Carnegie Mellon University

Uatabase
Systems

Distributed
OLAP Databases

15-445/645 FALL 2024) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

DBMS Potpourri Lecture on Wednesday Dec 4™
Project #4 is due Sunday Dec 8™ @ 11:59pm
Homework #6 is due Monday Dec 9" @ 11:59pm

Final Exam is on Friday Dec 13" @ 8:30am

— Early exam will not be offered.
— Study guide will be released tomorrow.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

UPCOMING DATABASE TALKS

OpenDAL / DataBend (DB Seminar)
— Monday Dec 2™ @ 4:30pm
— Zoom

GreptimeDB (DB Seminar)
— Monday Dec 9" @ 4:30pm
— Zoom

$2CMU-DB

15-445/645 (Fall 2024)

OpenDAL

(© GreptimeDB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/events/building-blocks-apache-opendal-databend-xuanwo/
https://db.cs.cmu.edu/events/building-blocks-greptimedb-ruihang-xia/

BIFURCATED ENVIRONMENT

\\\\‘ Fivetran
‘- otalend Qlik@

Extract

(‘ Informatica

OLTP Databases OLAP Database

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BIFURCATED ENVIRONMENT
T Frotan

talend Qlik@

Extract

Iy Extract

L zoad

Transform

X dbt 4 Airbyte

OLTP Databases OLAP Database

oCMU -DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

BIFURCATED ENVIRONMENT
T Frotan

talend Qlik@

Extract

i Extract

= zoad

Transform
OLAP Database

OLTP Databases H dbt £ airoyee

0CMU -DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

DECISION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

STAR SCHEMA

PRODUCT_DIM CUSTOMER_DIM
CATEGORY_NAME ID

Crecony SALES FACT e
o e Tt

LOCATION_FK
CUSTOMER_FK

LOCATION_DIM TIME_DIM
COUNTRY PRICE YEAR
STATE_CODE / QUANTITY \ DAY_OF _YEAR
STATE_NAME MONTH_NUM
ZIP_CODE MONTH_NAME
CITY DAY_OF _MONTH

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SNOWFLAKE SCHEMA

CAT_LOOKUP

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

PRODUCT_DIM

CATEGORY_FK
PRODUCT _CODE
PRODUCT _NAME
PRODUCT_DESC

SALES_FACT

LOCATION_DIM

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

CUSTOMER_DIM

ID
FIRST_NAME

LAST_NAME
/ EMAIL

ZIP_CODE

TIME_DIM

YEAR
DAY_OF _YEAR

| MONTH_FK

DAY_OF_MONTH

COUNTRY
STATE_FK
ZIP_CODE — PRICE
e QUANTITY
STATE_LOOKUP
STATE_ID
STATE_CODE —
STATE_NAME

& -D8

15-445/645 (Fall 2024)

MONTH_LOOKUP

MONTH_NUM
MONTH_NAME
MONTH_SEASON

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization

— Snowflake schemas take up less storage space.

— Denormalized data models may incur integrity and
consistency violations.

Issue #2: Query Complexity

— Snowflake schemas require more joins to get the data
needed for a query.

— Queries on star schemas will (usually) be faster.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Application

$2CMU-DB

15-445/645 (Fall 2024)

PROBLEM SETUP

SELECT * FROM R JOIN S
ON R.id = S.id

Server

Partitions

-
()

I
ol

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PROBLEM SETUP

SELECT * FROM R JOIN S Partitions
ON R.id = S.id

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

TODAY'S AGENDA

Execution Models

Query Planning

Distributed Join Algorithms
Cloud Systems

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS is

roughly the same as on a single-node DBMS.
— Query plan is a DAG of physical operators.

For each operator, the DBMS considers where

input is coming from and where to send output.
— Table Scans

— Joins

— Aggregations

— Sorting

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED QUERY EXECUTION

Persistent Data

W orker Nodes
$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED QUERY EXECUTION

Data

r

Data

Persistent Data =

»—

] =

=S 0 =
]

W orker Nodes

$2CMU-DB

15-445/645 (Fall 2024)

Intermediate

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Persistent Data

DISTRIBUTED QUERY EXECUTION
Int%dmte/,

W orker Nodes Shuffle Nodes

4444444444444444444

(Optional)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Persistent Data

DISTRIBUTED QUERY EXECUTION
Int%dmte/,

W orker Nodes Shuffle Nodes W orker Nodes

4444444444444444444

(Optional)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Persistent Data

DISTRIBUTED QUERY EXECUTION
Int%dmte/,

W orker Nodes Shuffle Nodes W orker Nodes

4444444444444444444

(Optional)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED OUERY EXECUTION

Scheduler /
Coordinator

Shuffle Nodes W orker Nodes
(Optional)

4444444444444444444

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATA CATEGORIES

Persistent Data:

— The "source of record" for the database (e.g., tables).

— Modern systems assume that these data files are immutable
but can support updates by rewriting them.

Intermediate Data;

— Short-lived artifacts produced by query operators during
execution and then consumed by other operators.

— The amount of intermediate data that a query generates
has little to no correlation to amount of persistent data that
it reads or the execution time.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

DISTRIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
the location of the database's data files. This affects
how nodes coordinate with each other and where
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
— Push Query to Data
— Pull Data to Query

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

PUSH VS. PULL

Approach #1: Push Query to Data

— Send the query (or a portion of it) to the node that
contains the data,

— Perform as much filtering and processing as possible where
data resides before transmitting over network.

Approach #2: Pull Data to Query

— Bring the data to the node that is executing a query that
needs it for processing.

— This is necessary when there is no compute resources
available where database files are located.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$=CMU-DB

15-445/645 (Fall 2024)

— Send t
contail
— Perfor
datar
You can perform SQL queries using AWS SDKs, the SELECT Object Content REST API, the AWS Command Line Interface
(AWS CLl), or the Amazon S3 console, The Amazon s3 console limits the amount of data returned to 40 MB. To retrieve
Appro more data, use the AWS CLj or the API.
— Bring

' Ing.
needs it for process | —
— This is necessary when there is no compute resou

available where database files are located.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html

Filtering an ievi
d retrieving data usin A
g Amazon S3 Select Aazon

PDF | Rss

p With Amazon S3 Sale -
ery language
ge (SQL) statements to filter the cont:
ents of an

mE Microsoft [
[U need. By usin,
ich reduces the cogtil:: [a ion 53 Select to filter this dat
atency to retriev: a, you can
e this data.

Query Blob Contents
5 Feedback
or Apach
e Parquet format. It also works with object
ects that are

d « 3 contributors
ry Language (sQL) statementon a blob's only), and server-side o
etermine how ncrypted objects. Y
also call Query Blob contents fo query the records in the resu(t ar'e :L: can specify the
elimited
azon S3 Select N
s
Upports a subset of SQL. For m
’ ore informatio
n

Belect, se
e SQL reference for Amazon S3 Se|
elect.

Article » 07/20/2021 = 10 minutes to rea

plies a simple Structured Que

The query Blob contents APl ap
ried subset of the data. You can

contents and returns only the que
the contents of a version or snapshot.
Pbject Conte
nt
e limits the amF;EST AP, the AWS Command Lj
unt of data returned to 40 MBHE Interface
- To retrieve

ed. Replace

Request

The query Blob conten

as follows. HTTPS is recommend

s request may be constructed

myaccount with the name of your storage account:
HTTP Version

| pute resources

pOST Method Request URI
nttps://myaccount. plob.core.windows. netfmyccntainer/myhlcb?cnmp:query HTTP/1.0

=d
net/mycontainer/myhloh'?comp:query&snapshot:<0at eTime> HTTP/1.1 °

5+ //myaccount. blob.core .windows .
ersionid:<nateT'1me>

http
mycontainer/mybloh?comp:query&v

hteps: //myaccount. plob.core.windows. net/

S2CMU-

15-445/645 (Farrzoza

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://learn.microsoft.com/en-us/rest/api/storageservices/query-blob-contents

PUSH QUERY TO DATA

SELECT * FROM R JOIN S

ON R.id = S.1id

s2CMU-DB
15-445/645 (F

all 2024)

Node

]

P1»R.id:1-100
P1+S.id:1-100

LES

S

[IDs [101

Application
Server

! Result: R S

]

P2»R.1d:101-200
P2>S.1d:101-200

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PULL DATA TO QUERY

P1>ID:1-100
SELECT * FROM R JOIN S Node -
ON R.id = S.1id

N
[z RS
i [IDs [101,200]
i

Application
Server

Storage

P2>ID:101-200

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PULL DATA TO QUERY

P1>ID:1-100

SELECT * FROM R JOIN S Node

ON R.id = S.id #_% Page ABC

AR

ZZEK [RD4S

7K IDs [101,200] Page XYZ
Application |

Server " Node

P2>ID:101-200

$2CMU-DB

15-445/645 (Fall 2024)

r

Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

PULL DATA TO QUERY

P1>ID:1-100
SELECT * FROM R JOIN S Node -

ON R.id = S.1id #%
- 7y

AR

ZZ R4S

Iz IDs [101,200] Mt: RIS
ZZR

Application |
Server T Node

il

P2>ID:101-200

Storage

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

OBSERVATION

The data that a node receives from remote sources

are cached in the buffer pool.

— This allows the DBMS to support intermediate results that
are large than the amount of memory available.

— Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs are
designed to assume that nodes do not fail during

query execution.

— If one node fails during query execution, then the whole
query fails.

The DBMS could take a snapshot of the

intermediate results for a query during execution to
allow it to recover if nodes fail.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S [Node | - .
ON R.id = S.id #% Storage
IEZ-

R MA Result: R S

Appllcatlon ~X_
Server (Node b

4

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S [Node | ST
ON R.1d = 5.1d ﬂ—% Result: R} S
AR
ZZZ3
ZZ
73

Application

Server r%‘
\ . _J

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

QUERY PLANNING

All the optimizations that we talked about before

are still applicable in a distributed environment.
— Predicate Pushdown

— Projection Pushdown

— Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

QUERY PLAN FRAGMENTS

Approach #1: Physical Operators

— Generate a single query plan and then break it up into
partition-specific fragments.

— Most systems implement this approach.

Approach #2: SQL

— Rewrite original query into partition-specific queries.

— Allows for local optimization at each node.

— SingleStore + Vitess are the only systems we know that use
this approach.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.singlestore.com/
https://vitess.io/

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
ON R.id = S.1id

:

Ill

b

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 101 AND 200

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 201 AND 300

id:1-100

$2CMU-DB

15-445/645 (Fall 2024)

id:101-200

id:201-300

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

Union the output of
each join to produce

final ”e‘il;\rkOM R JOIN S
ON~\id = S.id

:

N FRAGMENTS

b

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 101 AND 200

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 201 AND 300

id:1-100

$2CMU-DB

15-445/645 (Fall 2024)

id:101-200

id:201-300

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single

node and then perform the join.
— You lose the parallelism of a distributed DBMS.
— Costly data transfer over the network.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we discussed

earlier in the semester.
— Need to produce the correct answer as if all the data is
located in a single node system.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key

SCENARIO #1

SELECT * FROM R JOIN S
ON R.id = S.1id

¥

id:1-100

$2CMU-DB

15-445/645 (Fall 2024)

Replicated

id:101-200

Replicated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key

¥

id:1-100

Replicated

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

Replicated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key

¥

id:1-100

Replicated

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = '

ad R>os

id:101-200

=

Replicated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #2

Both data sets are partitioned on the

].o¥n attribute. Each node performs the SELECT * FROM R JOIN S
join on local data and then sends to a ON R.id = S.id

coordinator node for coalescing.

id:1-100 id:101-200

1d:101-200

id:1-100

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #2

Both data sets are partitioned on the

].o%n attribute. Each node performs the SELECT * FROM R JOIN S
join on local data and then sends to a ON R.id = S.id

coordinator node for coalescing.

id:1-100 id:101-200

1d:101-200

id:1-100

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #3 - BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #3 - BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #3 - BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #3 - BROADCAST JOIN

Both data sets are partitioned on
different keys. If one oﬁ the data sets is SELECT * FROM R JOIN S
small, then the DBMS "broadcasts ON R.id = S.id

that data to all nodes.

e~

P2:RPXS

id:1-100 id:101-200

val:1-50 val:51-100

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

name:A-M

val:1-50

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

name:A-M

val:1-50

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

id:1-100

name:A-M

val:1-50

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

id:1-100

name:A-M

val:1-50

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

id:1-100 R{id}
id:1-100

name:A-M

L4
....

val:1-50

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

SELECT * FROM R JOIN S
ON R.id = S.1id

id:1-100 R{id} R{id}
id:1-100

name:A-M

val:1-50

$2CMU-DB

15-445/645 (Fall 2024)

id:101-200

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally

deleted when the query is done. P1:RIXS

id:1-100 R{id} R{id}
id:1-100

name:A-M

val:1-50

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

=» N

id:101-200

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [e5EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.1id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [e5EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.1id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

Dim,, ;=114 (Gzip _ 15213 Dim)

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [e5EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.1id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

Dim,, ;=114 (Gzip _ 15213 Dim)

F-small = Fact X Dim

semi

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [e5EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.1id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

Fact : — ;
sl Dimg,,,.; =114 (Gzip _152i3 Dim)

F-small = Fact X Dim

semi

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [e5EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.1id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

Result =11 (Dim 4 FaCtsmall)

price

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

OBSERVATION

Direct communication between compute nodes
means the DBMS knows which nodes will
participate in query execution ahead of time.

But data skew can cause imbalances...

A better approach is to dynamically adjust compute
resources on the fly as a query executes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHUEFLE PHASE -

Redistribute of intermediate data Goodle ““”""AZ
across nodes between query plan @ Big ngry SpQr K
pipelines.

— Can repartition / rebalance data based on
observed data characteristics.

Some DBMSs support standalone

fault-tolerant shuffle services. APACHE
— Example: You can replace Spark's built-in C@I eborn
in-memory shuffle implementation or

replace it with a separate service. Qv Apache Uniffle

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHUFFLE PHASE

e Shuffle Nodes

§ Worker % % i
] 3 3

: Worker : =
§ 3

g 1/
: Worker : &

Shared-Disk
$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHUFFLE PHASE

e Shuf ﬂe Nodes

§ Worker % % i
§ 3 \ : :
S 3

s -
, ‘ N : Worker : §
H 3 3
: Worker : 4

Stagen @ @ Stage n+1

Shared-Disk

: Worker : =
8 3

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHUFFLE PHASE

S : Worker :
] 3 3

™ i Worker : =
§ 3

g . Worker : 4

Stage n @ @ Stage n+1

Shared-Disk
$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

S : Worker :
] 3 3

™ i Worker : =
§ 3

o - Worker : 4

$2CMU-DB

15-445/645 (Fall 2024)

SHUFFLE PHASE

Shared-Disk

Stage n+1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SHUFFLE PHASE
EXCHANGE OPERATOR

Exchange Type #1 - Gather
— Combine the results from multiple workers
into a single output stream.

n W orker

Exchange Type #2 - Distribute

— Split a single input stream into multiple
output streams,

n W orker

Exchange Type #3 - Repartition

— Shuffle multiple inpyt Streams acrosg
multiple output streams,
5, . Workei — Some DBMSs always perform this step after
€very pipeline (e.g., Dremel/ BigQuery).

Source: Craig Freedman

$2CMU-DB

15-445/645 (Fa)) 2024}

Stage

Shared-Disk

£$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024/schedule.html#oct-23-2024

CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines

between shared-nothing and shared-disk.
— Example: You can do simple filtering on Amazon S3 before
copying data to compute nodes.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

CLOUD SYSTEMS

Approach #1: Managed DBMSs

— No significant modification to the DBMS to be "aware"
that it is running in a cloud environment.
— Examples: Most vendors

Approach #2: Cloud-Native DBMS

— System designed explicitly to run in a cloud environment.
— Usually based on a shared-disk architecture.
— Examples: Snowflake, Google BigQuery

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

= — ol S

Application
Server

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

oil S =2

| Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

([Storage |

e | @@
>

AR
I
2 « #% p

Application g
Server

$2CMU-DB . J

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

([Storage |

[Node | a Q
o

| Application) g

> Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

([Storage |

Buffer Pool
N Page Table a Q

>

o
| Application) g
> Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

([Storage |

| Application g
> Server

@

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Wolanetscale

§ CockroachDB ([Storage |
[1/ NEON

amazon S a Q
Y fauna

S — Application
& SQLAzure Server
$=CMU-DB

15-445/645 (Fall 2024)

Buffer Pool
Page Table

L J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATA LAKES

Repository for storing large amounts CREATE TABLE foo (...):
of structured, semi-structured, and

unstructured data without having to l
define a schema or ingest the data into ~Node

proprietary internal formats.

$2CMU-DB \ J

15-445/645 (Fall 2024)

(@

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATA LAKES

Repository for storing large amounts CREATE TABLE foo (...):

of structured, seml-s.tructured,.and T L e S
unstructured data without having to I

define a schema or ingest the data into ~Node

proprietary internal formats.

o

-“‘

Storage

BB

(((. P Thhd

OO
A A A A

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATA LAKES

Repository for storing large amounts CREATE TABLE foo (...):

of structured, seml-s.tructured,.and T L e S
unstructured data without having to I

define a schema or ingest the data into ~Node

proprietary internal formats.

o

-“‘

Stolage

S S

$2CMU-DB " y

15-445/645 (Fall 2024)

(((. P Thhd

OO
A A A A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to l
define a schema or ingest the data into ~Node

proprietary internal formats. %

SELECT * FROM foo

-“‘

[Stoiage

S S

$2CMU-DB \ J

15-445/645 (Fall 2024)

(((. P Thhd

OO
A A A A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and

unstructured data without having to l
define a schema or ingest the data into -

proprietary internal formats. :
g: = rnnnnnny #%
Y

SELECT * FROM foo

@

& Data Lake

Ehl

£2CMU-DB)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and

unstructured data without having to l
define a schema or ingest the data into r
proprietary internal formats.

SELECT * FROM foo

amazon Google r
gtran -REDSHIFT B;ggugry %

< databricks 34z snowflake presto =HIVE

$2CMU-DB G J

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

OLAP DBMS COMPONENTS

One recent trend of the last decade is the breakout
of OLAP DBMS components into standalone

services and libraries:

— System Catalogs

— Intermediate Representation
— Query Optimizers

— File Format / Access Libraries
— Execution Engines / Fabrics

Lots of engineering challenges to make these
components interoperable + performant.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

$2CMU-DB

15-445/645 (Fall 2024)

SYSTEM CATALOGS

A DBMS tracks a database's schema (table, columns)

and data files in its catalog.

— [f the DBMS is on the data ingestion path, then it can
maintain the catalog incrementally.

— [f an external process adds data files, then it also needs to
update the catalog so that the DBMS is aware of them.

Notable implementations:
— HCatalog

— Google Data Catalog

— Amazon Glue Data Catalog
— Databricks Unity

— Apache Iceberg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://www.databricks.com/product/unity-catalog
https://iceberg.apache.org/concepts/catalog/

SYSTEM C it

A DBMS tracks a database' Why Databricks Paid $1B for

and data files in its catalog.] Person startup (Tabular)
— If the DBMS is on the data if
maintain the catalog increm(
— If an external process adds d]
update the catalog so that thj

Notable implementations
— HCatalog
— Google Data Catalog

— Databricks Unity
— Apache Iceberg

$=CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://www.databricks.com/product/unity-catalog
https://iceberg.apache.org/concepts/catalog/
https://www.definite.app/blog/databricks-tabular-acquisition

QUERY OPTIMIZERS

Extendible search engine framework for heuristic-

and cost-based query optimization.
— DBMS provides transformation rules and cost estimates.
— Framework returns either a logical or physical query plan.

Notable implementations:
— Greenplum Orca
— Apache Calcite

This is what 15-799 will cover next semester!

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
https://15799.courses.cs.cmu.edu/spring2025/

DATA FILE FORMATS

Most DBMSs use a proprietary on-disk binary file

format for their databases.
— Think of the BusTub page types...

The only way to share data between systems is to

convert data into a common text-based format
— Examples: CSV, JSON, XML

There are new open-source binary file formats that
make it easier to access data across systems.

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

DATA FILE FORMATS

Apache Parquet

— Compressed columnar storage from
Cloudera/Twitter

Apache ORC

— Compressed columnar storage from
Apache Hive.

Apache CarbonData

— Compressed columnar storage with
indexes from Huawei.

$2CMU-DB

15-445/645 (Fall 2024)

Apache Iceberg

— Flexible data format that supports
schema evolution from Netflix.

HDF5

— Multi-dimensional arrays for
scientific workloads.

Apache Arrow

— In-memory compressed columnar
storage from Pandas/Dremio.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/

DATA FILE

Xinyu Zen, Yulong Hyi Jiahong Shen
yu g g g

Tsinghua University Tsinghua University Tsinghua Universiy
ZEnE-Xy2L@umails tsinghug e dy e BUi120@mails. tsinghug oy, cn shen-h206 mails tsinghuyy ey o
Andrew Paylg Wes McKinney Huanchen Zhang*
Carnegie Mellon 17, iversity Voltron Datg Tsinghua University
Pavio@es cmuy edy wesi@dvoltrondata eopy huanchengy. singhua edy e
e Parq uet ABSTRACT 5], Inpala [16], Spark [20, 113}, and Presyy 19,95, In Fespond 1o
A a C Colummar storage iy 4 cope o, PoRet of a tnodern data apalyie the petabytes of daga generaled per day and e Erowing demand for
a e ro m Systemn. Although many databage Management systens (DBASs) large-seale daga analytics. To facilitype data sharing acrogg the varj-
n ar S t O r g have propuietury storage frgrs fmost provide extensive support 1o ous Hadoop-based query engips, Yendors propused open-sousee
e C O um OPER-SOUFCE Storage formaps Sueh a5 Parquet apg ORC 1o facilitate colunnar storage fonmats {17, 17, 18, 76). represented by Parquer
(O m r e S S X905 DIalTorsn data sharing, B s formats wete developed oyen 2 ORC, that have beconse e facto Standard for gags storage in
—> 2 decade o, in the carly 70104, for the Hadoop ecosysan simn {0day’s data warehouses and ary lakes (14, 15, 19, 20, 39, 3, 61],
. then, otk the hardhvare g g Hoad landscapes hye changed These formats, however, were developed more thar deenge ago
I Wltte r 1 1his paper, we revisit the ppges el adopted spen-source The hargigarr landscape has changed siuce e, Persistent stor.
1 O u e r a columbar storage fomar, Parquet and ORC) wigh deep dive ingo. “B Performance has iy oye by oeders of tagnitude, aghe ving
thel inteendls, We designe o benchmarl 1o dregg gy e formats’ gigabytes per sepquyg 48] Meamsbile,the rise of g1y lakes means
Perforinunce and gpocos iclency under differen yorg loadconfig- more columm-arienged files seside: in chesp cloud ypopy e fe g, AWS
Srations From oue comprepe pgiye “valuation of Parguey ang ORC, S3[7]. Azure Blob Storage [24), Google Claud Stotage (33]), whicl
e Wentify design decisiong aygy 90U With moders hanyaye b both Kigh bandwig g highlatency, On thy software side,
and real-warld dayy distributions. Thege include usiog dictionary A numher urmwhg}uwelg}u COmpression schemes [57, 65,87, 1],
a C encoding by defuly, favoring decoding speed over compression as well as indexing and Hitering techniques [77, g5 101, 215], have
e ro I I I “atio for integer eneoding algoriths, making block compressios, been proposed in acadernia, whie CXISUEE open colummar formag
ar S t O r ag sptioral, and embedding finer-geage duxiliary data structures, are based gp DBMS methods from the g, (56),
d CO um n We also point ot ghe inefficiencies in the foppg designs when Fior studies on storage formay focus on measuring the cng.
m r e S S e handling common gy, e learning socklnads apg using GPUs 1o-end performance of Hadoop-based query COEINEs {72, §0] They
—_—> O for decoding, Our anaysi entified important copg iderations thay il anlyze the desigy decisions and their trade-ofr, Morcover,
. Y guide fture focimats 15 ey gy wodemn teehnlagy rends they use synthetic workjogge that do ot consider skewey data
disteibutions observed i (e el World [109) Such dary gy op
Ch e H].Ve . PVLDB Reference Formar: less suitable for stotage forma benchynggd, ing.
p a Kiny Zeng, Yilong Huj, Jialieng Shen, Andrey, Pavlo, Wes Melinmey, The goal of this PAPEC s o analyse COMmOn columnar filg for-
Huanchen Zhang. An Empirical Evaluation of Catumnar Starage Formats, mats and 1o identify deg 81 considerations o Provide insights for
PYLDE, 1712): 145 161, 2023, devalnpmg BeXt-generation column-oriepted sterage formats, We
b n D a t a B0it 1014778366209 35 704 created abenchmark swith predefipad workloads whose configur.
tions were extracted from a collection of real-world dagy sels. We
C h e C a r O . PVLDB Artifact Availabitiy: then pecformed a compreeniy analysis for the major compp
p th The source code, data, mdmrodwurf:furx{uvchu-n made availghle o ReBls in Parguet ang ORC, mdumgmm“gx‘bhﬂ compression,
1 ar S t O r ag e Wl hips b o Xinyzeng v tyaono g cluronarformars eladata ot ganization,indexing gy filtering, and nested data g
n eling. In particular, e ivestigated bow efficiently g columnar
r e S S e d C O um ! INTRODUCTION OGS SUDOL Comaon mach g fog 0 Workloads and whetfyer
_) O mp Columnar starage has beey widely adopred for gagg analytics he- taeir designs are rien) Y10 GPUS We detail the Jesgo g learned iy

caise of jtg advantages, quel s Irelevant abtrjpyre skipping, effi- Seetion 6 and g
clent dala compression, ang veelorized guery Processing [55, 59, 63 First, there is no clege “innes between Parquet ang ORC in
In the early 26105, Oiganizations developed dapy Processing engineg format efficien,
for the Opensource big qagy ecosystem [13], induding Hiye (13,

indexes from Huaweli.

_—
Fhis work is licensed unde e Lreative Commons BN 4 Brternations]

Lo w“hu’m‘_._m“mmmmwvh‘_my,"y_m» A 1 v 3 oot s tmore effective in selectigy Pruning due to the finer franularity
Pk Becise For vy e byt s il by Ui e, cbtai peryrn by ©F s 20m8 maps a ype of Sparse index)

;WJMx in{tzﬁvklm-s Copyrightis ek by theawnes authar) Publication right Second, most columng in req). world data serg have a smal) hum-
licensed to the yi g L

e . . -
raceedings of the Vi fog ement, Vol 17, No. 2 1SN 2150-a997 ber of distiner vafyes (or low "NDV eatigs defined in Sectiop 4 1),
m-wmmxa@zﬂz 3526298

—_—
Hurhen Zhiang i 1so it wig, Steanghai (4 2hi Institute

£$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://doi.org/10.14778/3626292.3626298

EXECUTION ENGINES

Standalone libraries for executing vectorized query

operators on columnar data.
— Input is a DAG of physical operators.
— Require external scheduling and orchestration.

Notable implementations:
— Velox

— DataFusion
— Intel OAP

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/

CONCLUSION

The cloud has made the distributed OLAP DBMS
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems...

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

NEXT CLASS

Final Review

15-721 in a single lecture!

$2CMU-DB

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Distributed OLAP Databases
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS

	ETL
	Slide 4: BIFURCATED ENVIRONMENT
	Slide 5: BIFURCATED ENVIRONMENT
	Slide 6: BIFURCATED ENVIRONMENT
	Slide 7: DECISION SUPPORT SYSTEMS
	Slide 8: STAR SCHEMA
	Slide 9: SNOWFLAKE SCHEMA
	Slide 10: STAR VS. SNOWFLAKE SCHEMA
	Slide 11: PROBLEM SETUP
	Slide 12: PROBLEM SETUP
	Slide 13: TODAY'S AGENDA

	Execution Models
	Slide 14: DISTRIBUTED QUERY EXECUTION
	Slide 15: DISTRIBUTED QUERY EXECUTION
	Slide 16: DISTRIBUTED QUERY EXECUTION
	Slide 17: DISTRIBUTED QUERY EXECUTION
	Slide 18: DISTRIBUTED QUERY EXECUTION
	Slide 19: DISTRIBUTED QUERY EXECUTION
	Slide 20: DISTRIBUTED QUERY EXECUTION
	Slide 21: DATA CATEGORIES
	Slide 22: DISTRIBUTED SYSTEM ARCHITECTURE
	Slide 23: PUSH VS. PULL
	Slide 24: PUSH VS. PULL
	Slide 25: PUSH VS. PULL
	Slide 26: PUSH QUERY TO DATA
	Slide 27: PULL DATA TO QUERY
	Slide 28: PULL DATA TO QUERY
	Slide 29: PULL DATA TO QUERY
	Slide 30: OBSERVATION
	Slide 31: QUERY FAULT TOLERANCE
	Slide 32: QUERY FAULT TOLERANCE
	Slide 33: QUERY FAULT TOLERANCE

	Query Planning
	Slide 34: QUERY PLANNING
	Slide 35: QUERY PLAN FRAGMENTS
	Slide 36: QUERY PLAN FRAGMENTS
	Slide 37: QUERY PLAN FRAGMENTS

	Distributed Join Algorithms
	Slide 38: OBSERVATION
	Slide 39: DISTRIBUTED JOIN ALGORITHMS
	Slide 40: SCENARIO #1
	Slide 41: SCENARIO #1
	Slide 42: SCENARIO #1
	Slide 43: SCENARIO #2
	Slide 44: SCENARIO #2
	Slide 45: SCENARIO #3 – BROADCAST JOIN
	Slide 46: SCENARIO #3 – BROADCAST JOIN
	Slide 47: SCENARIO #3 – BROADCAST JOIN
	Slide 48: SCENARIO #3 – BROADCAST JOIN
	Slide 49: SCENARIO #4 – SHUFFLE JOIN
	Slide 50: SCENARIO #4 – SHUFFLE JOIN
	Slide 51: SCENARIO #4 – SHUFFLE JOIN
	Slide 52: SCENARIO #4 – SHUFFLE JOIN
	Slide 53: SCENARIO #4 – SHUFFLE JOIN
	Slide 54: SCENARIO #4 – SHUFFLE JOIN
	Slide 55: SCENARIO #4 – SHUFFLE JOIN
	Slide 56: SEMI-JOIN OPTIMIZATION
	Slide 57: SEMI-JOIN OPTIMIZATION
	Slide 58: SEMI-JOIN OPTIMIZATION
	Slide 59: SEMI-JOIN OPTIMIZATION
	Slide 60: SEMI-JOIN OPTIMIZATION

	Shuffle
	Slide 61: OBSERVATION
	Slide 62: SHUFFLE PHASE
	Slide 63: SHUFFLE PHASE
	Slide 64: SHUFFLE PHASE
	Slide 65: SHUFFLE PHASE
	Slide 66: SHUFFLE PHASE
	Slide 67: SHUFFLE PHASE

	Cloud Systems
	Slide 68: CLOUD SYSTEMS
	Slide 69: CLOUD SYSTEMS
	Slide 70: SERVERLESS DATABASES
	Slide 71: SERVERLESS DATABASES
	Slide 72: SERVERLESS DATABASES
	Slide 73: SERVERLESS DATABASES
	Slide 74: SERVERLESS DATABASES
	Slide 75: SERVERLESS DATABASES
	Slide 76: SERVERLESS DATABASES
	Slide 77: DATA LAKES
	Slide 78: DATA LAKES
	Slide 79: DATA LAKES
	Slide 80: DATA LAKES
	Slide 81: DATA LAKES
	Slide 82: DATA LAKES
	Slide 83: OLAP DBMS COMPONENTS
	Slide 84: SYSTEM CATALOGS
	Slide 85: SYSTEM CATALOGS
	Slide 86: QUERY OPTIMIZERS
	Slide 87: DATA FILE FORMATS
	Slide 88: DATA FILE FORMATS
	Slide 89: DATA FILE FORMATS
	Slide 90: EXECUTION ENGINES

	Conclusion
	Slide 91: CONCLUSION
	Slide 92: NEXT CLASS

