Carnegie Mellon University

Uatabase
Systems

Distributed | ¥
OLTP Databases =

15-445/645 FALL 2024) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

No Class on Thursday Nov 27%

DBMS Potpourri Lecture on Wednesday Dec 4%
Project #4 is due Sunday Dec 8" @ 11:59pm
Homework #6 is due Monday Dec 9" @ 11:59pm

Final Exam is on Friday Dec 13" @ 8:30am

— Early exam will not be offered.
— Do not get locked up in jail before this date.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

UPCOMING DATABASE TALKS

GreptimeDB (DB Seminar)

— Monday Nov 25™ @ 4:30pm
— Zoom

OpenDAL / DataBend (DB Seminar)

— Monday Nov 25™ @ 4:30pm
— Zoom

$2CMU-DB

15-445/645 (Fall 2024)

(© GreptimeDB

OpenDAL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/events/building-blocks-greptimedb-ruihang-xia/
https://db.cs.cmu.edu/events/building-blocks-apache-opendal-databend-xuanwo/

LAST CLASS

System Architectures
— Shared-Everything, Shared-Disk, Shared-Nothing

Partitioning/Sharding
— Hash, Range, Round Robin

Transaction Coordination
— Centralized vs. Decentralized

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

OLTP VS. OLAP

On-line Transaction Processing (OLTP):
— Short-lived read/write txns.

— Small footprint.

— Repetitive operations.

On-line Analytical Processing (OLAP):
— Long-running, read-only queries.

— Complex joins.

— Exploratory queries.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DECENTRALIZED COORDINATOR

W Primary Node | Partitions

~——

Begin Request

N —

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DECENTRALIZED COORDINATOR

W Primary Node | Partitions

Application
Server

%
el /])3

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DECENTRALIZED COORDINATOR

W Primary Node

~——

Commit Request

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

N —

Partitions

Safe to commit?

\:“

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

OBSERVATION

Recall that our goal is to have multiple physical
nodes appear as a single logical DBMS.

We have not discussed how to ensure that all nodes
agree to commit a txn and then to make sure it does

commit if the DBMS decides it should.

— What happens if a node fails?

— What happens if messages show up late?

— What happens if the system does not wait for every node
to agree to commit?

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Don't
Do This!

$2CMU-DB

15-445/645 (Fall 2024)

IMPORTANT ASSUMPTION

W e will assume that all nodes in a distributed
DBMS are well-behaved and under the same

administrative domain.

— If we tell a node to commit a txn, then it will commit the
txn (if there is not a failure).

[f you do not trust the other nodes in a distributed
DBMS, then you need to use a Byzantine Fault

Tolerant protocol for txns (blockchain).
— Blockchains are not good for high-throughput workloads.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Byzantine_fault
https://en.wikipedia.org/wiki/Byzantine_fault

TODAY'S AGENDA

Replication
Atomic Commit Protocols
Consistency Issues (CAP / PACELC)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

REPLICATION

The DBMS can replicate a database across

redundant nodes to increase availability.

— Partitioned vs. Non-Partitioned
— Shared-Nothing vs. Shared-Disk

Design Decisions:

— Replica Configuration
— Propagation Scheme
— Propagation Timing
— Update Method

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

REPLICA CONFIGURATIONS

Approach #1: Primary-Replica

— All updates go to a designated primary for each object.

— The primary propagates updates to its replicas by shipping
logs.

— Read-only txns may be allowed to access replicas.

— [f the primary goes down, then hold an election to select a
new primary.

Approach #2: Multi-Primary

— Txns can update data objects at any replica.
— Replicas must synchronize with each other using an atomic
commit protocol.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

REPLICA CONFIGURATIONS

Primary-Replica Multi-Primary

Writes Reads |
Reads Writes »
Reads M
R
"""" Node1l :
RN Writes » A
Primary Reads
Replicas

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

K-SAFETY

K-safety is a threshold for determining the fault
tolerance of the replicated database.

The value K represents the number of replicas per
data object that must always be available.

[f the number of replicas goes below this threshold,
then the DBMS halts execution and takes itself
offline.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS decides whether it must wait for that txn's
changes to propagate to other nodes before it can
send the acknowledgement to application.

Propagation levels:
— Synchronous (Strong Consistency)
— Asynchronous (Eventual Consistency)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

$2CMU-DB

15-445/645 (Fall 2024)

Commit? l

Flush!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

$2CMU-DB

15-445/645 (Fall 2024)

Flush!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

$2CMU-DB

15-445/645 (Fall 2024)

Flush!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

PROPAGATION TIMING

Approach #1: Continuous

— The DBMS sends log messages immediately as it generates
them.

— Also need to send a commit/abort message.

Approach #2: On Commit

— The DBMS only sends the log messages for a txn to the
replicas once the txn is commits.

— Do not waste time sending log records for aborted txns.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

ACTIVE VS. PASSIVE

Approach #1: Active-Active
— A txn executes at each replica independently.

— Need to check at the end whether the txn ends up with the
same result at each replica.

Approach #2: Active-Passive

— Each txn executes at a single location and propagates the
changes to the replica.

— Can either do physical or logical replication.

— Not the same as Primary-Replica vs. Multi-Primary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

OBSERVATION

[f only one node decides whether a txn is allowed to
commit, then making that decision is easy.

Life is much harder when multiple nodes are

allowed to decide:

— What if multiple nodes need to agree a txn is allowed to
commit?

— What if a primary node goes down and the system needs to
choose a new primary?

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

ATOMIC COMMIT PROTOCOL

Coordinating the commit order of txns across nodes
in a distributed DBMS.

— Commit Order = State Machine
— It does not matter whether the database's contents are
replicated or partitioned.

Examples:

— Two-Phase Commit (1970s)

— Three-Phase Commit (1983)

— Viewstamped Replication (1988)
— Paxos (1989)

—» ZAB (2008?)

— Raft (2013)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://dl.acm.org/doi/10.1145/62546.62549
https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Apache_ZooKeeper
https://en.wikipedia.org/wiki/Raft_(algorithm)
https://en.wikipedia.org/wiki/Raft_(algorithm)

ATOMIC COMMIT PROTOCOL

Resource Managers (R Ms)

— Execute on different nodes
— Coordinate to decide fate of a txn.

Properties of the Commit Protocol

— Stability: Once the fate is decided, it
cannot be changed.

— Consistency: All RMs end up in the same
state.

Assumes Liveness:
— There is some way of progressing forward hitps://wwrw microsoft.com/en- . |
. us/research/publication/consensus-on-transaction-commit/
— Enough nodes are alive and connected for
the duration of the protocol.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/
https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/

TWO-PHASE COMMIT (SUCCESS)

Application
Server

A

Coordinator

—— —

Commit Request

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

Node 2 ~

|
uvdingin g

|
juvdidngavg

Node 3~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TWO-PHASE COMMIT (SUCCESS)

AR .
EaEe wﬁ Request
73
o
Application
Server

Phasel: Prepare

- ‘T\\i>//’

A

Coordinator

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

|
uvdingin g

Node 2 ~

|
juvdidngavg

Node 3~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TWO-PHASE COMMIT (SUCCESS)

Commit Request .
—_— ®/ 'g:l
7 -8
Application §
Server IE
Phasel: Prepare Node 2
S
5- &
S =
S s
O S
“Node1 Node 3

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TWO-PHASE COMMIT (SUCCESS)

Application
Server

A

Coordinator

—— —

Commit Request

Phasel: Prepare

i N

Phase2: Commit

OK

OK

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

|
uvdingin g

|
juvdidngavg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TWO-PHASE COMMIT (SUCCESS)

Commit Request .
—_— ¥ 'g:l
7 -8
Application §
Server IE
Phasel: Prepare Node 2
- I~ X 7 ;
§ OK 1, 3
: - 3
T OK | é.
: :

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TWO-PHASE COMMIT (SUCCESS)

AR
3K
K
Iz
Application
Server

A

Coordinator

Success!

—_—

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

Node 2 ~

|
uvdingin g

|
juvdidngavg

Node 3~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TWO-PHASE COMMIT (ABORT)

ﬁ Commit Request
- R
K
Application
Server

Phasel: Prepare

- ‘T\\i>//’

A

Coordinator

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

|
uvdingin g

Node 2 ~

|
juvdidngavg

Node 3~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TWO-PHASE COMMIT (ABORT)

Application
Server

A

Coordinator

Commit Request

L

Phasel: Prepare

‘T\ﬁ>,/’

<

ABORT!

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

Node 2 ~

v

juvdidngavg

Node 3~

|
uvdingin g

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TWO-PHASE COMMIT (ABORT)

Aborted

AR
m<_V_‘
ZZZ
7

Application
Server

ABORT!

A

Coordinator

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

|
uvdingin g

Node 2 ~

|
juvdidngavg

Node 3~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TWO-PHASE COMMIT (ABORT)

AR
3K
K
Iz
Application
Server

A

Coordinator

Aborted

—_—

Phase2: Abort

ABORT!

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

|
uvdingin g

|
juvdidngavg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TWO-PHASE COMMIT (ABORT)

ABORT!

OK

AR
e Aborted
R
(o]
Application
Server
or
§ Phase2: Abort
S
S -
S
O

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

|
uvdingin g

|
juvdidngavg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

TWO-PHASE COMMIT

Each node records the inbound/outbound messages
and outcome of each phase in a non-volatile storage
log.

On recovery, examine the log for 2PC messages:

— If local txn in prepared state, contact coordinator.

— If local txn not in prepared, abort it.

— If local txn was committing and node is the coordinator,
send COMMIT message to nodes.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

TWO-PHASE COMMIT FAILURES

What happens if coordinator crashes?

— Participants must decide what to do after a timeout.
— System is not available during this time.

What happens if participant crashes?

— Coordinator assumes that it responded with an abort if it
has not sent an acknowledgement yet.

— Again, nodes use a timeout to determine whether a
participant is dead.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

2PC OPTIMIZATIONS

Early Prepare Voting (Rare)

— If you send a query to a remote node that you know will be
the last one to execute in this txn, then that node will also
return their vote for the prepare phase with the query
result.

Early Ack After Prepare (Common)

— If all nodes vote to commit a txn, the coordinator can send
the client an acknowledgement that their txn was
successful before the commit phase finishes.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EARLY ACKNOWLEDGEMENT

Commit Request

—— 7 —

Application
Server

A

Coordinator

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

Node 2 ~

|
uvdingin g

|
juvdidngavg

Node 3~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EARLY ACKNOWLEDGEMENT

AR :
EaEe wﬁ Request
K
)
Application
Server

Phasel: Prepare

- ‘T\\i>//’

A

Coordinator

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

|
uvdingin g

Node 2 ~

|
juvdidngavg

Node 3~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

EARLY ACKNOWLEDGEMENT

Commit Request .
—_— ®/ 'g:l
7 -8
Application §
Server IE
Phasel: Prepare Node 2
S
5- &
S =
S s
O S
“Node1 Node 3

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

AR '
) Success!
i< f
(o]
Application
Server

A

Coordinator

$2CMU-DB

15-445/645 (Fall 2024)

&

Phasel: Prepare

EARLY ACKNOWLEDGEMENT

OK

|
uvdingin g

|
juvdidngavg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

AR
3K
K
Iz
Application
Server

A

Coordinator

Success!

—_—

Phasel: Prepare

i N

Phase2: Commit

EARLY ACKNOWLEDGEMENT

OK

OK

" Node 1

$2CMU-DB

15-445/645 (Fall 2024)

|
uvdingin g

|
juvdidngavg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

AR
3K
K
Iz
Application
Server

A

Coordinator

$2CMU-DB

15-445/645 (Fall 2024)

Success!

—_—

Phasel: Prepare

i N

EARLY ACKNOWLEDGEMENT

|
uvdingin g

|
juvdidngavg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAX0S

Consensus protocol where a
coordinator proposes an outcome

e.g., commit or abort) and then the
participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has
provably minimal message delays in
the best case.

$2CMU-DB

15-445/645 (Fall 2024)

The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Recent archaeological discoveries on the island of Paxos reveal that the parliament functioned de-
spite the peripatetic propensity of its part-time legislators. The legislators maintained consistent
copies of the parliamentary record, despite their frequent forays from the chamber and the forget-
fulness of their messengers. The Paxon parliament’s protocol provides a new way of implementing
the state-machine approach to the design of distributed ssems

Categories and Subject Descriptors: C2.4 [C Distributed
Systems—Netuork operuting systems D4.5 [Operating Systems}: Relabilty— Fuult-tolerance;
J1[A Data

General Terms: Design, Reliability

Additional Key Words and Phrases: State machines, three-phase commit, voting

This submission was recently discovered behind a filing cabinet in the TOCS editorial
office. Despite its age, the editor-in-chief felt that it was worth publishing, Because the
authar is currently doing field work in the Greek isles and cannot be reached, I was asked
to prepare it for publication.

The author appears o be an ardiealogist with only a passing interest in computer sci-
ence. This is even though the obscure ancient Paxon civil: b
is of little interest to most computer scientists, its legislative system is an excellent model
for how to implement a distributed computer system in an asynchronous environment.
Indeed, some of the refinements the Paxons made to their protocol appear to be unknown
in the systems literature.

The author does give a brief discussion of the Paxon Parliament’s relevance to dis-
tributed computing in Section 4. Computer scientists will probably want to read that
section first. Even before that, they might want to read the explanation of the algorithm
for computer scientists by Lampson [1996]. The algorithm is also described more formally
by De Prisco et al. [1997]. I have added further comments on the relation between the
ancient protocols and more recent work at the end of Section 4.

Keith Marzullo
University of California, San Diego

Authors” addzess: Systems Research Center, Digital Equipment Corporation, 130 Lytton Avenue,
Palo Alto, CA 9430L.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

© 1998 ACM 0000-0000/98/0000-0000 $00.00

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf

Consensus protocol where a

coordinator proposes an outlclomi
e.g., commit or abort) and t e}Ill ;
participants vote on whether tha

outcome should succeed.

Does not block if a majority of
participants are available and has

provably minimal message delay
the best case.

£$2CMU-DB

15-445/645 (Fall 2024)

Consensus on Transaction Commit

JIM GRAY and LESLIE LAMPORT
Microsoft Research

The distributed transaction commit problem requires reaching agreement. on whether a transaction
is committed or aborted. The classic Two-Phase Commit protoco] blocks if the coordinator fals,
Fault-tolerant consensus algorithms also reach agreement, byt do not block wh(-ne\'orany majority
of the processes are working. The Paxos Commit algorithm runs a Paxos consensus algorithm on the
commit/abort decision of each participant to obtain a transaction commit protocol that uses 25 +1
coordinators and makes Progress if at least F 4 1 of them are working properly. Payos Commit
has the same nahh--szorsge write delay, and can be implemented to have the same message delay
in the fault-free case as Two-Phase Commit, but jt uses more messages, The classic Two-Phase
Commit algorithm is obtained as the special F' = 0 case of the Paxos Commit algorithm.

Categories and Subject Descriptors: D:4.1 [Operating Systems]: Process . on-
Gurrency; D.4.5 [Operating Systemg}: Reliability—f, lerance; D.4.7 [Operating Systems]:
Organization and Design—Distyihygony systems

General Terms: Algorithms, Reliability
Additional Key Words and Phrases: Consensus, Paxos, two-phase commit

1. INTRODUCTION

Adistributed transaction consists of a number of operations, performed at my]-
tiple sites, terminated by a request to commit or abort the transaction. The
sites then use a transaction commit protocol to decide whether the transac-
tion is committeq or aborted. The transaction can be committed only if a1 sites
are willing to commit it, Achieving this all-or—nothing atomicity Property in a
distributed System is not trivial, The requirements for transaction commit are
stated precisely in Section 2.

The classic transaction commit protocol jg Two-Phase Commit [Gray 1978,
described in Section 3. It uses asingle coordinator to reach agreement. The fail-
ure of that coordinator can cauge the protocol to block, with no process knowing
the outcome, until the coordinator is repaired. In Section 4, we use the Paxos
consensus algorithm [Lamport 1998] to obtain a transaction commit protoco]

Authors’ addresses; J, Gray, Microsoft Research, 455 Market St., San Francisco, CA 94105; email;

Jim.Grayemicrosoft. con; I, Lamport, Microsoft Research, 1065 Lo Avenida, Mountain View, CA
94043,

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006, Pages 133160,

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf
https://dl.acm.org/doi/10.1145/1132863.1132867

PAX0S

Commit Request

———r —

Application
Server

Proposer
A

- Node 1

$2CMU-DB

15-445/645 (Fall 2024)

Node 2 -

Node 3 -

v

| |
401d220y

401d220y

v

401d220y

Node 4 -

H
N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAX0S :

m‘- wit Request
3K Node 2 -
Application
Server
Propose
N - Node 3 -
%;_ —
=)
&
- Node 1

$2CMU-DB Node 4 -

15-445/645 (Fall 2024)

v

| |
401d220y

401d220y

v

401d220y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAX0S

Commit Request

———r —

Application
Server

Propose

Proposer
A

- Node 1
£2CMU-DB Node 4 -

15-445/645 (Fall 2024)

v

| |
401d220y

401d220y

v

401d220y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAX0S

AR :
TR wzt Request
R
]
Application
Server
Propose

Proposer
A

v

401d220y

- Node 1
£2CMU-DB Node 4 -

15-445/645 (Fall 2024)

Ul
!

v

401d220y

v

401d220y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAX0S

Commit Request

———

Application
Server

Propose

(((
w

$2CMU-DB Node 4 -

15-445/645 (Fall 2024)

Ul
=

v

| |
401d220y

401d220y

v

401d220y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

AR Commit Request
ZZam S
3K
K
Application
Server
Propose

S

S

S

$2CMU-DB

15-445/645 (Fall 2024)

PAX0S

v

| |
401d220y

401d220y

v

401d220y

1921
N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

m
LN

Acceptor Acceptor Acceptor
A A A

PAX0S

Success!

- Node 1

I
dasodo.a g

AR
ZZZZ3D
ZZZZ3
ZZa
Application
Server

15-445/645 (Fall 202

$2CMU-DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAX0S

Proposer

Acceptors

:

Proposer

Propose(n)

15-445/645 (Fall 2024)

$2CMU-DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAX0S

Proposer

il v
o
S
< v_\n/ >
15
S
AR
on
<
| k- >
)
E
2
-
3| &
w,Pr. == e e e >
=~
R
s e
=3
O 2
o &

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

-~
Q
S (Y -
0)); m% >
» R~
~~ >
2.
£
) .
Vo) o
Q S —r
>< =\ R T >
< S <
Q. < o
on
<
v - ||Lﬁ ||||||||||||||||||| >
I F
)
E
g
5| &
mPr. == e e e >
-y

15-445/645 (Fall 2024)

$2CMU-DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Proposer
—
|
Propose(n+1)
T
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
v

N S v
Vo) o
>< =\ e >
<L S <
o < =
S0
v = - ||Lﬁ||. ||||||||||||||| >
I F
~ ~
E E
S ‘S
5| & m\
=y — |
-y

15-445/645 (Fall 2024)

$2CMU-DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAX0S

Proposer Acceptors Proposer
Propose(n) | (= - — =
Agree(n) T T
| 12 — | Propose(n+1)
1 |

\

— ——
Commit(n) :

|

= L =

/

Reject(n,n+1)

|

€ e e e

1\7\

€
€

€ e e e e e

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAX0S

Proposer Acceptors Proposer
Propose(n) | (= - — =
Agree(n) T T
| T 4V:' { Propose(n+1)
Commit(n) ! : L74M
™~ Reject(n,n+1) i

|

</% _.

Agree(n+1)

& -

€
€=

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAX0S

Proposer Acceptors Proposer
P
ropose(n) | (= = = =
Agree(n) T T
| T 4V:' { Propose(n+1)
Commit(n) ! ! L74M
™~ Reject(n,n+1) !

——>

€

$2CMU-DB

15-445/645 (Fall 2024)

Vl

Agree(n+1)

(--T---r-
i

; | Commit(n+1)
i : i
k — I
1 1 1
| 1 1
1 1 1
| 1 1
v v v

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PAX0S

Proposer Acceptors Proposer
P
ropose(n) | (= = = =
Agree(n) T T
| T 4V:' { Propose(n+1)
Commit(n) ! ! L74M
™\ Reject(n,n+1) i

|

Agree(n+1)

€

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

MULTI-PAXOS

[f the system elects a single leader that oversees
proposing changes for some period, then it can skip

the Propose phase.
— Fall back to full Paxos whenever there is a failure.

The system periodically renews the leader (known

as a lease) using another Paxos round.
— Nodes must exchange log entries during leader election to
make sure that everyone is up-to-date.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

2PC VS. PAXOS VS. RAFT

Two-Phase Commit

— Blocks if coordinator fails after the prepare message is sent,
until coordinator recovers.

Paxos

— Non-blocking if a majority participants are alive, provided
there is a sufficiently long period without further failures.

Raft:

— Similar to Paxos but with fewer node types.
— Only nodes with most up-to-date log can become leaders.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CAP THEOREM

Proposed in the late 1990s that is impossible for a

distributed database to always be:
— Consistent

— Always Available

— Network Partition Tolerant

Whether a DBMS provides Consistency or
Availability during a Network partition.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENCY

Set A=2 §
Application Application
Server Server

— mm —

Primary Replica
$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENCY

Set A=2 §
Application Application
Server Server

— mm —

Primary Replica
$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENCY

Set A=2 §
Application Application
Server Server

Primary Replica

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONSISTENCY

AR
K
2 Set A=2
Application Application
Server ACK Server

Primary Replica

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

_

AR
3K
K
Iz
Application
Server

CONSISTENCY

Read A

Primary

$2CMU-DB

15-445/645 (Fall 2024)

ITTR
Application
Server

Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

_

AR
3K
K
Iz
Application
Server

CONSISTENCY

r

.

immediately visible on replicas.

If Primary says the txn
committed, then it should be

Primary

$2CMU-DB

15-445/645 (Fall 2024)

Read A

Application
s Server

Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

AVAILABILITY

Application Application
Server Server

— mm —

Primary Replica
$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

AVAILABILITY

Application Application
Server Server

= G

Primary Replica
$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

AVAILABILITY

Read B §
Application Application
Server Server

= G

Primary Replica
$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

AVAILABILITY

AR
K
ZZZn Read B
Application Application
Server B=8 Server

Primary Replica

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

AVAILABILITY

§ Read A
Application Application
Server Server

Primary Replica

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

AVAILABILITY

Application Application
Server A= Server

Primary Replica

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PARTITION TOLERANCE

Application Application
Server Server

Primary
$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PARTITION TOLERANCE

Application Application
Server Server
\ A=1 [¢ 4 \ y
A=1 A=1
\ B=3 | \ B=8 |
— 0 —

Primary o oWme Replica

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PARTITION TOLERANCE

Application Application
Server Server

Primary Primary

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PARTITION TOLERANCE

Set A=2 Set A=3
Application Application
Server Server

Primary Primary

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PARTITION TOLERANCE

Set A=2 Set A=3
Application Application
Server Server

Primary Primary

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PARTITION TOLERANCE

AR AR

o — —

Iz Set A=2 Set A=3 ZZax
Application Application

Server ACK ACK Server

Primary Primary

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PARTITION TOLERANCE

AR
73
—
73K
7

Application
Server

Primary

$2CMU-DB

15-445/645 (Fall 2024)

ﬁ

Application
Server

Primary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PARTITION TOLERANCE

Choice #1: Halt the System

— Stop accepting updates in any partition that does not have
a majority of the nodes.

Choice #2: Allow Split, Reconcile Changes

— Allow each side of partition to keep accepting updates.

— Upon reconnection, perform reconciliation to determine
the "correct” version of any updated record

\ R 4 — Server-side: Last Update Wins
Q » — Client-side: Vector Clocks

o ™o
Don't
Do This!

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Vector_clock

PACELC THEOREM

Extension to CAP proposed in 2010 to include

consistency vs. latency trade-offs:
— Partition Tolerant

— Always Available

— Consistent

— Else, choose during normal operations
— Latency

— Consistency

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/PACELC_theorem

LATENCY VS. CONSISTENCY

Set A=2

Application

Server Replica
(us-west)

Primary Replica

=iV (us-east) | (eu-east)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LATENCY VS. CONSISTENCY

Set A=2

Application

Server Replica
(us-west)

Primary Replica

=iV (us-east) | (eu-east)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LATENCY VS. CONSISTENCY

Set A=2

Application

Server Replica
(us-west)

Primary Replica

=iV (us-east) | (eu-east)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LATENCY VS. CONSISTENCY

ACK
tinn
Trade-of f between how long to
wait for acknowledgements and
the latency of the DBMS. |
- ACK

Primary

v (us-east)

15-445/645 (Fall 2024)

Replica
(us-west)

Replica
(eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LATENCY VS.

CONSISTENCY

ACK

Application
Server

ACK

Primary

£2CMU-DB (us-east)

15-445/645 (Fall 2024)

Replica
(us-west)

Replica
(eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LATENCY VS. CONSISTENCY

ACK

Application

Server Replica
(us-west)

Primary Replica

=iV (us-east) | (eu-east)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

LATENCY VS. CONSISTENCY

AR ACK
Iz
[/
Application :
Server ACK Replica
(us-west)

Primary Replica

=iV (us-east) | (eu-east)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.

2PC / Paxos / Raft are the most common protocols
to ensure correctness in a distributed DBMS.

More info (and humiliation):
— Kyle Kingsbury's Jepsen Project

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://aphyr.com/tags/jepsen

NEXT CLASS

Distributed OLAP Systems

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Distributed OLTP Databases
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: OLTP VS. OLAP
	Slide 6: DECENTRALIZED COORDINATOR
	Slide 7: DECENTRALIZED COORDINATOR
	Slide 8: DECENTRALIZED COORDINATOR
	Slide 9: OBSERVATION
	Slide 10: IMPORTANT ASSUMPTION
	Slide 11: TODAY'S AGENDA

	Replication
	Slide 12: REPLICATION
	Slide 13: REPLICA CONFIGURATIONS
	Slide 14: REPLICA CONFIGURATIONS
	Slide 15: K-SAFETY
	Slide 16: PROPAGATION SCHEME
	Slide 17: PROPAGATION SCHEME
	Slide 18: PROPAGATION SCHEME
	Slide 19: PROPAGATION SCHEME
	Slide 20: PROPAGATION TIMING
	Slide 21: ACTIVE VS. PASSIVE

	Atomic Commit Protocol
	Slide 22: OBSERVATION
	Slide 23: ATOMIC COMMIT PROTOCOL
	Slide 24: ATOMIC COMMIT PROTOCOL
	Slide 25: TWO-PHASE COMMIT (SUCCESS)
	Slide 26: TWO-PHASE COMMIT (SUCCESS)
	Slide 27: TWO-PHASE COMMIT (SUCCESS)
	Slide 28: TWO-PHASE COMMIT (SUCCESS)
	Slide 29: TWO-PHASE COMMIT (SUCCESS)
	Slide 30: TWO-PHASE COMMIT (SUCCESS)
	Slide 31: TWO-PHASE COMMIT (ABORT)
	Slide 32: TWO-PHASE COMMIT (ABORT)
	Slide 33: TWO-PHASE COMMIT (ABORT)
	Slide 34: TWO-PHASE COMMIT (ABORT)
	Slide 35: TWO-PHASE COMMIT (ABORT)
	Slide 36: TWO-PHASE COMMIT
	Slide 37: TWO-PHASE COMMIT FAILURES
	Slide 38: 2PC OPTIMIZATIONS
	Slide 39: EARLY ACKNOWLEDGEMENT
	Slide 40: EARLY ACKNOWLEDGEMENT
	Slide 41: EARLY ACKNOWLEDGEMENT
	Slide 42: EARLY ACKNOWLEDGEMENT
	Slide 43: EARLY ACKNOWLEDGEMENT
	Slide 44: EARLY ACKNOWLEDGEMENT

	Paxos
	Slide 45: PAXOS
	Slide 46: PAXOS
	Slide 47: PAXOS
	Slide 48: PAXOS
	Slide 49: PAXOS
	Slide 50: PAXOS
	Slide 51: PAXOS
	Slide 52: PAXOS
	Slide 53: PAXOS
	Slide 54: PAXOS
	Slide 55: PAXOS
	Slide 56: PAXOS
	Slide 57: PAXOS
	Slide 58: PAXOS
	Slide 59: PAXOS
	Slide 60: PAXOS
	Slide 61: PAXOS
	Slide 62: MULTI-PAXOS
	Slide 63: 2PC VS. PAXOS VS. RAFT

	CAP
	Slide 64: CAP THEOREM
	Slide 65: CONSISTENCY
	Slide 66: CONSISTENCY
	Slide 67: CONSISTENCY
	Slide 68: CONSISTENCY
	Slide 69: CONSISTENCY
	Slide 70: CONSISTENCY
	Slide 71: AVAILABILITY
	Slide 72: AVAILABILITY
	Slide 73: AVAILABILITY
	Slide 74: AVAILABILITY
	Slide 75: AVAILABILITY
	Slide 76: AVAILABILITY
	Slide 77: PARTITION TOLERANCE
	Slide 78: PARTITION TOLERANCE
	Slide 79: PARTITION TOLERANCE
	Slide 80: PARTITION TOLERANCE
	Slide 81: PARTITION TOLERANCE
	Slide 82: PARTITION TOLERANCE
	Slide 83: PARTITION TOLERANCE
	Slide 84: PARTITION TOLERANCE
	Slide 85: PACELC THEOREM
	Slide 86: LATENCY VS. CONSISTENCY
	Slide 87: LATENCY VS. CONSISTENCY
	Slide 88: LATENCY VS. CONSISTENCY
	Slide 89: LATENCY VS. CONSISTENCY
	Slide 90: LATENCY VS. CONSISTENCY
	Slide 91: LATENCY VS. CONSISTENCY
	Slide 92: LATENCY VS. CONSISTENCY

	Conclusion
	Slide 93: CONCLUSION
	Slide 94: NEXT CLASS

