Carnegie Mellon University

Uatabase
Systems

Database
Logging

15-445/645 FALL 2024) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #3 is due Sunday Nov 17th @ 11:59pm
— Saturday Office Hours on Nov 16® @ 3-5pm GHC 5207

Project #4 is due Sunday Dec 8™ @ 11:59pm

Final Exam is on Friday Dec 13" @ 8:30am

— Early exam will not be offered.
— Do not leave campus before this date.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LAST CLASS

We discussed multi-version concurrency control
(MVCC) and how it effects the design of the entire
DBMS architecture.

A DBMS's concurrency control protocol gives it
Atomicity + Consistency + Isolation.

We now need ensure Atomicity + Durability...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION
Schedule

T1
BEGIN
R(A) (~)
W(A) Buffer Pool
CbMMIT A=)

agng

=1}
= §

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION

Schedule
T 1

BEGIN
R(A)
W.(A) —

CbMMIT \ A=2] -

r N
Buffer Pool

-
A=1 :l»
N)

agng

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MOTIVATION
Schedule

r N
Buffer Pool

W.(A)\

A=1

. J

$2CMU-DB

15-445/645 (Fall 2024)

agng

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Schedule

W.(A)\

p
Buffer Fy

MOTIVATION

~

A=1

$2CMU-DB

15-445/645 (Fall 2024)

. J

agng

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CRASH RECOVERY

Recovery algorithms are techniques to ensure
database consistency, transaction atomicity, and
durability despite failures.

Recovery algorithms have two parts:
— Actions during normal txn processing to ensure that the

DBMS can recover from a failure. TOday
— Actions after a failure to recover the database to a state that

ensures atomicity, consistency, and durability.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TODAY’S AGENDA

Bufter Pool Policies
Shadow Paging
Write-Ahead Log
Logging Schemes

Checkpoints
DB Flash Talk: Confluent

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.confluent.io/

OBSERVATION

The database’s primary storage location is on non-
volatile storage, but this is slower than volatile

storage. Use volatile memory for faster access:
— First copy target record into memory.

— Perform the writes in memory.

— Write dirty records back to disk.

The DBMS needs to ensure the following:

— The changes for any txn are durable once the DBMS has
told somebody that it committed.

— No partial changes are durable if the txn aborted.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

UNDO VS. REDO

Undo: The process of removing the effects of an
incomplete or aborted txn.

Redo: The process of re-applying the effects of a
committed txn for durability.

How the DBMS supports this functionality depends
on how it manages the buffer pool ...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL
Schedule

T1 T2
BEGIN g \
R(A) Buffer Pool
W(A)
BEGIN A=1|B=9|C=7
R(B)
W(B)
COMMIT
ROLLBACK §
\ J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL

Schedule
T1 T2
BEGIN g \
RCA) Buffer Pool
WO iff
BEGIN N N P
R(B) A=3|B=9|C=7
W(B)
COMMIT
ROLLBACK §
\ J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL

Schedule
T1 T2
BEGIN p N
R(A) B Pool
oA uffer Poo
BEGIN —=~[r=al =
»R(B) A=3|B=9]C=7
W(B)
COMMIT
ROLLBACK §
. y,

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL

Schedule
T1 T2
BEGIN p N
R(A) B Pool
oA uffer Poo
BEGIN = [r=al =
R(B) A=3|B=8]C=7
»W(B)
COMMIT
ROLLBACK §
. J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL

Schedule
T1 T2
BEGIN - N
R(A) B Pool
oA uffer Poo
BEGIN —a[r=alc=
R(B) A=3|B=8]C=7
W(B)
»COMMIT
ROLLBACK §
. J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL

Schedule
T1 T2
BEGIN - N
R(A) B Pool
oA uffer Poo
BEGIN —a[r=alc=
R(B) A=3|B=8]C=7
W(B)
»COMMIT
ROLLBACK §
. J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL

Schedule
1-1 1-2

BEGIN p N

R(A) B P

oA uffer Pool
BEGIN = [r=al =
R(B) A=3|B=8]C=7
W(B)
COMMIT

ROLLBACK

. J
g [TTTTT]

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

STEAL POLICY

Whether the DBMS can evict a dirty object in the
buffer pool modified by an uncommitted txn and
overwrite the most recent committed version of
that object in non-volatile storage.

STEAL: Eviction + overwriting is allowed.
NO-STEAL: Eviction + overwriting is not allowed.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

FORCE POLICY

Whether the DBMS requires that all updates made
by a txn are written back to non-volatile storage
before the txn can commit.

FORCE: Write-back is required.
NO-FORCE: Write-back is not required.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NO-STEAL + FORCE
Schedule

T1 T2
BEGIN
R(A) ("~)
W(A) Buffer Pool
BEGIN
R(B) A=1|B=9|C=7
W(B)
COMMIT
ROLLBACK g
N J i
e R

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NO-STEAL + FORCE

Schedule
T1 T2
BEGIN
N [Buffer Pool |
W(A) ~— ujjer roo
BEGIN—
R(B) A=3|B=9|C=7
W(B)
COMMIT
ROLLBACK §
N) §
D @

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NO-STEAL + FORCE

Schedule
T1 T2
BEGIN
R(A) r 2
W(A) Buffer Pool
BEGIN
»R(m A=3|B=9|c=7
W(B)
COMMIT
ROLLBACK §
\ J
winr Y

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NO-STEAL + FORCE

Schedule
T1 T2
BEGIN
R(A) r N\
W(A) Buffer Pool
BEGIN
R(B) __—1"|A=3|B=8|C=7
»WB)/
COMMIT
ROLLBACK g
00§

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NO-STEAL + FORCE

Schedule
T1 T2
BEGIN
R(A r N
WE Ag Buffer Pool
BEGIN
R(B) A=3|B=8|C=7

W(B)

FORCE means that T,
changes must be written

\
to disk at this point. m

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NO-STEAL + FORCE

Schedule
T, T, :
BEGIN NO-STEAL means that T, changes]
R(A) cannot be written to disk yet.
W(A) ;
BEGIN
R(B)

W(B)

FORCE means that T,
changes must be written
to disk at this point.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NO-STEAL + FORCE

$2CMU-DB

15-445/645 (Fall 2024)

ROLLBACK

Schedule
T, T,

BEGIN

R(A)

W(A)
BEGIN
R(B)
W(B)
COMMIT

r N
Buffer Pool

A=3

Now its trivial t
rollback T,

|

. J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

NO-STEAL + FORCE

This approach is the easiest to implement:

— Never have to undo changes of an aborted txn because the
changes were not written to disk.

— Never have to redo changes of a committed txn because all
the changes are guaranteed to be written to disk at commit
time (assuming atomic hardware writes).

Previous example cannot support write sets that
exceed the amount of physical memory available.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHADOW PAGING

Instead of copying the entire database, the DBMS

copies pages on write to create two versions:

— Master: Contains only changes from committed txns.

— Shadow: Temporary database with changes made from
uncommitted txns.

To install updates when a txn commits, overwrite

the root so it points to the shadow, thereby

swapping the master and shadow.

Bufter Pool Policy: NO-STEAL + FORCE

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

s2CMU-DB
15-445/645 (Fall 2024

SHADOW PAGING - EXAMPLE

r

Memory

-

W NN =

Master
Page Table

Master
Pointer

==

i

bdyd

Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TxnT,

$2CMU-DB

15-445/645 (Fall 2024)

SHADOW PAGING - EXAMPLE

r

_

Master
Pointer /

N
Memory

Master
Page Table

W NN =

W N =

Shadow

~

Disk

t11y

[

Page T able
Active modifying txn
updates shadow pages.

(

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TxnT,

s2CMU-DB
5/645 (Fall 2

15-445/645 (Fall 2024)

SHADOW PAGING - EXAMPLE

r

N
Memory

Master
Page Table

Master

Update

W NN =

AW NN =

Shadow

Page Table
&)

i

~

Disk
[l
el
el
l4*
_

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TxnT, —

s2CMU-DB
15-445/645 (Fall 2024

-

_

Master
Page Table

Master
Pointer

1
2
\3
4

~

Memory

W NN =

Shadow

Page Table
&)

i

SHADOW PAGING - EXAMPLE

-

bl

'y

Master Pointer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TxnT,

s2CMU-DB
5/645 (Fall 2

15-445/645 (Fall 2024)

SHADOW PAGING - EXAMPLE

-

N
Memory

Master
Page Table

Master
Pointer 1

W NN =

> 2 —
3

4

Shadow

Page Table
&)

i

4 .)
Disk
el
>
e
—> <
_ _J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Read-only txns access
the current master. Jemory

1
Txn TZ 2
3
\ 4
Master
‘b-/ Page Table —
Master | 4/ T e
Pointer 1 >
TxnT, > O
3 —
‘ —> <
Shadow
Page Table
" #) "

~

SHADOW PAGING - EXAMPLE

-

Disk

\

i

s2CMU-DB
5/645 (Fall 2

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Read-only txns access ~
the current master. Jemory

TxnT, —

AW NN =

Master
-/ Page Table —
Master | 4/ T e
Pointer 1 >
TxnT, > O
3 >
‘ —> <
Shadow
Page Table
- M -

SHADOW PAGING - EXAMPLE

-

Disk

Master Pointer

\

i

s2CMU-DB
5/645 (Fall 2

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TxnT,
COMMIT

s2CMU-DB
5/645 (Fall 2

15-445/645 (Fall 2024)

SHADOW PAGING - EXAMPLE

“"
«®
.
-
*

-

()
Memory
1
2
3 L]
4 ‘q{
- """" Page Table
Master
Pointer 1
2 -
3
4
Shadow
Page Table
" &)

i

Disk
=
P
e
*
_

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TxnT,
COMMIT

s2CMU-DB
5/645 (Fall 2

15-445/645 (Fall 2024)

SHADOW PAGING - EXAMPLE

r

N
Memory
1
2
3 L]
4 R

"""" Page Table
Master
Pointer

“"
«®
.
-
*

-

W N =

Master

Page Table
ey

i

Disk
=
P
e
*
_

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHADOW PAGING - EXAMPLE

4 R
Memory

H W N =

"""" Page Table
Master
Pointer

r

Disk

- Master Pointer

X

X

el
! >
TxnT, 2 O
3 —
COMMIT . L
Master
9 Page Table) g

i

s2CMU-DB
5/645 (Fall 2

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TxnT,
COMMIT

s2CMU-DB
5/645 (Fall 2

15-445/645 (Fall 2024)

SHADOW PAGING - EXAMPLE

r

Memory

1\%\
Pointer

~

-
Disk

Master Pointer

!

W N =

Master

Page Table
ey

i

SEan

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHADOW PAGING - UNDO/REDO

Supporting rollbacks and recovery is easy with
shadow paging.

Undo: Remove the shadow pages. Leave the master
and the DB root pointer alone.

Redo: Not needed at all.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHADOW PAGING - DISADVANTAGES

Copying the entire page table is expensive:

— Use a page table structured like a B+tree (LMDB).

— No need to copy entire tree, only need to copy paths in the
tree that lead to updated leaf nodes.

Commit overhead is high:

— Flush every updated page, page table, and root.

— Data gets fragmented (bad for sequential scans).

— Need garbage collection.

— Only supports one writer txn at a time or txns in a batch.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SQLITE (PRE-2010)

When a txn modifies a page, the [Memory)
DBMS copies the original page to a
separate journal file before page 1 | [Page 2 | [Page 3
overwriting master version. L)
— (Called rollback mode.
é R)
o : Disk
After restarting, if a journal file exists, —— —— .
then the DBMS restores it to undo - =R
. Page 2 Page 5
changes from uncommitted txns.
Page 3 Page 6
. J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/atomiccommit.html

SQLITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before

overwriting master version.
— (Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

$2CMU-DB

15-445/645 (Fall 2024)

Page 1

Page 3

Disk
Page 1 Page 4 Journal File
Page 2 Page 5 : Page 2
Page 3 Page 6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/atomiccommit.html

SQLITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before

overwriting master version.
— (Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

$2CMU-DB

15-445/645 (Fall 2024)

Page 1

Page 3

Disk
Page 1 Page 4 Journal File
Page 2 Page 5 : Page 2
Page 3 Page 6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/atomiccommit.html

SQLITE (PRE-2010)

When a txn modifies a page, the [Memory)
DBMS copies the original page to a $
separate journal file before page 1 | | Page 2 | [Page 3
overwriting master version. L)
— (Called rollback mode.

é R)

o : Disk
After restarting, if a journal file exists, —— —— .
then the DBMS restores it to undo : = JournalFile
. Page 2 Page 5 : Page 2
changes from uncommitted txns. :
Page 3 Page 6
. J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/atomiccommit.html

SQLITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before

overwriting master version.
— (Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

$2CMU-DB

15-445/645 (Fall 2024)

Memory
Page 1 Page 2 Page 3
Disk l
Page 1 Page 4 | i JournalFile
Page 2 Page 5 Page 2
Page 3 Page 6 Page 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/atomiccommit.html

SQLITE (PRE-2010)

When a txn modifies a page, the [Memory)
DBMS copies the original page to a

separate journal file before page 1 | | Page 2 | [Page 3
overwriting master version. L I)

— Called rollback mode.

(R N\
L. . Disk
After restarting, if a journal file exists, —f——
. a age i Journal File
then the DBMS restores it to undo gf J
. Page 2 Page 5 Page 2
changes from uncommitted txns.
Page 3 Page 6 Page 3
. J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/atomiccommit.html

SQLITE (PRE-2010)

When a txn modifies a page, the Memory
DBMS copies the original pagetoa @ gu @
separate journal file before

overwriting master version. U 2, R
— (Called rollback mode.

(R)
. : Disk
After restarting, if a journal file exists, 5
. Page 1 Page 4 1 Fil
then the DBMS restores it to undo | Journal File
. Page 2 Page 5 Page 2
changes from uncommitted txns.
Page 3 Page 6 Page 3
\ ' J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/atomiccommit.html

SQLITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before

overwriting master version.
— (Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

$2CMU-DB

15-445/645 (Fall 2024)

Memory
J
R)
Disk
Page 1 Page 4 | | Journal File
Page 2 Page 5 Page 2
Page 3 Page 6 Page 3

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/atomiccommit.html

SQLITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before

overwriting master version.
— (Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

$2CMU-DB

15-445/645 (Fall 2024)

Memory

Page 2

Page 3

1

1

\

\

Di
Page 1 Page 4 Journal File
Page 2 Page 5 Page 2
Page 3 Page 6 Page 3

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/atomiccommit.html

SQLITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before

overwriting master version.
— (Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

$2CMU-DB

15-445/645 (Fall 2024)

Memory

Page 2

Page 3

/

/]

Pa Page 4 | | Journal File
Pagl 2 Page 5 Page 2
Page 3 Page 6 Page 3

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.sqlite.org/atomiccommit.html

OBSERVATION

Shadowing page requires the DBMS to perform
writes to random non-contiguous pages on disk.

We need a way for the DBMS convert random
writes into sequential writes...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

WRITE-AHEAD L0G (WAL)

Maintain a log file separate from data files that

contains the changes that txns make to database.

— Assume that the log is on stable storage.

— Log contains enough information to perform the necessary
undo and redo actions to restore the database.

DBMS must write to disk the log file records that

correspond to changes made to a database object
before it can flush that object to disk.

Bufter Pool Policy: STEAL + NO-FORCE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL + WAL

Steal

No-Force
Concern: Crash before a page is flushed to disk. Durability?
Solution: Force a summary/log @ commit. Use to REDO.

Force

> Force (on every update, flush the updated page to disk)
Poor response time, but enforces durability of committed txns.

<

N

No-Steal Steal (flush an unpinned dirty page even if the updating txn is active)

Low throughtput, Concern: A stolen+flushed page was modified by an uncommitted txn. T.
but works for If T aborts, how is atomicity enforced?
aborted txns. Solution: Remember old value (logs). Use to UNDO.
$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL PROTOCOL

The DBMS stages all a txn’s log records in volatile
storage (usually backed by buffer pool).

All log records pertaining to an updated page are
written to non-volatile storage before the page itself
is over-written in non-volatile storage.

A txn is not considered committed until all its log
records have been written to stable storage.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

WAL PROTOCOL

Write a <BEGIN> record to the log for each txn to
mark its starting point.

Append a record every time a txn changes an object:
— Transaction Id

— Object Id ' Not necessary if using

— Before Value (UNDO)
— After Value (REDO) app e”d'only MVCC

When a txn finishes, the DBMS appends a
<COMMIT> record to the log.

— Make sure that all log records are flushed before it returns
an acknowledgement to application.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - EXAMPLE

Schedule
T (WAL Buffer |

BEGIN
W(A)
W(B)

<T, BEGIN>

COMMIT

4

\. J

f Buffer Pool)

A=1|B=5|C=7

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Schedule
T 1

BEGIN
W(A)
W(B)

COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

WAL - EXAMPLE

’V\XV}il,l}qjﬂﬂer‘\

<T, BEGIN>

‘ll|<T1,,A,1, 8>
A

Before After

4

\. J

f Buffer Pool)

A=1|B=5|C=7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - EXAMPLE
Schedule

()
T W AL Buffer
BEGIN
W(A) <T1 BEGIN>
W(B) a<T1, AL 1, 8
Beftre A}ter
COMMIT 7
U J

f Buffer Pool)

A=8|B=5|C=7

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - EXAMPLE
Schedule

<T,, A, 1, 8
<T,, B, 5, 9>
<T, COMMIT>

(WALBuffer| | [=

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, COMMIT>

4

" y
Txn result is now safe to - N
return to application. Buffer Pool

A=8|B=9|C=7

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - EXAMPLE

Schedule
4 N\
T W AL Buffer
BEGIN
W(A) <T1 BEGIN>
W(B) <T1, AL 1, 8
: <T,, B, 5, 9>
<T, COMMIT>
COMMIT : .
_ W,

f Buffer Pool)

A=8|B=9|C=7

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - EXpMBLE

Everything we need to
Schedule restore T, is in the log!
4)
T W AL Buffer
BEGIN E
W(A)
W(B)
COMMIT

\. J

[Bu ‘fer Pool)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - IMPLEMENTATION

Flushing the log buffer to disk every time a txn
commits will become a bottleneck.

The DBMS can use the group commit
optimization to batch multiple log flushes together

to amortize overhead.
— When the buffer is full, flush it to disk.

— Or if there is a timeout (e.g., 5 ms).

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - GROUP COMMIT

Schedule
T P (WAL Buffers |

BEGIN \

W(C) """
W(D) p |

COMMIT 7
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - GROUP COMMIT
Schedule

r \
T P W AL Buffers :

BEGIN :
W(B) \ <-|_1 , A, 1, 8

BEGIN T S

W(C)

W(D) 7 |
COMMIT 7

COMMIT

7
. J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - GROUP COMMIT

Schedule
r N
T, T, W AL Buffers
BEGIN
W(A) <T1 BEGIN>
W(B) = <T1, AL 1, 8
<T,, B, 5, 9>

BEGIN —

W(C) E

W(D) : |
: 4

COMMIT 7
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - GROUP COMMIT

Schedule
T P (WAL Buffers |
BEGIN
W(A) <T1 BEGIN>

<T,, A, 1, 8

W(B)
BEGIN - <T1, B, 5, 9> A
W(C) <T, BEGIN> E
§ |

W(D) 7

COMMIT 7
COMMIT

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - GROUP COMMIT

Schedule
(N
i T W AL Buffers
BEGIN |
W(A) <T, BEGIN> :
W(B> <-|_1 , A, 1 , 8>
BEGIN <T,, B, 5, 9> |
»W(C> - <T2 BEGIN> ------
W(D> <T2 , C, 1, 2>7 |
COMMIT §
COMMIT I 4
\- J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - GROUP COMMIT

Schedule - |
Flush the buffer 5
T, T, whenitis full. fs g p—
BEGIN - ToAL e
W(A) ~<T, BEGIN> : <T, BEGIN>
W(B) <T,, A, 1, 8 <T,, C, 1, 2>
BEGIN <T,, B, 5 9 I
»W(C> - <T2 BEGIN> ------
W(D) <T,, ¢, 1, 2>7 |
COMMIT
COMMIT I 7
\ J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - GROUP COMMIT

Schedule
T T (N\
1 2 WAL Buff ers <T, BEGIN>
s T eeo By
W(A) 1 <T, BEGIN>
w(B) <T,, A, 1, 8 <T,, 1, 2

BEGIN <T,, B, 5, 9> P

W(C) <T, BEGIN> g
»W(D> \ <T2’ c, 1, 2>7 |

\ <T,, D, 3, 4>
COMMIT

COMMIT

4

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - GROUP COMMIT

Schedule
T T (N\
1 2 WAL Buff ers <T, BEGIN>
s T eeo By
W(A) 1 <T, BEGIN>
w(B) <T,, A, 1, 8 <T,, 1, 2

BEGIN <T,, B, 5, 9> P

W(C) <T, BEGIN>
»W(D> \ <T2’ c, 1, 2>7 |

g g \ <T,, D, 3, 4>
COMMIT

COMMIT

4

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - GROUP COMMIT

Schedule
T T (N\

1 2 WAL Buff ers <T, BEGIN>
s T eeo By
W(A 1 <T, BEGIN>
Wng <T,, A, 1, & <T,, C, 1, 2>

BEGIN <T,, B, 5, % L i

W(C) =

WD) Flush after an elapsed |

: ; amount of time. |
B
g» g \<T2’ D, 3, 4
COMMIT

COMMIT 7

\ v,

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - GROUP COMMIT

Schedule
T1 T2

BEGIN

W(A)

W(B)
BEGIN
W(C)
W(D)

COMMIT
COMMIT

(WAL Buffers b g

|
Flush after an elapsed
amount of time.

“

$2CMU-DB

15-445/645 (Fall 2024)

NG

<T,, D, 3, 4>

4

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>
<T,, C, 1, 2>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

WAL - GROUP COMMIT

Schedule
r N\
T1 T2 WAL Buffers <T, BEGIN>
BEGIN e s o
W(A) e >
W(B> : <T,, D, 3, 4>
BEGIN | || N i L
W(C) A
W(D) Flush after an elapsed |
: : amount of time. |
B
g» g \<T2, D, 3, 4>
COMMIT)
COMMIT
\ J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL POLICIES

Almost every DBMS uses NO-FORCE + STEAL

Runtime Performance Recovery Performance
’ ------------------- -y ’ ------------------- -y
!)
: NO-STEAL STEAL | : NO-STEAL STEAL |
I | I |
| |
| No-FORCE| - | Fastest| 1 | No-FORCE| ~ — | Slowest | |
| |
| L :
| FORCE| Slowest - | | FORCE| Fastest - |
: I : I
e —————— ! e ———— !

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL POLICIES

Almost every DBMS uses NO-FORCE + STEAL

Runttme Performance Recovery Perfarmance

"""""""""" - TTTTTTTTT Undo+ Redo [
N

NO-FORCE - Fastest NO-FORCE - Slowest

FORCE | Fastest -

//[

-------------------- NoUndo+ NoRedo [==========

FORCE | Slowest -

------\

’------
L B B B _§ B B _§ B § §
L B B B _§ B B _§B B B §)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOGGING SCHEMES

Physical Logging
— Record the byte-level changes made to a specific page.
— Example: git diff

Logical Logging
— Record the high-level operations executed by txns.
— Example: UPDATE, DELETE, and INSERT queries.

Physiological Logging

— Physical-to-a-page, logical-within-a-page.

— Hybrid approach with byte-level changes for a single tuple
identified by page id + slot number.

— Does not specify organization of the page.
$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LOGGING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;

Physical Logical Physiological
<T1 , <T1 , <T1 ,
able=X Query="UPDATE foo
SET val=XYZ
Offset=1024 WHERE id=1">
Betore=ABC, Betore=ABC,
After=XYZ> After=xXYZ>

<T,,
Index=X PKEY

IndexPage=45

Key=(1,Record1)>

4 4

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PHYSICAL VS. LOGICAL LOGGING

Logical logging requires less data written in each log
record than physical logging.

Difficult to implement recovery with logical logging
if you have concurrent txns running at lower

isolation levels.

— Hard to determine which parts of the database may have
been modified by a query before crash.

— Recovery takes longer because DBMS re-executes every
query in the log again.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CHANGE DATA CAPTURE (CDC)

Automatically propagate changes to
external sources to replicate and

synchronize database contents.

— Extract Transform Load (ETL)

— Some systems can do this automatically.
Others require third-party tools.

Approach #1: WAL a8 debezium Il || Strllm
Approach #2: Triggers ORACLE | Goldenite

Approach #3: Timestamps % K lek a Q | | k

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Extract,_transform,_load

OBSERVATION

The DBMS's WAL will grow forever.

After a crash, the DBMS must replay the entire log,
which will take a long time.

The DBMS periodically takes a checkpoint where

it flushes all buffers out to disk.

— This provides a hint on how far back it needs to replay the
WAL after a crash.
— Truncate the WAL up to a certain safe point in time.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CHECKPOINTS

Blocking / Consistent Checkpoint Protocol:
— Pause all queries.

— Flush all WAL records in memory to disk.

— Flush all modified pages in the buffer pool to disk.

— Write a <CHECKPOINT> entry to WAL and flush to disk.
— Resume queries.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.

$2CMU-DB

15-445/645 (Fall 2024)

WAL

4

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2, B, 4, 5>
<T2 COMMIT>
<T3, A, 3, 4>

* o
OQQ 174

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.

Any txn that committed before the
checkpoint is ignored (T,).

$2CMU-DB

15-445/645 (Fall 2024)

WAL

g

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2, B, 4, 5>
<T2 COMMIT>
<T3, A, 3, 4>

LR
on 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.

Any txn that committed before the
checkpoint is ignored (T,).

T, + T; did not commit before the last
checkpoint.

$2CMU-DB

15-445/645 (Fall 2024)

WAL

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2, B, 4, 5>
<T2 COMMIT>
<T3, A, 3, 4>

‘o
OQQ 174

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.

Any txn that committed before the
checkpoint is ignored (T,).

T, + T; did not commit before the last

checkpoint.

— Need to redo T, because it committed
after checkpoint.

— Need to undo T; because it did not
commit before the crash.

$2CMU-DB

15-445/645 (Fall 2024)

WAL

g
g

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2, B, 4, 5>
<T2 COMMIT>
<T3, A, 3, 4>

‘o
OQQ 174

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CHECKPOINTS - CHALLENGES

In this example, the DBMS must stall txns when it

takes a checkpoint to ensure a consistent snapshot.
— We will see how to get around this problem next class.

Scanning the log to find uncommitted txns can take

a long time.
— Unavoidable but we will add hints to the <CHECKPOINT>
record to speed things up next class.

How often the DBMS should take checkpoints
depends on many different factors...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CHECKPOINTS - FREQUENCY

Checkpointing too often causes the runtime

performance to degrade.
— System spends too much time flushing buffers.

But waiting a long time is just as bad:
— The checkpoint will be large and slow.
— Makes recovery time much longer.

Tunable option that depends on application
recovery time requirements.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

CONCLUSION

Write-Ahead Logging is (almost) always the best
approach to handle loss of volatile storage.

Use incremental updates (STEAL + NO-FORCE)
with checkpoints.

On Recovery: undo uncommitted txns + redo
committed txns.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NEXT CLASS

Better Checkpoint Protocols.
Recovery with ARIES.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics

	Introduction
	Slide 1: Database Logging
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS
	Slide 4: MOTIVATION
	Slide 5: MOTIVATION
	Slide 6: MOTIVATION
	Slide 7: MOTIVATION
	Slide 8: CRASH RECOVERY
	Slide 9: TODAY’S AGENDA
	Slide 10: OBSERVATION

	Buffer Pool Policies
	Slide 11: UNDO VS. REDO
	Slide 12: BUFFER POOL
	Slide 13: BUFFER POOL
	Slide 14: BUFFER POOL
	Slide 15: BUFFER POOL
	Slide 16: BUFFER POOL
	Slide 17: BUFFER POOL
	Slide 18: BUFFER POOL
	Slide 19: STEAL POLICY
	Slide 20: FORCE POLICY
	Slide 21: NO-STEAL + FORCE
	Slide 22: NO-STEAL + FORCE
	Slide 23: NO-STEAL + FORCE
	Slide 24: NO-STEAL + FORCE
	Slide 25: NO-STEAL + FORCE
	Slide 26: NO-STEAL + FORCE
	Slide 27: NO-STEAL + FORCE
	Slide 28: NO-STEAL + FORCE

	Shadow Paging
	Slide 29: SHADOW PAGING
	Slide 30: SHADOW PAGING – EXAMPLE
	Slide 31: SHADOW PAGING – EXAMPLE
	Slide 32: SHADOW PAGING – EXAMPLE
	Slide 33: SHADOW PAGING – EXAMPLE
	Slide 34: SHADOW PAGING – EXAMPLE
	Slide 35: SHADOW PAGING – EXAMPLE
	Slide 36: SHADOW PAGING – EXAMPLE
	Slide 37: SHADOW PAGING – EXAMPLE
	Slide 38: SHADOW PAGING – EXAMPLE
	Slide 39: SHADOW PAGING – EXAMPLE
	Slide 40: SHADOW PAGING – EXAMPLE
	Slide 41: SHADOW PAGING – UNDO/REDO
	Slide 42: SHADOW PAGING – DISADVANTAGES
	Slide 43: SQLITE (PRE-2010)
	Slide 44: SQLITE (PRE-2010)
	Slide 45: SQLITE (PRE-2010)
	Slide 46: SQLITE (PRE-2010)
	Slide 47: SQLITE (PRE-2010)
	Slide 48: SQLITE (PRE-2010)
	Slide 49: SQLITE (PRE-2010)
	Slide 50: SQLITE (PRE-2010)
	Slide 51: SQLITE (PRE-2010)
	Slide 52: SQLITE (PRE-2010)
	Slide 53: OBSERVATION

	Write-Ahead Logging
	Slide 54: WRITE-AHEAD LOG (WAL)
	Slide 55: BUFFER POOL + WAL
	Slide 56: WAL PROTOCOL
	Slide 57: WAL PROTOCOL
	Slide 58: WAL – EXAMPLE
	Slide 59: WAL – EXAMPLE
	Slide 60: WAL – EXAMPLE
	Slide 61: WAL – EXAMPLE
	Slide 62: WAL – EXAMPLE
	Slide 63: WAL – EXAMPLE
	Slide 64: WAL – IMPLEMENTATION
	Slide 65: WAL – GROUP COMMIT
	Slide 66: WAL – GROUP COMMIT
	Slide 67: WAL – GROUP COMMIT
	Slide 68: WAL – GROUP COMMIT
	Slide 69: WAL – GROUP COMMIT
	Slide 70: WAL – GROUP COMMIT
	Slide 71: WAL – GROUP COMMIT
	Slide 72: WAL – GROUP COMMIT
	Slide 73: WAL – GROUP COMMIT
	Slide 74: WAL – GROUP COMMIT
	Slide 75: WAL – GROUP COMMIT
	Slide 76: BUFFER POOL POLICIES
	Slide 77: BUFFER POOL POLICIES

	Logging Schemes
	Slide 78: LOGGING SCHEMES
	Slide 79: LOGGING SCHEMES
	Slide 80: PHYSICAL VS. LOGICAL LOGGING

	CDC
	Slide 81: CHANGE DATA CAPTURE (CDC)

	Checkpoints
	Slide 82: OBSERVATION
	Slide 83: CHECKPOINTS
	Slide 84: CHECKPOINTS
	Slide 85: CHECKPOINTS
	Slide 86: CHECKPOINTS
	Slide 87: CHECKPOINTS
	Slide 88: CHECKPOINTS – CHALLENGES
	Slide 89: CHECKPOINTS – FREQUENCY

	Conclusion
	Slide 90: CONCLUSION
	Slide 91: NEXT CLASS

