Carnegie Mellon Univ

Database
Gystems

Distributed

| XwAu suen LIM

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

COURSE STATUS

Databases are hard. Query Planning

Distributed databases are harder. Concurrency Control

Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Databases are hard.
Distributed databases are harder.

COURSE STATUS

, 2NN 2N 2

Node

Concurrency Control
Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager

Node

Concurrency Control
Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager

Node

Concurrency Control
Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager

Node

Concurrency Control
Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PARALLEL VS. DISTRIBUTED

Parallel DBMSs:

— Nodes are physically close to each other.
— Nodes connected with high-speed LAN.
— Communication cost is assumed to be small.

Distributed DBMSs:

— Nodes can be far from each other.
— Nodes connected using public network.
— Communication cost and problems cannot be ignored.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED DBMSs

Use the building blocks that we covered in single-
node DBMSs to now support transaction processing

and query execution in distributed environments.
— Optimization & Planning

— Concurrency Control

— Logging & Recovery

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TODAY'S AGENDA

System Architectures
Design Issues
Partitioning Schemes

Distributed Concurrency Control
DB Flash Talk: DataStax

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.datastax.com/

$2CMU-DB

15-445/645 (Fall 2024)

SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies

what shared resources are directly accessible to
CPUs.

This affects how CPUs coordinate with each other
and where they retrieve/store objects in the
database.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SYSTEM ARCHITECTURE

Shared Shared Shared
Everything Nothing Disk

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED NOTHING

Each DBMS node has its own CPU,
memory, and local disk. Network

Nodes only communicate with each

other via network. O O
— Better performance & efficiency.
— Harder to scale capacity.

— Harder to ensure consistency.

meted

Kin=tica f TigerBeetle opacLe % elastic Exasol)
(@ citusdata
DSGiDS y faunq NosaL DATABASE o Dgraph 4%@*% % @ CockroachDB 0 MongoDB. (C

Yellowbrick ¢¢’ . MEMCACHED

M, —= == FOUNDATIONDB)
5::'{\3 ePé%HE E . 2 | ClickHouse cqgssandra m-store vo LTDB CrateDB
@bt [Rer () creenpium N
e RonDB ingleStore \/ERTICA

SCMUDB @ TiDB @B redis TERADATA OCEANBASE (®) Couchbase

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED NOTHING EXAMPLE

Catalog
Meta-Data

*

es®

os®
.

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

Node

#%ﬂ

=

]

P1>ID:1-150

Node

#%ﬂ

=

]

P2>ID:151-300

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED NOTHING EXAMPLE

Catalog
Meta-Data

*

es®

os®
.

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

Node

ﬂ*@ﬂ

=

]

P1>ID:1-150

Node

ﬂ*@ﬂ

=

]

P2>ID:151-300

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED NOTHING EXAMPLE

Catalog
Get 1d=100 t2 Node]
#%g P1>ID:1-150

Get Id=200
Get Id=200 Id_zoo

=S

Application

#%g g P2>ID:151-300
£ CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED NOTHING EXAMPLE

Catalog
Meta-Data Node g)

#%g P1>ID:1-150

Node
ﬂ*@ﬂ
Application ’
Server Node)
P2->ID:151-300
#%ﬂ @

0CMU -DB

4444444444444444444

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED NOTHING EXAMPLE

Catalog
Meta-Data [

A T >

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

Node

]

P1>ID:1-100

P3+ID:101-200

)

]

P2>ID:201-300

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

IROCKSET| ~ exaoara

SHARED DISK

Nodes access a single logical disk via

an interconnect, but each have their
Own private memories.

— Scale execution layer independently from

: Network
the storage layer. Distributed Files .
— Nodes can still use direct attached storage istriouted T'uie. ystems}

as a slower/larger cache. Ob]egrt Stores

— This architecture facilitates data lakes

and serverless systems. < databricks FIREBOLT ﬁdremio
| HEFSE @R
@ YDB 1S yugabyteDB -j druid "\Z
.'. o APACHE amazon
ORACLE’ Asqrrl pI'EStO s Cloqglg\ll'g QI'K W NUO - REDSHIFT

Google

ortonwol APACcHE ANb
sowos o RAC Spllce ‘-lgﬁuo:"if HBASE <snowflake Spanner & Amazon

MACHINE Aurora

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED DISK EXAMPLE

Catalog
Meta-Data [

()
Storage
Page ABC
Get 1d=101 #@ g

AR
7 kd I
7
7
Application
Server [Node |
oH g

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED DISK EXAMPLE

Catalog
Meta-Data Node - Storage N

Get 1d=102

Page XYZ

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED DISK EXAMPLE

Catalog
Meta-Data [Node | - Storage N
Application

Server [Node | g

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED DISK EXAMPLE

Catalog
Meta-Data [Node | - Storage N
AR _ -
Get 1d=101 Node PageABC a a
ZZ —> % —
Application - ’
Server [Node | g
\ % _)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED DISK EXAMPLE

Catalog
Meta-Data [

Update 101

Node r Storage “

Application -)
Server " Node | ¢
of g

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED DISK EXAMPLE

Catalog
Meta-Data [

Update 101

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED MEMORY

Nodes access a common memory

address space via a fast interconnect.

— Each node has a global view of all the in-
memory data structures.

— Can still use local memory / disk for
intermediate results.

This looks a lot like shared-
everything. Nobody does this.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DESIGN ISSUES

How does the application find data?
Where does the application send queries?

How to execute queries on distributed data?
— Push query to data.
— Pull data to query.

How do we divide the database across resources?
|[How does the DBMS ensure correctness? | Next Class

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

DATA TRANSPARENCY

Applications should not be required to know where

data is physically located in a distributed DBMS.
— Any query that run on a single-node DBMS should
produce the same result on a distributed DBMS.

In practice, developers need to be aware of the
communication costs of queries to avoid excessively
"expensive" data movement.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATABASE PARTITIONING

Split database across multiple resources:

— Disks, nodes, processors.
— Called "sharding" in NoSQL systems.

The DBMS executes query fragments on each
partition and then combines the results to produce a
single answer.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

NAIVE TABLE PARTITIONING

Assign an entire table to a single node.

Assumes that each node has enough storage space
for an entire table.

[deal if queries never join data across tables stored
on different nodes and access patterns are uniform.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NAIVE TABLE PARTITIONING

Tablel Table2 Partitions

Ideal Query:
SELECT * FROM tablel
$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NAIVE TABLE PARTITIONING

Tablel Table2 Partitions

= S
= S

Ideal Query:
SELECT * FROM table1

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

VERTICAL PARTITIONING

Split a table's attributes into separate
partitions.

Must store tuple information to
reconstruct the original record.

CREATE TABLE foo (

attr1l INT,
attr2 INT,
attr3 INT,
attr4 TEXT

Tuplei1 attri attr2 attr3 attr4
Tuple#2 attri attr2 attr3 attr4
Tuplei3 attri attr2 attr3 attr4
Tupleit4 attri attr2 attr3 attr4

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

VERTICAL PARTITIONING

Split a table's attributes into separate
partitions.

Must store tuple information to
reconstruct the original record.

Partition #1
Tuplei1 attri attr2 attr3
Tuple#2 attri attr2 attr3
Tuplei3 attri attr2 attr3
Tuplei4 attri attr2 attr3

$2CMU-DB

15-445/645 (Fall 2024)

CREATE TABLE foo (
attr1l INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

Tupleiti
Tuple#2
Tupleit3

Tuplei#4

Partition #2

attr4

attr4

attr4

attr4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on

some partitioning key and scheme.
— Choose column(s) that divides the database equally in
terms of size, load, or usage.

Partitioning Schemes:
— Hashing

— Ranges

— Predicates

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HORIZONTAL PARTITIONING

Partitioning Key Table

~—~X
101 |a XXX 12022-11-29

102 |b XXY 12022-11-28

103 |c XYZ |2022-11-29

104 |d XYX 12022-11-27

105 e XYY |2022-11-29

Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

$2CMU-DB

15-445/645 (Fall 2024)

Partitions

SES
SES

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HORIZONTAL PARTITIONING

Partitioning Key e
=_< lable Partitions

A -
NMNINNCRNRENNNY hash(a)%4 = P2

Y A A AR

N N9/ hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

Cthp ey
92 -39 hash(e)%4 = P1
Ideal Query:
SELECT * FROM table
WHERE partitionKey = ?
£CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HORIZONTAL PARTITIONING

Partitioning Key "
=_< lable Partitions
101 |a [XXX |2022-11-29| hash(a)%4 = P2 o
102 |b |XXY |2022-11-28| hash(b)%4 = P4 \ p1 J

103 [c Ixvz [2022-11-29] hash(c)%4 = P3 ll

104 |d XYX [2022-11-27| hash(d)%4 = P2

105 |e XYY |2022-11-29| hash(e)%4 = P1

C O
\ p3 |
~

Ideal Query:
SELECT * FROM table

WHEREIpartitionKey = ?!
£2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED-DISK PARTITIONING

g_d% [Storage)
Id=1
Id=2
Id=3
Application 1d=4
Server ([Node | @
\ % . J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED-DISK PARTITIONING

[Storage)
Get Id=1 a a
AR
2 el
ZZZ Id=2
Zam 1d=3
Application 1d=4
Server [Node |
#% Td=3
4 1d=4 \ J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED-DISK PARTITIONING

[Node |

Id=1

Id=2

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

Id=3

Id=4

[Storage)

d |cd

Id=1
Id=2
Id=3
Id=4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED-DISK PARTITIONING

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

Id=1

Id=2

Id=3

Id=4

[Storage)

d |cd

Id=1
Id=2
Id=3
Id=4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED-NOTHING PARTITIONING

Node =— |

L3

Application

Server (Node — |
Id=3
o3 o

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED-NOTHING PARTITIONING

Node =— |

L3

Get Id=1

AR

7

7

Crra—

Application
Server (Node — |
Id=3

o3 o

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED-NOTHING PARTITIONING

Node =— |

L3

AR
7
T e | | Get Id=3
Application
Server (Node — |
o5

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HORIZONTAL PARTITIONING

Partitioning Key "
=_< lable Partitions
101 |a [XXX |2022-11-29| hash(a)%4 = P2 o
102 |b |XXY |2022-11-28| hash(b)%4 = P4 \ p1 J

103 [c Ixvz [2022-11-29] hash(c)%4 = P3 ll

104 |d XYX [2022-11-27| hash(d)%4 = P2

105 |e XYY |2022-11-29| hash(e)%4 = P1

C O
\ p3 |
~

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HORIZONTAL PARTITIONING

Partitioning Ke
8 Table
101 |a XXX 12022-11-29
102 1b XXY 12022-11-28
103 |c XYZ 12022-11-29
104 |d XYX 12022-11-27
105 |e XYY 12022-11-29
Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

$2CMU-DB

15-445/645 (Fall 2024)

Partitions

C 3
lﬂl

~

C O
\ p3 |
~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

HORIZONTAL PARTITIONING

Partitioning Key Table

~—~X
101

XXX 12022-11-29

a
102 |b XXY 12022-11-28

103 |c XYZ |2022-11-29

104 |d XYX 12022-11-27

105 |e XYY |2022-11-29

Ideal Query:

hash(a)%5 = P4
hash(b)%5 = P3
hash(c)%5 = P5
hash(d)%5 = P1
hash(e)%5 = P3

SELECT * FROM table
WHERE partitionKey = ?

$2CMU-DB

15-445/645 (Fall 2024)

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENT HASHING

1,0

P1

P3

P2

£2CMU-DB 0.5

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENT HASHING

1,0 hash(key1)

0

P1

P3

P2

£2CMU-DB 0.5

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENT HASHING

1,0 hash(key1)

N

P1

f

£2CMU-DB 0.5

15-445/645 (Fall 2024)

hash(key2)

P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENT HASHING

1,0

P1

P3

P2
New Partition » P4

£2CMU-DB 0.5

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENT HASHING

1,0

S
N—’

If hash(key)=P4

—
v
N—

S

£2CMU-DB 0.5

15-445/645 (Fall 2024)

New Partition » P4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENT HASHING

1,0

New Partition » P5

£2CMU-DB 0.5

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENT HASHING

1,0
P5

P1

P3

P6 « New Partition

P2

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENT HASHING

1,0

P5 Replication Factor = 3
P1

P3

P2

£2CMU-DB 0.5

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENT HASHING

1,0 hash(keyl1)

Replication Factor = 3

£2CMU-DB 0.5

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Q Couchbase

db
3 snowflake

<EROSPIKE

. MEMCAHACHED
é%cassandm

sriak

SCYLLA.

$2CMU-DB

15-445/645 (Fall 2024)

CONSISTENT HASHING

1,0 hash(keyl1)

Replication Factor = 3

0.5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

SINGLE-NODE VS. DISTRIBUTED

A single-node txn only accesses data that is

contained on one partition.
— The DBMS may not need check the behavior concurrent
txns running on other nodes.

A distributed txn accesses data at one or more

partitions.
— Requires expensive coordination.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TRANSACTION COORDINATION

[f our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traftic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a
temporary coordinator.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CENTRALIZED COORDINATOR

Partitions
fe
| p1 J
4
LJ

\

Application e
Server | p3
.

-

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CENTRALIZED COORDINATOR

-
-
—

Coordinator

OO0
S w I

Lock Request

-l |-»)

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CENTRALIZED COORDINATOR

-
-
—

Coordinator

Lock Request

Partitions

OO0
S w I

-l |-»)

S

Acknowledgement

AR
7
7
]
Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CENTRALIZED COORDINATOR

Commit Request

Coordinator

_—Z

Application

Server

Safe to commit?

$2CMU-DB

15-445/645 (Fall 2024)

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CENTRALIZED COORDINATOR

Coordinator

Commit Request

P2
@ P3 Partitions
A P4

S

AR Acknowledgement
73 :
Apsp eler\?etrl'O i Safeto commit?

"\N. TRANSARC®

=2CMUDB 2 hﬂﬂ
15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CENTRALIZED COORDINATOR

< Partitions
Query Requests & o

) Y | p2 J
A < [ad] P2
zEn o ./ g’
2 o —_~
o

Application

Server

4D Ty <D
~) Uu

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CENTRALIZED COORDINATOR

<

o

Query Requests o

AR 2

ZZ L

ZZ0)

m-
Application P1-ID:1-100

Server P2>1ID:101-200

$2CMU-DB

15-445/645 (Fall 2024)

P3>ID:201-300

P4>1ID:301-400

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CENTRALIZED COORDINATOR

Query Requests

31eMma|ppIN

Application

P1>ID:1-100

Server

P2>ID:101-200

P3>ID:201-300

P4>1ID:301-400

$2CMU-DB

15-445/645 (Fall 2024)

Partitions

B[] ||

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CENTRALIZED COORDINATOR

AR
7
7
o
Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

Partitions

Safe to commit?

S
o
=
®
S
o
q
®

5
IR
.
e
* *
- 5
* ..
.
e
L 4
5
.

P1>ID:1-100

P2>ID:101-200

P3>ID:201-300

P4>1ID:301-400

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DECENTRALIZED COORDINATOR

Partitions
—
| p1 !/
.
LJ
Application e
Server | p3 J
.
—~

\ S

s

Begin Request

N —

N\

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DECENTRALIZED COORDINATOR

Begin Request

N

W | eader Node

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DECENTRALIZED COORDINATOR

I ———

[
Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

W | eader Node

Query Request

Partitions

N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DECENTRALIZED COORDINATOR

W | eader Node

Commit Request
e —
R :
Iz Safe to commit?
Application T
Server

$2CMU-DB

15-445/645 (Fall 2024)

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

OBSERVATION

We have assumed that the nodes in our distributed
systems are running the same DBMS software.

But organizations often run many different DBMSs
in their applications.

[t would be nice if we could have a single interface
for all our data.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

FEDERATED DATABASES

Distributed architecture that connects disparate

DBMSs into a single logical system.
— Expose a single query interface that can access data at any
location.

This is hard and nobody does it well

— Different data models, query languages, limitations.
— No easy way to optimize queries

— Lots of data copying (bad).

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

FEDERATED DATABASE EX

Query Requests

Connectors

AMPLE

Back-end DBMSs

é)

91eM3|PPIN

0 MongoDB.
8

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED CONCURRENCY CONTROL

Need to allow multiple txns to execute

simultaneously across multiple nodes.

— Many of the same protocols from single-node DBMSs can
be adapted.

This is harder because of:
— Replication.
— Network Communication Overhead.

— Node Failures (Permanent + Ephemeral).
— Clock Skew.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED 2PL

Application Application
Server Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED 2PL

Set A=2 Set B=7 Iz
Application Application
Server Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED 2PL

Set A=2 Set B=7 Iz
Application Application
Server Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED 2PL

Set A=2 Set B=7 Crarrr |
Application - Application
Server set B9 Set A=0 Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED 2PL

Application Application
Server Set B=9 Set A=0 Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED 2PL

W aits-For Graph p—

7
oo

— — Application
=0 Server

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONCLUSION

We have barely scratched the surface on distributed
database systems...

[t is hard to get this right.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

NEXT CLASS

Distributed OLTP Systems
Replication

CAP Theorem
Real-World Examples

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Distributed Databases
	Slide 2: COURSE STATUS
	Slide 3: COURSE STATUS
	Slide 4: PARALLEL VS. DISTRIBUTED
	Slide 5: DISTRIBUTED DBMSs
	Slide 6: TODAY'S AGENDA

	System Architectures
	Slide 7: SYSTEM ARCHITECTURE
	Slide 8: SYSTEM ARCHITECTURE
	Slide 9: SHARED NOTHING
	Slide 10: SHARED NOTHING EXAMPLE
	Slide 11: SHARED NOTHING EXAMPLE
	Slide 12: SHARED NOTHING EXAMPLE
	Slide 13: SHARED NOTHING EXAMPLE
	Slide 14: SHARED NOTHING EXAMPLE
	Slide 15: SHARED DISK
	Slide 16: SHARED DISK EXAMPLE
	Slide 17: SHARED DISK EXAMPLE
	Slide 18: SHARED DISK EXAMPLE
	Slide 19: SHARED DISK EXAMPLE
	Slide 20: SHARED DISK EXAMPLE
	Slide 21: SHARED DISK EXAMPLE
	Slide 22: SHARED MEMORY

	Design Issues
	Slide 23: DESIGN ISSUES
	Slide 24: DATA TRANSPARENCY

	Partitioning
	Slide 25: DATABASE PARTITIONING
	Slide 26: NAÏVE TABLE PARTITIONING
	Slide 27: NAÏVE TABLE PARTITIONING
	Slide 28: NAÏVE TABLE PARTITIONING
	Slide 29: VERTICAL PARTITIONING
	Slide 30: VERTICAL PARTITIONING
	Slide 31: HORIZONTAL PARTITIONING
	Slide 32: HORIZONTAL PARTITIONING
	Slide 33: HORIZONTAL PARTITIONING
	Slide 34: HORIZONTAL PARTITIONING
	Slide 35: SHARED-DISK PARTITIONING
	Slide 36: SHARED-DISK PARTITIONING
	Slide 37: SHARED-DISK PARTITIONING
	Slide 38: SHARED-DISK PARTITIONING
	Slide 39: SHARED-NOTHING PARTITIONING
	Slide 40: SHARED-NOTHING PARTITIONING
	Slide 41: SHARED-NOTHING PARTITIONING
	Slide 42: HORIZONTAL PARTITIONING
	Slide 43: HORIZONTAL PARTITIONING
	Slide 44: HORIZONTAL PARTITIONING
	Slide 45: CONSISTENT HASHING
	Slide 46: CONSISTENT HASHING
	Slide 47: CONSISTENT HASHING
	Slide 48: CONSISTENT HASHING
	Slide 49: CONSISTENT HASHING
	Slide 50: CONSISTENT HASHING
	Slide 51: CONSISTENT HASHING
	Slide 52: CONSISTENT HASHING
	Slide 53: CONSISTENT HASHING
	Slide 54: CONSISTENT HASHING

	Distributed Concurrency Control
	Slide 55: SINGLE-NODE VS. DISTRIBUTED
	Slide 56: TRANSACTION COORDINATION
	Slide 57: CENTRALIZED COORDINATOR
	Slide 58: CENTRALIZED COORDINATOR
	Slide 59: CENTRALIZED COORDINATOR
	Slide 60: CENTRALIZED COORDINATOR
	Slide 61: CENTRALIZED COORDINATOR
	Slide 62: CENTRALIZED COORDINATOR
	Slide 63: CENTRALIZED COORDINATOR
	Slide 64: CENTRALIZED COORDINATOR
	Slide 65: CENTRALIZED COORDINATOR
	Slide 66: DECENTRALIZED COORDINATOR
	Slide 67: DECENTRALIZED COORDINATOR
	Slide 68: DECENTRALIZED COORDINATOR
	Slide 69: DECENTRALIZED COORDINATOR

	Federated Databases
	Slide 70: OBSERVATION
	Slide 71: FEDERATED DATABASES
	Slide 72: FEDERATED DATABASE EXAMPLE

	Distributed Concurreny Control
	Slide 73: DISTRIBUTED CONCURRENCY CONTROL
	Slide 74: DISTRIBUTED 2PL
	Slide 75: DISTRIBUTED 2PL
	Slide 76: DISTRIBUTED 2PL
	Slide 77: DISTRIBUTED 2PL
	Slide 78: DISTRIBUTED 2PL
	Slide 79: DISTRIBUTED 2PL

	Conclusion
	Slide 80: CONCLUSION
	Slide 81: NEXT CLASS

