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ADMINISTRIVIA

Project #3 is due Sunday Nov 17th @ 11:59pm
— Saturday Office Hours on Nov 16® @ 3-5pm GHC 5207

Project #4 is due Sunday Dec 8™ @ 11:59pm

Final Exam is on Friday Dec 13" @ 8:30am

— Early exam will not be offered.
— Do not leave campus before this date.
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LAST CLASS

We discussed multi-version concurrency control
(MVCC) and how it effects the design of the entire
DBMS architecture.

A DBMS's concurrency control protocol gives it
Atomicity + Consistency + Isolation.

We now need ensure Atomicity + Durability...
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CRASH RECOVERY

Recovery algorithms are techniques to ensure
database consistency, transaction atomicity, and
durability despite failures.

Recovery algorithms have two parts:
— Actions during normal txn processing to ensure that the

DBMS can recover from a failure. TOday
— Actions after a failure to recover the database to a state that

ensures atomicity, consistency, and durability.
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TODAY’S AGENDA

Bufter Pool Policies
Shadow Paging
Write-Ahead Log
Logging Schemes

Checkpoints
DB Flash Talk: Confluent
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OBSERVATION

The database’s primary storage location is on non-
volatile storage, but this is slower than volatile

storage. Use volatile memory for faster access:
— First copy target record into memory.

— Perform the writes in memory.

— Write dirty records back to disk.

The DBMS needs to ensure the following:

— The changes for any txn are durable once the DBMS has
told somebody that it committed.

— No partial changes are durable if the txn aborted.
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UNDO VS. REDO

Undo: The process of removing the effects of an
incomplete or aborted txn.

Redo: The process of re-applying the effects of a
committed txn for durability.

How the DBMS supports this functionality depends
on how it manages the buffer pool ...
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STEAL POLICY

Whether the DBMS can evict a dirty object in the
buffer pool modified by an uncommitted txn and
overwrite the most recent committed version of
that object in non-volatile storage.

STEAL: Eviction + overwriting is allowed.
NO-STEAL: Eviction + overwriting is not allowed.
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FORCE POLICY

Whether the DBMS requires that all updates made
by a txn are written back to non-volatile storage
before the txn can commit.

FORCE: Write-back is required.
NO-FORCE: Write-back is not required.
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NO-STEAL + FORCE

This approach is the easiest to implement:

— Never have to undo changes of an aborted txn because the
changes were not written to disk.

— Never have to redo changes of a committed txn because all
the changes are guaranteed to be written to disk at commit
time (assuming atomic hardware writes).

Previous example cannot support write sets that
exceed the amount of physical memory available.
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SHADOW PAGING

Instead of copying the entire database, the DBMS

copies pages on write to create two versions:

— Master: Contains only changes from committed txns.

— Shadow: Temporary database with changes made from
uncommitted txns.

To install updates when a txn commits, overwrite

the root so it points to the shadow, thereby

swapping the master and shadow.

Bufter Pool Policy: NO-STEAL + FORCE
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SHADOW PAGING - UNDO/REDO

Supporting rollbacks and recovery is easy with
shadow paging.

Undo: Remove the shadow pages. Leave the master
and the DB root pointer alone.

Redo: Not needed at all.
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SHADOW PAGING - DISADVANTAGES

Copying the entire page table is expensive:

— Use a page table structured like a B+tree (LMDB).

— No need to copy entire tree, only need to copy paths in the
tree that lead to updated leaf nodes.

Commit overhead is high:

— Flush every updated page, page table, and root.

— Data gets fragmented (bad for sequential scans).

— Need garbage collection.

— Only supports one writer txn at a time or txns in a batch.
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SQLITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before

overwriting master version.
— (Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.
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SQLITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before

overwriting master version.
— (Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
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SQLITE (PRE-2010)
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DBMS copies the original page to a
separate journal file before
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SQLITE (PRE-2010)
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SQLITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
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overwriting master version.
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After restarting, if a journal file exists,
then the DBMS restores it to undo
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OBSERVATION

Shadowing page requires the DBMS to perform
writes to random non-contiguous pages on disk.

We need a way for the DBMS convert random
writes into sequential writes...
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WRITE-AHEAD L0G (WAL)

Maintain a log file separate from data files that

contains the changes that txns make to database.

— Assume that the log is on stable storage.

— Log contains enough information to perform the necessary
undo and redo actions to restore the database.

DBMS must write to disk the log file records that

correspond to changes made to a database object
before it can flush that object to disk.

Bufter Pool Policy: STEAL + NO-FORCE
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BUFFER POOL + WAL

Steal

No-Force
Concern: Crash before a page is flushed to disk. Durability?
Solution: Force a summary/log @ commit. Use to REDO.

Force

> Force (on every update, flush the updated page to disk)
Poor response time, but enforces durability of committed txns.

<

N

No-Steal Steal (flush an unpinned dirty page even if the updating txn is active)

Low throughtput, Concern: A stolen+flushed page was modified by an uncommitted txn. T.
but works for If T aborts, how is atomicity enforced?
aborted txns. Solution: Remember old value (logs). Use to UNDO.
$2CMU-DB
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WAL PROTOCOL

The DBMS stages all a txn’s log records in volatile
storage (usually backed by buffer pool).

All log records pertaining to an updated page are
written to non-volatile storage before the page itself
is over-written in non-volatile storage.

A txn is not considered committed until all its log
records have been written to stable storage.

$2CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

WAL PROTOCOL

Write a <BEGIN> record to the log for each txn to
mark its starting point.

Append a record every time a txn changes an object:
— Transaction Id

— Object Id ' Not necessary if using

— Before Value (UNDO)
— After Value (REDO) app e”d'only MVCC

When a txn finishes, the DBMS appends a
<COMMIT> record to the log.

— Make sure that all log records are flushed before it returns
an acknowledgement to application.
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WAL - EXAMPLE

Schedule
T ( WAL Buffer |

BEGIN
W(A)
W(B)

<T, BEGIN>

COMMIT

4

\. J

f Buffer Pool )

A=1|B=5|C=7
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Schedule
T 1

BEGIN
W(A)
W(B)

COMMIT

$2CMU-DB
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WAL - EXAMPLE

’V\XV}il,l}qjﬂﬂer‘\

<T, BEGIN>

‘ll|<T1,,A,1, 8>
A

Before After

4

\. J

f Buffer Pool )

A=1|B=5|C=7
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WAL - EXAMPLE
Schedule

( )
T W AL Buffer
BEGIN
W(A) <T1 BEGIN>
W(B) a<T1, AL 1, 8
Beftre A}ter
COMMIT 7
U J

f Buffer Pool )

A=8|B=5|C=7
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WAL - EXAMPLE
Schedule

<T,, A, 1, 8
<T,, B, 5, 9>
<T, COMMIT>

(WALBuffer| | [=

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, COMMIT>

4

" y
Txn result is now safe to - N
return to application. Buffer Pool

A=8|B=9|C=7

$2CMU-DB
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WAL - EXAMPLE

Schedule
4 N\
T W AL Buffer
BEGIN
W(A) <T1 BEGIN>
W(B) <T1, AL 1, 8
: <T,, B, 5, 9>
<T, COMMIT>
COMMIT : .
\_ W,

f Buffer Pool )

A=8|B=9|C=7
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WAL - EXpMBLE

Everything we need to
Schedule restore T, is in the log!
4 )
T W AL Buffer
BEGIN E
W(A)
W(B)
COMMIT

\. J

[ Bu ‘fer Pool )

$2CMU-DB
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WAL - IMPLEMENTATION

Flushing the log buffer to disk every time a txn
commits will become a bottleneck.

The DBMS can use the group commit
optimization to batch multiple log flushes together

to amortize overhead.
— When the buffer is full, flush it to disk.

— Or if there is a timeout (e.g., 5 ms).
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WAL - GROUP COMMIT

Schedule
T P ( WAL Buffers |

BEGIN \

W(C) """
W(D) p |

COMMIT 7
COMMIT

$2CMU-DB
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WAL - GROUP COMMIT
Schedule

r \
T P W AL Buffers :

BEGIN :
W(B) \ <-|_1 , A, 1, 8

BEGIN T S

W(C)

W(D) 7 |
COMMIT 7

COMMIT

7
. J
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WAL - GROUP COMMIT

Schedule
r N
T, T, W AL Buffers
BEGIN
W(A) <T1 BEGIN>
W(B) = <T1, AL 1, 8
<T,, B, 5, 9>

BEGIN — ......

W(C) E

W(D) : |
: 4

COMMIT 7
COMMIT

$2CMU-DB
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WAL - GROUP COMMIT

Schedule
T P ( WAL Buffers |
BEGIN
W(A) <T1 BEGIN>

<T,, A, 1, 8

W(B)
BEGIN - <T1, B, 5, 9> A
W(C) <T, BEGIN> E
§ |

W(D) 7

COMMIT 7
COMMIT
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WAL - GROUP COMMIT

Schedule
( N
i T W AL Buffers
BEGIN |
W(A) <T, BEGIN> :
W(B> <-|_1 , A, 1 , 8>
BEGIN <T,, B, 5, 9> |
»W(C> - <T2 BEGIN> ------
W(D> <T2 , C, 1, 2>7 |
COMMIT §
COMMIT I 4
\- J
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WAL - GROUP COMMIT

Schedule - |
Flush the buffer 5
T, T, whenitis full.  fs g p—
BEGIN - ToAL e
W(A) ~<T, BEGIN> : <T, BEGIN>
W(B) <T,, A, 1, 8 <T,, C, 1, 2>
BEGIN <T,, B, 5 9 I
»W(C> - <T2 BEGIN> ------
W(D) <T,, ¢, 1, 2>7 |
COMMIT
COMMIT I 7
\ J
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WAL - GROUP COMMIT

Schedule
T T ( N\
1 2 WAL Buff ers <T, BEGIN>
s T eeo By
W(A) 1 <T, BEGIN>
w(B) <T,, A, 1, 8 <T,, 1, 2

BEGIN <T,, B, 5, 9> P

W(C) <T, BEGIN> g ......
»W(D> \ <T2’ c, 1, 2>7 |

\ <T,, D, 3, 4>
COMMIT

COMMIT

4
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WAL - GROUP COMMIT

Schedule
T T ( N\
1 2 WAL Buff ers <T, BEGIN>
s T eeo By
W(A) 1 <T, BEGIN>
w(B) <T,, A, 1, 8 <T,, 1, 2

BEGIN <T,, B, 5, 9> P

W(C) <T, BEGIN> ......
»W(D> \ <T2’ c, 1, 2>7 |

g g \ <T,, D, 3, 4>
COMMIT

COMMIT

4
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WAL - GROUP COMMIT

Schedule
T T ( N\

1 2 WAL Buff ers <T, BEGIN>
s T eeo By
W(A 1 <T, BEGIN>
Wng <T,, A, 1, & <T,, C, 1, 2>

BEGIN <T,, B, 5, % L i

W(C) =

WD) Flush after an elapsed |

: ; amount of time. |
B
g» g \<T2’ D, 3, 4
COMMIT

COMMIT 7

\ v,
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WAL - GROUP COMMIT

Schedule
T1 T2

BEGIN

W(A)

W(B)
BEGIN
W(C)
W(D)

COMMIT
COMMIT

( WAL Buffers b g

|
Flush after an elapsed
amount of time.

“

$2CMU-DB
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NG

<T,, D, 3, 4>

4

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>
<T,, C, 1, 2>
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WAL - GROUP COMMIT

Schedule
r N\
T1 T2 WAL Buffers <T, BEGIN>
BEGIN e s o
W(A) e >
W(B> : <T,, D, 3, 4>
BEGIN | || N i L
W(C) A
W(D) Flush after an elapsed |
: : amount of time. |
B
g» g \<T2, D, 3, 4>
COMMIT )
COMMIT
\ J

$2CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BUFFER POOL POLICIES

Almost every DBMS uses NO-FORCE + STEAL

Runtime Performance Recovery Performance
’ ------------------- -y ’ ------------------- -y
! )
: NO-STEAL STEAL | : NO-STEAL STEAL |
I | I |
| |
| No-FORCE| - | Fastest| 1 | No-FORCE| ~ — | Slowest | |
| |
| L :
| FORCE| Slowest - | | FORCE| Fastest - |
: I : I
e —————— ! e ———— !
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BUFFER POOL POLICIES

Almost every DBMS uses NO-FORCE + STEAL

Runttme Performance Recovery Perfarmance

"""""""""" - TTTTTTTTT Undo+ Redo [
N

NO-FORCE - Fastest NO-FORCE - Slowest

FORCE | Fastest -

//[

-------------------- NoUndo+ NoRedo [==========

FORCE | Slowest -

------\

’------
L B B B _§ B B _§ B § §
L B B B _§ B B _§B B B § )
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LOGGING SCHEMES

Physical Logging
— Record the byte-level changes made to a specific page.
— Example: git diff

Logical Logging
— Record the high-level operations executed by txns.
— Example: UPDATE, DELETE, and INSERT queries.

Physiological Logging

— Physical-to-a-page, logical-within-a-page.

— Hybrid approach with byte-level changes for a single tuple
identified by page id + slot number.

— Does not specify organization of the page.
$2CMU-DB

15-445/645 (Fall 2024)
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LOGGING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;

Physical Logical Physiological
<T1 , <T1 , <T1 ,
able=X Query="UPDATE foo
SET val=XYZ
Offset=1024 WHERE id=1">
Betore=ABC, Betore=ABC,
After=XYZ> After=xXYZ>

<T,,
Index=X PKEY

IndexPage=45

Key=(1,Record1)>

4 4
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PHYSICAL VS. LOGICAL LOGGING

Logical logging requires less data written in each log
record than physical logging.

Difficult to implement recovery with logical logging
if you have concurrent txns running at lower

isolation levels.

— Hard to determine which parts of the database may have
been modified by a query before crash.

— Recovery takes longer because DBMS re-executes every
query in the log again.

$2CMU-DB
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CHANGE DATA CAPTURE (CDC)

Automatically propagate changes to
external sources to replicate and

synchronize database contents.

— Extract Transform Load (ETL)

— Some systems can do this automatically.
Others require third-party tools.

Approach #1: WAL a8 debezium Il || Strllm
Approach #2: Triggers ORACLE | Goldenite

Approach #3: Timestamps % K lek a Q | | k
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OBSERVATION

The DBMS's WAL will grow forever.

After a crash, the DBMS must replay the entire log,
which will take a long time.

The DBMS periodically takes a checkpoint where

it flushes all buffers out to disk.

— This provides a hint on how far back it needs to replay the
WAL after a crash.
— Truncate the WAL up to a certain safe point in time.

$2CMU-DB
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CHECKPOINTS

Blocking / Consistent Checkpoint Protocol:
— Pause all queries.

— Flush all WAL records in memory to disk.

— Flush all modified pages in the buffer pool to disk.

— Write a <CHECKPOINT> entry to WAL and flush to disk.
— Resume queries.

$2CMU-DB
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CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.

$2CMU-DB
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WAL

4

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2, B, 4, 5>
<T2 COMMIT>
<T3, A, 3, 4>

* o
OQQ 174
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CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.

Any txn that committed before the
checkpoint is ignored (T,).

$2CMU-DB
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WAL

g

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2, B, 4, 5>
<T2 COMMIT>
<T3, A, 3, 4>

LR
on 7
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CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.

Any txn that committed before the
checkpoint is ignored (T,).

T, + T; did not commit before the last
checkpoint.
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WAL

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2, B, 4, 5>
<T2 COMMIT>
<T3, A, 3, 4>

‘o
OQQ 174
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CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.

Any txn that committed before the
checkpoint is ignored (T,).

T, + T; did not commit before the last

checkpoint.

— Need to redo T, because it committed
after checkpoint.

— Need to undo T; because it did not
commit before the crash.

$2CMU-DB
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WAL

g
g

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2, B, 4, 5>
<T2 COMMIT>
<T3, A, 3, 4>

‘o
OQQ 174
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CHECKPOINTS - CHALLENGES

In this example, the DBMS must stall txns when it

takes a checkpoint to ensure a consistent snapshot.
— We will see how to get around this problem next class.

Scanning the log to find uncommitted txns can take

a long time.
— Unavoidable but we will add hints to the <CHECKPOINT>
record to speed things up next class.

How often the DBMS should take checkpoints
depends on many different factors...
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CHECKPOINTS - FREQUENCY

Checkpointing too often causes the runtime

performance to degrade.
— System spends too much time flushing buffers.

But waiting a long time is just as bad:
— The checkpoint will be large and slow.
— Makes recovery time much longer.

Tunable option that depends on application
recovery time requirements.
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CONCLUSION

Write-Ahead Logging is (almost) always the best
approach to handle loss of volatile storage.

Use incremental updates (STEAL + NO-FORCE)
with checkpoints.

On Recovery: undo uncommitted txns + redo
committed txns.
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NEXT CLASS

Better Checkpoint Protocols.
Recovery with ARIES.
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