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COURSE STATUS

Databases are hard. Query Planning

Distributed databases are harder. Concurrency Control

Operator Execution

Access Methods

Recovery
Buffer Pool Manager

Disk Manager
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Databases are hard.
Distributed databases are harder.
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PARALLEL VS. DISTRIBUTED

Parallel DBMSs:

— Nodes are physically close to each other.
— Nodes connected with high-speed LAN.
— Communication cost is assumed to be small.

Distributed DBMSs:

— Nodes can be far from each other.
— Nodes connected using public network.
— Communication cost and problems cannot be ignored.
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DISTRIBUTED DBMSs

Use the building blocks that we covered in single-
node DBMSs to now support transaction processing

and query execution in distributed environments.
— Optimization & Planning

— Concurrency Control

— Logging & Recovery
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TODAY'S AGENDA

System Architectures
Design Issues
Partitioning Schemes

Distributed Concurrency Control
DB Flash Talk: DataStax

$2CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.datastax.com/

$2CMU-DB

15-445/645 (Fall 2024)

SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies

what shared resources are directly accessible to
CPUs.

This affects how CPUs coordinate with each other
and where they retrieve/store objects in the
database.
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SYSTEM ARCHITECTURE

Shared Shared Shared
Everything Nothing Disk
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SHARED NOTHING

Each DBMS node has its own CPU,
memory, and local disk. Network

Nodes only communicate with each

other via network. O O
— Better performance & efficiency.
— Harder to scale capacity.

— Harder to ensure consistency.
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SHARED NOTHING EXAMPLE
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SHARED NOTHING EXAMPLE

Catalog
Get 1d=100 t2 Node ]
#%g P1>ID:1-150

Get Id=200
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SHARED NOTHING EXAMPLE
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SHARED NOTHING EXAMPLE
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SHARED DISK

Nodes access a single logical disk via

an interconnect, but each have their
Own private memories.

— Scale execution layer independently from

: Network
the storage layer. Distributed Files .
— Nodes can still use direct attached storage istriouted T'uie. ystems}

as a slower/larger cache. Ob]egrt Stores
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SHARED DISK EXAMPLE
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SHARED DISK EXAMPLE
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Meta-Data Node - Storage N

Get 1d=102

Page XYZ
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SHARED DISK EXAMPLE
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SHARED DISK EXAMPLE
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SHARED DISK EXAMPLE
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Meta-Data [

Update 101

Node r Storage “

Application - )
Server " Node | ¢
of g

$2CMU-DB

15-445/645 (Fall 2024)


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED DISK EXAMPLE

Catalog
Meta-Data [

Update 101
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Server
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SHARED MEMORY

Nodes access a common memory

address space via a fast interconnect.

— Each node has a global view of all the in-
memory data structures.

— Can still use local memory / disk for
intermediate results.

This looks a lot like shared-
everything. Nobody does this.
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DESIGN ISSUES

How does the application find data?
Where does the application send queries?

How to execute queries on distributed data?
— Push query to data.
— Pull data to query.

How do we divide the database across resources?
|[How does the DBMS ensure correctness? | Next Class

$2CMU-DB
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DATA TRANSPARENCY

Applications should not be required to know where

data is physically located in a distributed DBMS.
— Any query that run on a single-node DBMS should
produce the same result on a distributed DBMS.

In practice, developers need to be aware of the
communication costs of queries to avoid excessively
"expensive" data movement.
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DATABASE PARTITIONING

Split database across multiple resources:

— Disks, nodes, processors.
— Called "sharding" in NoSQL systems.

The DBMS executes query fragments on each
partition and then combines the results to produce a
single answer.
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NAIVE TABLE PARTITIONING

Assign an entire table to a single node.

Assumes that each node has enough storage space
for an entire table.

[deal if queries never join data across tables stored
on different nodes and access patterns are uniform.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NAIVE TABLE PARTITIONING

Tablel Table2 Partitions

Ideal Query:
SELECT * FROM tablel
$=CMU-DB

15-445/645 (Fall 2024)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NAIVE TABLE PARTITIONING

Tablel Table2 Partitions

= S
= S

Ideal Query:
SELECT * FROM table1

$2CMU-DB
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VERTICAL PARTITIONING

Split a table's attributes into separate
partitions.

Must store tuple information to
reconstruct the original record.

CREATE TABLE foo (

attr1l INT,
attr2 INT,
attr3 INT,
attr4 TEXT

Tuplei1 attri attr2 attr3 attr4
Tuple#2 attri attr2 attr3 attr4
Tuplei3 attri attr2 attr3 attr4
Tupleit4 attri attr2 attr3 attr4

$2CMU-DB
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VERTICAL PARTITIONING

Split a table's attributes into separate
partitions.

Must store tuple information to
reconstruct the original record.

Partition #1
Tuplei1 attri attr2 attr3
Tuple#2 attri attr2 attr3
Tuplei3 attri attr2 attr3
Tuplei4 attri attr2 attr3
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CREATE TABLE foo (
attr1l INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

Tupleiti
Tuple#2
Tupleit3

Tuplei#4

Partition #2

attr4

attr4

attr4

attr4
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HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on

some partitioning key and scheme.
— Choose column(s) that divides the database equally in
terms of size, load, or usage.

Partitioning Schemes:
— Hashing

— Ranges

— Predicates

$2CMU-DB
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HORIZONTAL PARTITIONING

Partitioning Key Table

~—~X
101 |a XXX 12022-11-29

102 |b XXY 12022-11-28

103 |c XYZ |2022-11-29

104 |d XYX 12022-11-27

105 e XYY |2022-11-29

Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

$2CMU-DB
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HORIZONTAL PARTITIONING

Partitioning Key e
=_< lable Partitions

A -
NMNINNCRNRENNNY  hash(a)%4 = P2

Y A A AR

N N9/ hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

Cthp ey
92 -39 hash(e)%4 = P1
Ideal Query:
SELECT * FROM table
WHERE partitionKey = ?
£CMU-DB
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HORIZONTAL PARTITIONING

Partitioning Key "
=_< lable Partitions
101 |a  [XXX |2022-11-29| hash(a)%4 = P2 o
102 |b  |XXY |2022-11-28| hash(b)%4 = P4 \ p1 J

103 [c Ixvz [2022-11-29] hash(c)%4 = P3 ll

104 |d XYX [2022-11-27| hash(d)%4 = P2

105 |e XYY |2022-11-29| hash(e)%4 = P1

C O
\ p3 |
~

Ideal Query:
SELECT * FROM table

WHEREIpartitionKey = ?!
£2CMU-DB

15-445/645 (Fall 2024)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED-DISK PARTITIONING

g_d% [ Storage )
Id=1
Id=2
Id=3
Application 1d=4
Server ([ Node | @
\ % . J
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SHARED-DISK PARTITIONING

[ Storage )
Get Id=1 a a
AR
2 el
ZZZ Id=2
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SHARED-DISK PARTITIONING

[ Node |

Id=1

Id=2

Application
Server

$2CMU-DB

15-445/645 (Fall 2024 )

Id=3

Id=4

[ Storage )

d |cd

Id=1
Id=2
Id=3
Id=4



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHARED-DISK PARTITIONING

Application
Server
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SHARED-NOTHING PARTITIONING

Node =— |

L3

Application

Server ( Node — |
Id=3
o3 o
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SHARED-NOTHING PARTITIONING

Node =— |

L3

Get Id=1

AR

7

7

Crra—

Application
Server ( Node — |
Id=3

o3 o
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SHARED-NOTHING PARTITIONING

Node =— |

L3

AR
7
T e | | Get Id=3
Application
Server ( Node — |
o5
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HORIZONTAL PARTITIONING

Partitioning Key "
=_< lable Partitions
101 |a  [XXX |2022-11-29| hash(a)%4 = P2 o
102 |b  |XXY |2022-11-28| hash(b)%4 = P4 \ p1 J

103 [c Ixvz [2022-11-29] hash(c)%4 = P3 ll

104 |d XYX [2022-11-27| hash(d)%4 = P2

105 |e XYY |2022-11-29| hash(e)%4 = P1

C O
\ p3 |
~

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

$2CMU-DB
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HORIZONTAL PARTITIONING

Partitioning Ke
8 Table
101 |a XXX 12022-11-29
102 1b XXY 12022-11-28
103 |c XYZ 12022-11-29
104 |d XYX 12022-11-27
105 |e XYY 12022-11-29
Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

$2CMU-DB
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HORIZONTAL PARTITIONING

Partitioning Key Table

~—~X
101

XXX 12022-11-29

a
102 |b XXY 12022-11-28

103 |c XYZ |2022-11-29

104 |d XYX 12022-11-27

105 |e XYY |2022-11-29

Ideal Query:

hash(a)%5 = P4
hash(b)%5 = P3
hash(c)%5 = P5
hash(d)%5 = P1
hash(e)%5 = P3

SELECT * FROM table
WHERE partitionKey = ?

$2CMU-DB
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CONSISTENT HASHING

1,0

P1

P3

P2

£2CMU-DB 0.5
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CONSISTENT HASHING

1,0 hash(key1)

0

P1

P3

P2

£2CMU-DB 0.5
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CONSISTENT HASHING

1,0 hash(key1)

N

P1

f

£2CMU-DB 0.5
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CONSISTENT HASHING

1,0

P1

P3

P2
New Partition » P4

£2CMU-DB 0.5
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CONSISTENT HASHING

1,0

S
N—’

If hash(key)=P4

—
v
N—

S
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CONSISTENT HASHING

1,0

New Partition » P5

£2CMU-DB 0.5
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CONSISTENT HASHING

1,0
P5

P1

P3

P6 « New Partition

P2
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CONSISTENT HASHING

1,0

P5 Replication Factor = 3
P1

P3

P2

£2CMU-DB 0.5
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CONSISTENT HASHING

1,0 hash(keyl1)

Replication Factor = 3
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Q Couchbase

db
3 snowflake

<EROSPIKE

. MEMCAHACHED
é%cassandm

sriak
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CONSISTENT HASHING

1,0 hash(keyl1)

Replication Factor = 3

0.5
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SINGLE-NODE VS. DISTRIBUTED

A single-node txn only accesses data that is

contained on one partition.
— The DBMS may not need check the behavior concurrent
txns running on other nodes.

A distributed txn accesses data at one or more

partitions.
— Requires expensive coordination.
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TRANSACTION COORDINATION

[f our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
— Centralized: Global "traftic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach
where they periodically elect some node to be a
temporary coordinator.

$2CMU-DB
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CENTRALIZED COORDINATOR

Partitions
fe
| p1 J
4
LJ

\

Application e
Server | p3
.

-
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CENTRALIZED COORDINATOR

-
-
—

Coordinator

OO0
S w I

Lock Request

-l |-»)

Application
Server
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CENTRALIZED COORDINATOR

-
-
—

Coordinator

Lock Request

Partitions

OO0
S w I
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S

Acknowledgement
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7
7
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CENTRALIZED COORDINATOR

Commit Request

Coordinator

_—Z

Application

Server

Safe to commit?
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CENTRALIZED COORDINATOR

Coordinator

Commit Request

P2
@ P3 Partitions
A P4

S

AR Acknowledgement
73 :
Apsp eler\?etrl'O i Safeto commit?
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CENTRALIZED COORDINATOR

< Partitions
Query Requests & o
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CENTRALIZED COORDINATOR

<

o

Query Requests o

AR 2

ZZ L

ZZ0 )

m-
Application P1-ID:1-100

Server P2>1ID:101-200
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CENTRALIZED COORDINATOR

Query Requests

31eMma|ppIN

Application

P1>ID:1-100

Server

P2>ID:101-200
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OBSERVATION

We have assumed that the nodes in our distributed
systems are running the same DBMS software.

But organizations often run many different DBMSs
in their applications.

[t would be nice if we could have a single interface
for all our data.
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FEDERATED DATABASES

Distributed architecture that connects disparate

DBMSs into a single logical system.
— Expose a single query interface that can access data at any
location.

This is hard and nobody does it well

— Different data models, query languages, limitations.
— No easy way to optimize queries

— Lots of data copying (bad).
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DISTRIBUTED CONCURRENCY CONTROL

Need to allow multiple txns to execute

simultaneously across multiple nodes.

— Many of the same protocols from single-node DBMSs can
be adapted.

This is harder because of:
— Replication.
— Network Communication Overhead.

— Node Failures (Permanent + Ephemeral).
— Clock Skew.
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CONCLUSION

We have barely scratched the surface on distributed
database systems...

[t is hard to get this right.
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NEXT CLASS

Distributed OLTP Systems
Replication

CAP Theorem
Real-World Examples
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