/write sets with
those of any txns that have already committed.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

0CC: FORWARD VALIDATION

Each txn's timestamp is assigned at the beginning of
the validation phase.

Check the timestamp ordering of the committing
txn with all other active txns.

[f TS(T,) < TS(T,), then one of the following three
conditions must hold...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #1

Schedule
T, T,

BEGIN

[READ |

[VALIDATE |

WRITE |

COMMIT BEGIN
[READ |
[VALIDATE |
WRITE |
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

If (T, < T,), check if T, completes
its Write phase before T, begins
its Read phase.

No conflict as all T,'s actions
happen before T,'s.

— This just means that there is serial
ordering.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2

If (T, < T,), check if T, completes its Write phase
before T, starts its Write phase and T, does not

modify to any object read by T,.
— WriteSet(T,) N ReadSet(T,) =0

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2
Schedule

Database
T1 T2 [e e e \
Hoicce voue nvs [
g/(;:)p : A 123 0 :
W(A) BEGIN : . - - :
READ e e
R(A)
[VALIDATE] T, Workspace
\VALIDATE | r """"" \
PRDATE L T |
COMMIT : - - - :
i i

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2

Schedule
Database
T, T, p \
BEGIN ! |
READ A |
RCA) ' - - I
W(A) BEGIN : - |
READ s
R(A)
[VALIDATE] T, Workspace
(VALIDATE | C ————)
WRITE | ! :
COMMIT 1A 123 0 |
v —— |

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2
Schedule

Database
T1 T2 [e e e \
: :
g/(;:)p : A 123 0 :
W(A) BEGIN : . - - :
READ e e e
R(A)
[VALIDATE] T, Workspace
\VALIDATE | r """"" \
WRITE | [l Object Value W-TS :
COMMIT ; A 456 |~ :
1 L - _ [

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2

Schedule
Database
T1 T2 r ----------------- \

BEGIN I |

READ I (A 123 0 I

R(A) - - - |

W(A) BEGIN . ,

READ S ———————
R(A)

[VALIDATE | T, Workspace T, Workspace
\VALIDATE | f """"" \ f """"" \
VLIDTE]| e | | [SESETCEE
COMMIT 1 |A 456 |« 11 - - I

1 i § 1 I
[—— (N — i

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2

Schedule
T 1 T2
BEGIN

Database

Object Value W-TS

BEGIN
READ
RCA)

\VALIDATE | |

WRITE | 1

COMMIT : A 456 |~
- _

|

|

A 123 |0 1
- |

1

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2

Schedule
Database
T1 T2 [T ————— 1
BEGIN | |
READ I 1A 123 0 I
R(A) - - - |
W(A) BEGIN . ,
READ S ————————
R(A)
(VAL IDATE | T, Workspace T, Workspace
__________ \ 2y 1 e

A 123 |0

(VALIDATE | If |
DTN | e
T, must abort even though T,| | A——** 1= |
did not modify the database. | ! !

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2
Schedule

Database
T1 T2 [e e e \
i :
READ LA 123 0 I
R(A) BEGIN e a 3 :
W(A) READ , !
R(A) S ———————
VALIDATE
[VALIDATE] T, \Vorkspace
WRITE | pdmmmm et \
COMMIT |[WRITE ! :
COMMIT Y S
L y

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2
Schedule

Database
T, T,
BEGIN
READ
R(A) BEGIN
W(A) READ
R(A)
VALIDATE
|VALIDATE | T:IW/OT pace
WRITE | (EEEEEE— A
COMMIT \WRITE | : :
COMMIT ! A 123 |9 !
i i

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2

Schedule
Database
T1 T2 r ----------------- \
BEGIN I |
READ I 1A 123 0 I
R(A) BEGIN e § i :
W(A) READ . ,
R(A) S ——————————
VALIDATE
[VALIDATE | T, \Vorkspace T, Workspace
WRITE | f """"" \ r """""
COMMIT |[WRITE] ! I
COMMIT : A 123 [0 : : - - -
I - _ I I

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2

Schedule
Database
T1 T2 [T ————————— 1
BEGIN I |
READ 1 [A 123 0 I
R(A) BEGIN : 5 - 3 :
W(A) READ i ,
R(A) e
VALIDATE
[VALIDATE | T, Workspace T, Workspace
WRITE | f """"" \ f """""
e e Nooiece v s B
COMMIT A 456 | 11 - -
I | _ _ | |
I- ----------- ' I- -----------

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2

Schedule
. . Database
1 2 [T ————————— 1
BEGIN : l
READ I I
R(A) BEGIN : :
W(A) READ I -
R(A)
VALIDATE
\VALIDATE |
WRITE | " <
COMMIT WRITE | : I :
COMMIT : A 456 |« : : A 123 |0 :
i 11 i

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2

Schedule
Database
T, T, X
BEGIN]
Safe to commit because T, [|123 :
finishes before T,]
VALIDATE T, ", Workspace
WRITE | Ir) Ir ----------
COMMIT |WRITE | " ObJect Value W-TS " " ObJect Value W-TS
COMMIT 1 |A 456 | AL 123 |0
1[C _ _ 11 _ _
i 1

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #2

Schedule
Database
T1 T2 [T ————————— 1
BEGIN : Object Value W-TS :
READ I LA 123 0 :
READ = - - :
R(A) S —————————— o
VALIDATE
T, Workspace T, Workspace
(d=====2-—=- W ittt \
P N - - - RN - |
Safe to commit T, because T, || -——=>—=—1 11A 12 0 J1I
commits logu:ally before T e —— v I

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #3 1

If (T, < T,), check if T, completes its Read phase
before T, completes its Read phase and T, does not

modify any object either read or written by T,:
— WriteSet(T,) N ReadSet(T,) =0
— WriteSet(T,) NWriteSet(T,) =0

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #3

Schedule
Database
T1 T2 [e e e e e e \

: :

READ 1A 123 0 I

R(A) BEGIN i e - |

W(A) READ , '
R(B) S ———————

|\VALIDATE |

WRITE | T, \Vorkspace T, Workspace

COMMIT R(A) f ---------- \ r ——————————
VALIDATE ! 1o
|WRITE | 1 |A 456 | 1 1 |B XYz |0
COMMIT : S R -

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #3

Schedule
Database
T1 T2 [e e e e e e \
BEGIN I |
g/(;:)p BEGIN : A 123 0 :
I |B XYZ 7] |
W(A) l TS(T) 1 L _________________ 1
AV
VALIDATE |
WRITE | T, \Vorkspace T, Workspace
COMMIT R(A) f ---------- \ r ——————————
VALIDATE ! 1o
\WRITE | 1 |A 456 |« I 1 |B XYZ |0
COMMIT : S S -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #3

Schedule
Database
T1 T2 [e e e e e e \
BEGIN : Object Value W-TS :
READ : A 456 1 :
R(A) BEGIN
| XYZ 7] |
W(A) l TS(T) =1 N 1
AV

|\VALIDATE |

WRITE | 7:1 \\Z4

COMMIT R(A) r

' t
(<) I‘w
ﬁ
B~
=)

L)
)
-
§
g
S
8
()

r
VALIDATE [l Object Value W-TS : :
WRITE | A 456 |1 1 1 [B XYZ |0
COMMIT DL - _ :]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #3

Schedule
. . Database
1 2 [T ——————— 1
BEGIN : :
READ I (A 456 1 I
R(A) BEGIN : :
W(A) READ i -
R(B)
|\VALIDATE |
WRITE
co%#m)
VALIDATE
WRITE |
COMMIT

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION CASE #3

Schedule
Database
T1 T2 [e e e e e e \
Hoicce voue n1s [
READ : A 456 1 :
R(A) BEGIN
W(A) READ e Xz |0 !
R(B) S — e ——————
|\VALIDATE |
WRITE | TS(T,)=2 T, Workspace
COMMIT R(A) 2 (Ll
i '
VAL IDAT, ,
WRITE | 1 |B XYZ |0
COMMIT : A 456 |1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

Ton st

Txn #2 | |

Txn #3

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

Ton st

Txn #2

Validqtion Scope

S ~ ~ J—

Txn #3

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

Ton st

Txn #2 | |

Txn #3

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

Validation Scope

-
-
=
=
o
o

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: WRITE PHASE

Propagate changes in the txn’s write set to database
to make them visible to other txns.

Serial Commuits:

— Use a global latch to limit a single txn to be in the
Validation/Write phases at a time.

Parallel Commits:

— Use fine-grained write latches to support parallel
Validation/Write phases.

— Txns acquire latches in a sequential key order to avoid

deadlocks.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

0CC: OBSERVATIONS

OCC works well when the # of conflicts is low:

— All txns are read-only (ideal).
— Txns access disjoint subsets of data.

But OCC has its own problems:

— High overhead for copying data locally.

— Validation/Write phase bottlenecks.

— Aborts are more wasteful than in 2PL because they only
occur after a txn has already executed.

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

OBSERVATION

We have only dealt with transactions that read and
update existing objects in the database.

But now if txns perform insertions, updates, and
deletions, we have new problems...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

THE PHANTOM PROBLEM

Schedule

T

T,

BEGIN

SELECT COUNT(*) AS cnt
FROM people

WHERE status='lit'

cnt=99

BEGIN

INSERT INTO people
VALUES

(101, 'Andy "', '1it");

CREATE TABLE people (

id SERIAL,
name VARCHAR,
status VARCHAR

);

SELECT COUNT(*) AS cnt
FROM people
WHERE status='lit'

COMMIT

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

THE PHANTOM PROBLEM

Schedule

T, T, CREATE TABLE people (

$2CMU-DB

15-445/645 (Fall 2024)

BEGIN

SELECT COUNT(*) AS cnt
FROM people

WHERE status='lit'

cnt=99

BEGIN

INSERT INTO people
VALUES
(101, 'Andy"', '1it');

id SERIAL,
name VARCHAR,
status VARCHAR

);

SELECT COUNT(*) AS cnt
FROM people
WHERE status='lit'

COMMIT

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

THE PHANTOM PROBLEM

Schedule

T, T, CREATE TABLE people (

$2CMU-DB

15-445/645 (Fall 2024)

BEGIN

SELECT COUNT(*) AS cnt
FROM people
WHERE status='lit'

cnt=99

BEGIN

INSERT INTO people
VALUES
(101, 'Andy"', '1it');

id SERIAL,
name VARCHAR,
status VARCHAR

);

SELECT COUNT(*) AS cnt
FROM people
WHERE status='lit'

cnt=100
COMMIT

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

THE PHANTOM PROBLEM

Schedule
T, T, CREATE TABLE people (
BEGIN BEGIN id SERIAL,
SELECT COUNT(*) AS cnt name VARCHAR,
FROM people status VARCHAR
WHERE status='lit');
cnt=99 INSERT INTO people
VALUES
(101, 'Andy "', '1it");
COMMIT

SELECT COUNE(*) AS cnt
e e IR 4

cnt=100
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

00PS?

How did this happen?

— Because T, locked only existing records and not ones that
other txns are adding to the database!

Conlflict serializability on reads and writes of
individual items guarantees serializability only if
the set of objects is fixed.

This is known as a phantom read.

— A txn scans a range more than once and another txn
inserts/removes tuples that fall within that range in
between the scans.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Phantom_reads

SOLUTIONS TO THE PHANTOM PROBLEM

$2CMU-DB

15-445/645 (Fall 2024)

Approach #1: Re-Execute Scans « Rare

— Run queries again at commit to see whether they produce a
different result to identify missed changes.

Approach #2: Predicate Locking « Very Rare

— Logically determine the overlap of predicates before
queries start running.

Approach #3: Index Locking « Common

— Use keys in indexes to protect ranges.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

RE-EXECUTE SCANS

The DBMS tracks the WHERE clause for all queries

that the txn executes.
— Retain the scan set for every range query in a txn.

Upon commit, re-execute just the scan portion of
each query and check whether it generates the same

result.

— Example: Run the scan for an UPDATE query but do not
modify matching tuples.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PREDICATE LOCKING

Proposed locking scheme from System R.
— Shared lock on the predicate in a WHERE clause of a SELECT

query.
— Exclusive lock on the predicate in a WHERE clause of any
UPDATE, INSERT, or DELETE query.

This is difficult to implement efficiently. Some
systems approximate it via precision locking.

_sad HyPer) DuckDB (B UMBRA £ CedarDB

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://www-db.in.tum.de/~muehlbau/papers/mvcc.pdf

PREDICATE LOCKING

SELECT COUNT(*) AS cnt
cople INSERT INTO people VALUES
(101, 'Andy', 'lit')

FROM peopl

WHERE status='lit'

Records in Table "people"

astatus='1it'

name='Andy' A
status="1lit"

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

INDEX LOCKING SCHEMES

Key-Value Locks
Gap Locks
Key-Range Locks
Hierarchical Locking

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

KEY-VALUE LOCKS

Locks that cover a single key-value in an index.

Need “virtual keys” for non-existent values.

B+Tree Leaf Node

Key
[14,14]

o] |1 16

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

GAP LOCKS

Each txn acquires a key-value lock on the single key
that it wants to access. Then get a gap lock on the
next key gap.

B+Tree Leaf Node

10 |(Gap}| 12 |(Gapt| 14 |Fapt| 16

Gap
(14, 16)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

KEY-RANGE LOCKS

Locks that cover a key value and the gap to the next

key value in a single index.
— Need “virtual keys” for artificial values (infinity)

B+Tree Leaf Node

10 |{Gap}| 12 |{Gap}| 14 |{Gap}| 16

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

KEY-RANGE LOCKS

Locks that cover a key value and the gap to the next

key value in a single index.
— Need “virtual keys” for artificial values (infinity)

B+Tree Leaf Node

Next Key [14, 16)

10 |(Gap}| 12 |(Gap) m %ol 16

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

KEY-RANGE LOCKS

Locks that cover a key value and the gap to the next

key value in a single index.
— Need “virtual keys” for artificial values (infinity)

B+Tree Leaf Node

10 |(Gap}| 12 Boap) m (Gap}| 16

Prior Key (12, 14

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with

different locking modes.
— Reduces the number of visits to lock manager.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with

different locking modes.
— Reduces the number of visits to lock manager.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with

different locking modes.
— Reduces the number of visits to lock manager.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOCKING WITHOUT AN INDEX

Choice #1: Acquire locks on every page in the table
to prevent a record’s status attribute from being
changed.

Choice #2: Take a single lock for the entire table to
prevent records being modified.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WEAKER LEVELS OF ISOLATION

Serializability is useful because it allows
programmers to ignore CONCurrency issues.

But enforcing it may allow too little concurrency
and limit performance.

We may want to use a weaker level of consistency
to improve scalability.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

ISOLATION LEVELS

Controls the extent that a txn is exposed to the
actions of other concurrent txns.

Provides for greater concurrency at the cost of

exposing txns to uncommitted changes:
— Dirty Reads

— Unrepeatable Reads

— Lost Updates

— Phantom Reads

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

—-—
2
=)

-T.

=

=

L

-
S

o

4
S

—
o
w0

—

$2CMU-DB

15-445/645 (Fall 2024)

ISOLATION LEVELS

SERIALIZABLE: No phantoms, all reads repeatable,
no dirty reads.

REPEATABLE READS: Phantoms may happen.

READ COMMITTED: Phantoms, unrepeatable reads,
and lost updates may happen.

READ UNCOMMITTED: All anomalies may happen.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

ISOLATION LEVELS

Dirty Unrepeatable Lost
Read Read Updates Phantom
SERIALIZABLE No No No No
REPEATABLE
reap| NO No No Maybe
READ COMMITTED| No Maybe Maybe Maybe
READ Maybe Maybe Maybe Maybe

UNCOMMITTED

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

ISOLATION LEVELS

SERIALIZABLE: Strong Strict 2PL with phantom
protection (e.g., index locks).

REPEATABLE READS: Same as above, but without
phantom protection.

READ COMMITTED: Same as above, but S locks are
released immediately.

READ UNCOMMITTED: Same as above but allows dirty
reads (no S locks).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SQL-92 ISOLATION LEVELS

The application can set a txn’s

isolation level before it executes any SET TRANSACTION ISOLATION LEVEL

queries in that txn. <isolation-level>;

Not all DBMS support all isolation BEGIN TRANSACTION ISOLATION LEVEL
! . . <isolation-level>;

levels in all execution scenarios

— Replicated Environments

The default depends on
implementation...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

ISOLATION LEVELS

Actian Ingres
IBM DB2
CockroachDB
Google Spanner
MSFT SQL Server
MySQL
Oracle
PostgreSQL
SAP HANA
VoltDB
YugaByte

$2CMU-DB

15-445/645 (Fall 2024)

Default

SERIALIZABLE
CURSOR STABILITY
SERIALIZABLE
STRICT SERIALIZABLE
READ COMMITTED
REPEATABLE READS
READ COMMITTED
READ COMMITTED
READ COMMITTED
SERIALIZABLE
SNAPSHOT ISOLATION

Maximum

SERIALIZABLE
SERIALIZABLE
SERIALIZABLE
STRICT SERIALIZABLE
SERIALIZABLE
SERIALIZABLE
SNAPSHOT ISOLATION
SERIALIZABLE
SERIALIZABLE
SERIALIZABLE
SERIALIZABLE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

STRICT SERIALIZABLE

SERIALIZABLE

REPEATABLE READS SNAPSHOT ISOLATION

CURSOR STABILITY

READ COMMITTED

- READ UNCOMMITTED

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATABASE ADMIN SURVEY

What isolation level do transactions execute at on

this DBMS?
H None Few HE Most WAl
30 T
& 22
g
g 20
.
@
>
Oy 10]
=)
3
0 - Read Read Committed] Cursor Stability Repeatable Read Snapshot Isolation Serializable
Uncommitted

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

CONCLUSION

Every concurrency control protocol can be broken
down into the basic concepts that have been

described in the last two lectures.
— Pessimistic: Locking
— Optimistic: Timestamps

There is no one protocol that is always better than
all others...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NEXT CLASS

Multi-Version Concurrency Control

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Optimistic Concurrency Control
	Slide 2: LAST CLASS
	Slide 3: OBSERVATION
	Slide 4: T/O CONCURRENCY CONTROL
	Slide 5: TIMESTAMP ALLOCATION
	Slide 6: TODAY’S AGENDA

	Optimistic Concurrency Control
	Slide 7: OPTIMISTIC CONCURRENCY CONTROL (OCC)
	Slide 8: OCC PHASES
	Slide 9: OCC EXAMPLE
	Slide 10: OCC EXAMPLE
	Slide 11: OCC EXAMPLE
	Slide 12: OCC EXAMPLE
	Slide 13: OCC EXAMPLE
	Slide 14: OCC EXAMPLE
	Slide 15: OCC EXAMPLE
	Slide 16: OCC EXAMPLE
	Slide 17: OCC EXAMPLE
	Slide 18: OCC EXAMPLE
	Slide 19: OCC EXAMPLE
	Slide 20: OCC EXAMPLE
	Slide 21: OCC: READ PHASE
	Slide 22: OCC: VALIDATION PHASE
	Slide 23: OCC: VALIDATION PHASE
	Slide 24: OCC: FORWARD VALIDATION
	Slide 25: OCC: FORWARD VALIDATION CASE #1
	Slide 26: OCC: FORWARD VALIDATION CASE #2
	Slide 27: OCC: FORWARD VALIDATION CASE #2
	Slide 28: OCC: FORWARD VALIDATION CASE #2
	Slide 29: OCC: FORWARD VALIDATION CASE #2
	Slide 30: OCC: FORWARD VALIDATION CASE #2
	Slide 31: OCC: FORWARD VALIDATION CASE #2
	Slide 32: OCC: FORWARD VALIDATION CASE #2
	Slide 33: OCC: FORWARD VALIDATION CASE #2
	Slide 34: OCC: FORWARD VALIDATION CASE #2
	Slide 35: OCC: FORWARD VALIDATION CASE #2
	Slide 36: OCC: FORWARD VALIDATION CASE #2
	Slide 37: OCC: FORWARD VALIDATION CASE #2
	Slide 38: OCC: FORWARD VALIDATION CASE #2
	Slide 39: OCC: FORWARD VALIDATION CASE #2
	Slide 40: OCC: FORWARD VALIDATION CASE #3
	Slide 41: OCC: FORWARD VALIDATION CASE #3
	Slide 42: OCC: FORWARD VALIDATION CASE #3
	Slide 43: OCC: FORWARD VALIDATION CASE #3
	Slide 44: OCC: FORWARD VALIDATION CASE #3
	Slide 45: OCC: FORWARD VALIDATION CASE #3
	Slide 46: OCC: FORWARD VALIDATION
	Slide 47: OCC: FORWARD VALIDATION
	Slide 48: OCC: BACKWARD VALIDATION
	Slide 49: OCC: BACKWARD VALIDATION
	Slide 50: OCC: WRITE PHASE
	Slide 51: OCC: OBSERVATIONS

	Phantoms
	Slide 52: OBSERVATION
	Slide 53: THE PHANTOM PROBLEM
	Slide 54: THE PHANTOM PROBLEM
	Slide 55: THE PHANTOM PROBLEM
	Slide 56: THE PHANTOM PROBLEM
	Slide 57: OOPS?
	Slide 58: SOLUTIONS TO THE PHANTOM PROBLEM
	Slide 59: RE-EXECUTE SCANS
	Slide 60: PREDICATE LOCKING
	Slide 61: PREDICATE LOCKING
	Slide 63: INDEX LOCKING SCHEMES
	Slide 64: KEY-VALUE LOCKS
	Slide 65: GAP LOCKS
	Slide 67: KEY-RANGE LOCKS
	Slide 68: KEY-RANGE LOCKS
	Slide 69: KEY-RANGE LOCKS
	Slide 70: HIERARCHICAL LOCKING
	Slide 71: HIERARCHICAL LOCKING
	Slide 72: HIERARCHICAL LOCKING
	Slide 73: LOCKING WITHOUT AN INDEX

	Isolation Levels
	Slide 74: WEAKER LEVELS OF ISOLATION
	Slide 75: ISOLATION LEVELS
	Slide 76: ISOLATION LEVELS
	Slide 77: ISOLATION LEVELS
	Slide 78: ISOLATION LEVELS
	Slide 79: SQL-92 ISOLATION LEVELS
	Slide 80: ISOLATION LEVELS
	Slide 81
	Slide 82: DATABASE ADMIN SURVEY

	Conclusion
	Slide 84: CONCLUSION
	Slide 87: NEXT CLASS

