
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Distributed
OLAP Databases

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ADMINISTRIVIA

DBMS Potpourri Lecture on Wednesday Dec 4th

Project #4 is due Sunday Dec 8th @ 11:59pm

Homework #6 is due Monday Dec 9th @ 11:59pm

Final Exam is on Friday Dec 13th @ 8:30am
→ Early exam will not be offered.
→ Study guide will be released tomorrow.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

UPCOMING DATABASE TALKS

OpenDAL / DataBend (DB Seminar)
→ Monday Dec 2nd @ 4:30pm
→ Zoom

GreptimeDB (DB Seminar)
→ Monday Dec 9th @ 4:30pm
→ Zoom

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://db.cs.cmu.edu/events/building-blocks-apache-opendal-databend-xuanwo/
https://db.cs.cmu.edu/events/building-blocks-greptimedb-ruihang-xia/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIFURCATED ENVIRONMENT

Extract
Transform
Load

OLAP DatabaseOLTP Databases

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIFURCATED ENVIRONMENT

Extract
Transform
Load

OLAP DatabaseOLTP Databases

5

Extract
Load
Transform

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIFURCATED ENVIRONMENT

Extract
Transform
Load

OLAP DatabaseOLTP Databases

6

Extract
Load

Transform

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DECISION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

STAR SCHEMA

CATEGORY_NAME
CATEGORY_DESC
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_CODE
STATE_NAME
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_NUM
MONTH_NAME
DAY_OF_MONTH

TIME_DIM

SALES_FACT
PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SNOWFLAKE SCHEMA

CATEGORY_FK
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_FK
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_FK
DAY_OF_MONTH

TIME_DIM

SALES_FACT
PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

CAT_LOOKUP

STATE_ID
STATE_CODE
STATE_NAME

STATE_LOOKUP
MONTH_NUM
MONTH_NAME
MONTH_SEASON

MONTH_LOOKUP

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization
→ Snowflake schemas take up less storage space.
→ Denormalized data models may incur integrity and

consistency violations.

Issue #2: Query Complexity
→ Snowflake schemas require more joins to get the data

needed for a query.
→ Queries on star schemas will (usually) be faster.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

P3 P4

P1 P2

PROBLEM SETUP

Application
Server

PartitionsSELECT * FROM R JOIN S
 ON R.id = S.id

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

P3 P4

P1 P2

PROBLEM SETUP

Application
Server

PartitionsSELECT * FROM R JOIN S
 ON R.id = S.id

P2
P4
P3

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TODAY'S AGENDA

Execution Models

Query Planning

Distributed Join Algorithms

Cloud Systems

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISTRIBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS is
roughly the same as on a single-node DBMS.
→ Query plan is a DAG of physical operators.

For each operator, the DBMS considers where
input is coming from and where to send output.
→ Table Scans
→ Joins
→ Aggregations
→ Sorting

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISTRIBUTED QUERY EXECUTION

12

⋮

Worker Nodes

Persistent Data

Persistent Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISTRIBUTED QUERY EXECUTION

12

Intermediate
Data

Intermediate
Data

⋮

Worker Nodes

Persistent Data

Persistent Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISTRIBUTED QUERY EXECUTION

12

⋮

Shuffle Nodes
(Optional)

Intermediate
Data

Intermediate
Data

⋮

Worker Nodes

Persistent Data

Persistent Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISTRIBUTED QUERY EXECUTION

12

⋮

Shuffle Nodes
(Optional)

Intermediate
Data

Intermediate
Data

⋮

Worker Nodes

⋮

Worker Nodes

Persistent Data

Persistent Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISTRIBUTED QUERY EXECUTION

12

⋮

Shuffle Nodes
(Optional)

Intermediate
Data

Intermediate
Data

⋮

Worker Nodes

⋮

Worker Nodes

Persistent Data

Persistent Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISTRIBUTED QUERY EXECUTION

12

⋮

Shuffle Nodes
(Optional)

Intermediate
Data

Intermediate
Data

⋮

Worker Nodes

⋮

Worker Nodes

Final
Result

Persistent Data

Persistent Data

Scheduler /
Coordinator

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA CATEGORIES

Persistent Data:
→ The "source of record" for the database (e.g., tables).
→ Modern systems assume that these data files are immutable

but can support updates by rewriting them.

Intermediate Data:
→ Short-lived artifacts produced by query operators during

execution and then consumed by other operators.
→ The amount of intermediate data that a query generates

has little to no correlation to amount of persistent data that
it reads or the execution time.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISTRIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
the location of the database's data files. This affects
how nodes coordinate with each other and where
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
→ Push Query to Data
→ Pull Data to Query

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PUSH VS. PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of it) to the node that

contains the data.
→ Perform as much filtering and processing as possible where

data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query that

needs it for processing.
→ This is necessary when there is no compute resources

available where database files are located.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PUSH VS. PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of it) to the node that

contains the data.
→ Perform as much filtering and processing as possible where

data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query that

needs it for processing.
→ This is necessary when there is no compute resources

available where database files are located.

15
Text

Description automatically generated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PUSH VS. PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of it) to the node that

contains the data.
→ Perform as much filtering and processing as possible where

data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query that

needs it for processing.
→ This is necessary when there is no compute resources

available where database files are located.

15
Text

Description automatically generated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://learn.microsoft.com/en-us/rest/api/storageservices/query-blob-contents

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PUSH QUERY TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

R ⨝ S
IDs [101,200] Result: R ⨝ S

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Storage

PULL DATA TO QUERY

Node

Application
Server Node

Page ABC

Page XYZ

R ⨝ S
IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Storage

PULL DATA TO QUERY

Node

Application
Server Node

Page ABC

Page XYZ

R ⨝ S
IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Storage

PULL DATA TO QUERY

Node

Application
Server Node

R ⨝ S
IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

Result: R ⨝ S

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

The data that a node receives from remote sources
are cached in the buffer pool.
→ This allows the DBMS to support intermediate results that

are large than the amount of memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs are
designed to assume that nodes do not fail during
query execution.
→ If one node fails during query execution, then the whole

query fails.

The DBMS could take a snapshot of the
intermediate results for a query during execution to
allow it to recover if nodes fail.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Storage

QUERY FAULT TOLERANCE

Node

Application
Server Node

R ⨝ S

SELECT * FROM R JOIN S
 ON R.id = S.id

Result: R ⨝ S

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Storage

QUERY FAULT TOLERANCE

Node

Application
Server Node

SELECT * FROM R JOIN S
 ON R.id = S.id Result: R ⨝ S

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

QUERY PLANNING

All the optimizations that we talked about before
are still applicable in a distributed environment.
→ Predicate Pushdown
→ Projection Pushdown
→ Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

QUERY PLAN FRAGMENTS

Approach #1: Physical Operators
→ Generate a single query plan and then break it up into

partition-specific fragments.
→ Most systems implement this approach.

Approach #2: SQL
→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ SingleStore + Vitess are the only systems we know that use

this approach.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.singlestore.com/
https://vitess.io/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
 ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 201 AND 300

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
 ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 201 AND 300

Union the output of
each join to produce

final result.

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single
node and then perform the join.
→ You lose the parallelism of a distributed DBMS.
→ Costly data transfer over the network.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we discussed
earlier in the semester.
→ Need to produce the correct answer as if all the data is

located in a single node system.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #1

The entire copy of one data set is
replicated at every node.
→ Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
 ON R.id = S.id

40

Partition Key

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #1

The entire copy of one data set is
replicated at every node.
→ Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
 ON R.id = S.id

P1:R⨝S P2:R⨝S

41

Partition Key

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #1

The entire copy of one data set is
replicated at every node.
→ Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
 ON R.id = S.id

P1:R⨝S

P2:R⨝S
R⨝S

42

Partition Key

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #2

Both data sets are partitioned on the
join attribute. Each node performs the
join on local data and then sends to a
coordinator node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #2

Both data sets are partitioned on the
join attribute. Each node performs the
join on local data and then sends to a
coordinator node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

P1:R⨝S

P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S

SELECT * FROM R JOIN S
 ON R.id = S.id

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

SELECT * FROM R JOIN S
 ON R.id = S.id

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

P1:R⨝S

P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

SELECT * FROM R JOIN S
 ON R.id = S.id

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S P2:R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

54

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S

P2:R⨝S
R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SEMI-JOIN OPTIMIZATION

Before pulling data from another node,
send a semi-join filter to reduce data
movement.
→ Perform a join on the bare minimum data

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

56

Fact Dim

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SEMI-JOIN OPTIMIZATION

Before pulling data from another node,
send a semi-join filter to reduce data
movement.
→ Perform a join on the bare minimum data

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

57

Fact Dim

Dimsemi = Πid (σzip = 15213 Dim)

Dimsemi

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SEMI-JOIN OPTIMIZATION

Before pulling data from another node,
send a semi-join filter to reduce data
movement.
→ Perform a join on the bare minimum data

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

58

Fact Dim

Dimsemi = Πid (σzip = 15213 Dim)

Dimsemi

F-small = Fact ⋈ Dimsemi

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SEMI-JOIN OPTIMIZATION

Before pulling data from another node,
send a semi-join filter to reduce data
movement.
→ Perform a join on the bare minimum data

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

59

Fact Dim

Dimsemi = Πid (σzip = 15213 Dim)

Dimsemi

F-small = Fact ⋈ Dimsemi

Factsmall

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SEMI-JOIN OPTIMIZATION

Before pulling data from another node,
send a semi-join filter to reduce data
movement.
→ Perform a join on the bare minimum data

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

60

Fact Dim

Factsmall

Result = Πprice(Dim ⋈ Factsmall)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OBSERVATION

Direct communication between compute nodes
means the DBMS knows which nodes will
participate in query execution ahead of time.

But data skew can cause imbalances…

A better approach is to dynamically adjust compute
resources on the fly as a query executes.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SHUFFLE PHASE

Redistribute of intermediate data
across nodes between query plan
pipelines.
→ Can repartition / rebalance data based on

observed data characteristics.

Some DBMSs support standalone
fault-tolerant shuffle services.
→ Example: You can replace Spark's built-in

in-memory shuffle implementation or
replace it with a separate service.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SHUFFLE PHASE

33

Stage n

Shared-Disk

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Shuffle Nodes
hash1(key) % n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SHUFFLE PHASE

33

Stage n

Shared-Disk

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Shuffle Nodes

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

hash1(key) % n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SHUFFLE PHASE

33

Stage n

Shared-Disk

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Shuffle Nodes

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

hash1(key) % n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SHUFFLE PHASE

33

Stage n

Shared-Disk

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Shuffle Nodes

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

hash1(key) % n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SHUFFLE PHASE

33

Stage n

Shared-Disk

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Shuffle Nodes

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

hash1(key) % n

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024/schedule.html#oct-23-2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines
between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3 before

copying data to compute nodes.

68

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CLOUD SYSTEMS

Approach #1: Managed DBMSs
→ No significant modification to the DBMS to be "aware"

that it is running in a cloud environment.
→ Examples: Most vendors

Approach #2: Cloud-Native DBMS
→ System designed explicitly to run in a cloud environment.
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery

69

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

70

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

71

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

Storage

72

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

Storage

73

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

Storage
Buffer Pool
Page Table

74

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Storage

75

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

Storage

Buffer Pool
Page Table

76

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

CREATE TABLE foo (...);

77

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);

78

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);

79

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

SELECT * FROM foo

80

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Data Lake

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Node

SELECT * FROM foo

81

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Data Lake

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Node

SELECT * FROM foo

82

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OLAP DBMS COMPONENTS

One recent trend of the last decade is the breakout
of OLAP DBMS components into standalone
services and libraries:
→ System Catalogs
→ Intermediate Representation
→ Query Optimizers
→ File Format / Access Libraries
→ Execution Engines / Fabrics

Lots of engineering challenges to make these
components interoperable + performant.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SYSTEM CATALOGS

HCatalog

Google Data Catalog

Amazon Glue Data Catalog

Databricks Unity

Apache Iceberg

A DBMS tracks a database's schema (table, columns)
and data files in its catalog.
→ If the DBMS is on the data ingestion path, then it can

maintain the catalog incrementally.
→ If an external process adds data files, then it also needs to

update the catalog so that the DBMS is aware of them.

Notable implementations:
→ HCatalog
→ Google Data Catalog
→ Amazon Glue Data Catalog
→ Databricks Unity
→ Apache Iceberg

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://www.databricks.com/product/unity-catalog
https://iceberg.apache.org/concepts/catalog/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SYSTEM CATALOGS

HCatalog

Google Data Catalog

Amazon Glue Data Catalog

Databricks Unity

Apache Iceberg

A DBMS tracks a database's schema (table, columns)
and data files in its catalog.
→ If the DBMS is on the data ingestion path, then it can

maintain the catalog incrementally.
→ If an external process adds data files, then it also needs to

update the catalog so that the DBMS is aware of them.

Notable implementations:
→ HCatalog
→ Google Data Catalog
→ Amazon Glue Data Catalog
→ Databricks Unity
→ Apache Iceberg

39
2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://www.databricks.com/product/unity-catalog
https://iceberg.apache.org/concepts/catalog/
https://www.definite.app/blog/databricks-tabular-acquisition

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

QUERY OPTIMIZERS

Greenplum Orca

Apache Calcite

15-79

Extendible search engine framework for heuristic-
and cost-based query optimization.
→ DBMS provides transformation rules and cost estimates.
→ Framework returns either a logical or physical query plan.

Notable implementations:
→ Greenplum Orca
→ Apache Calcite

This is what 15-799 will cover next semester!

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
https://15799.courses.cs.cmu.edu/spring2025/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA FILE FORMATS

Most DBMSs use a proprietary on-disk binary file
format for their databases.
→ Think of the BusTub page types…

The only way to share data between systems is to
convert data into a common text-based format
→ Examples: CSV, JSON, XML

There are new open-source binary file formats that
make it easier to access data across systems.

87

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA FILE FORMATS

Apache Parquet

Apache ORC

Apache CarbonData

Apache Parquet
→ Compressed columnar storage from

Cloudera/Twitter

Apache ORC
→ Compressed columnar storage from

Apache Hive.

Apache CarbonData
→ Compressed columnar storage with

indexes from Huawei.

42

Apache Iceberg

Apache Iceberg
→ Flexible data format that supports

schema evolution from Netflix.

HDF5
→ Multi-dimensional arrays for

scientific workloads.

Apache Arrow
→ In-memory compressed columnar

storage from Pandas/Dremio.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATA FILE FORMATS

Apache Parquet

Apache ORC

Apache CarbonData

Apache Parquet
→ Compressed columnar storage from

Cloudera/Twitter

Apache ORC
→ Compressed columnar storage from

Apache Hive.

Apache CarbonData
→ Compressed columnar storage with

indexes from Huawei.

42

Apache Iceberg

Apache Iceberg
→ Flexible data format that supports

schema evolution from Netflix.

HDF5
→ Multi-dimensional arrays for

scientific workloads.

Apache Arrow
→ In-memory compressed columnar

storage from Pandas/Dremio.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://doi.org/10.14778/3626292.3626298

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

EXECUTION ENGINES

Standalone libraries for executing vectorized query
operators on columnar data.
→ Input is a DAG of physical operators.
→ Require external scheduling and orchestration.

Notable implementations:
→ Velox
→ DataFusion
→ Intel OAP

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCLUSION

The cloud has made the distributed OLAP DBMS
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems…

91

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

NEXT CLASS

Final Review

15-721 in a single lecture!

92

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Distributed OLAP Databases
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS

	ETL
	Slide 4: BIFURCATED ENVIRONMENT
	Slide 5: BIFURCATED ENVIRONMENT
	Slide 6: BIFURCATED ENVIRONMENT
	Slide 7: DECISION SUPPORT SYSTEMS
	Slide 8: STAR SCHEMA
	Slide 9: SNOWFLAKE SCHEMA
	Slide 10: STAR VS. SNOWFLAKE SCHEMA
	Slide 11: PROBLEM SETUP
	Slide 12: PROBLEM SETUP
	Slide 13: TODAY'S AGENDA

	Execution Models
	Slide 14: DISTRIBUTED QUERY EXECUTION
	Slide 15: DISTRIBUTED QUERY EXECUTION
	Slide 16: DISTRIBUTED QUERY EXECUTION
	Slide 17: DISTRIBUTED QUERY EXECUTION
	Slide 18: DISTRIBUTED QUERY EXECUTION
	Slide 19: DISTRIBUTED QUERY EXECUTION
	Slide 20: DISTRIBUTED QUERY EXECUTION
	Slide 21: DATA CATEGORIES
	Slide 22: DISTRIBUTED SYSTEM ARCHITECTURE
	Slide 23: PUSH VS. PULL
	Slide 24: PUSH VS. PULL
	Slide 25: PUSH VS. PULL
	Slide 26: PUSH QUERY TO DATA
	Slide 27: PULL DATA TO QUERY
	Slide 28: PULL DATA TO QUERY
	Slide 29: PULL DATA TO QUERY
	Slide 30: OBSERVATION
	Slide 31: QUERY FAULT TOLERANCE
	Slide 32: QUERY FAULT TOLERANCE
	Slide 33: QUERY FAULT TOLERANCE

	Query Planning
	Slide 34: QUERY PLANNING
	Slide 35: QUERY PLAN FRAGMENTS
	Slide 36: QUERY PLAN FRAGMENTS
	Slide 37: QUERY PLAN FRAGMENTS

	Distributed Join Algorithms
	Slide 38: OBSERVATION
	Slide 39: DISTRIBUTED JOIN ALGORITHMS
	Slide 40: SCENARIO #1
	Slide 41: SCENARIO #1
	Slide 42: SCENARIO #1
	Slide 43: SCENARIO #2
	Slide 44: SCENARIO #2
	Slide 45: SCENARIO #3 – BROADCAST JOIN
	Slide 46: SCENARIO #3 – BROADCAST JOIN
	Slide 47: SCENARIO #3 – BROADCAST JOIN
	Slide 48: SCENARIO #3 – BROADCAST JOIN
	Slide 49: SCENARIO #4 – SHUFFLE JOIN
	Slide 50: SCENARIO #4 – SHUFFLE JOIN
	Slide 51: SCENARIO #4 – SHUFFLE JOIN
	Slide 52: SCENARIO #4 – SHUFFLE JOIN
	Slide 53: SCENARIO #4 – SHUFFLE JOIN
	Slide 54: SCENARIO #4 – SHUFFLE JOIN
	Slide 55: SCENARIO #4 – SHUFFLE JOIN
	Slide 56: SEMI-JOIN OPTIMIZATION
	Slide 57: SEMI-JOIN OPTIMIZATION
	Slide 58: SEMI-JOIN OPTIMIZATION
	Slide 59: SEMI-JOIN OPTIMIZATION
	Slide 60: SEMI-JOIN OPTIMIZATION

	Shuffle
	Slide 61: OBSERVATION
	Slide 62: SHUFFLE PHASE
	Slide 63: SHUFFLE PHASE
	Slide 64: SHUFFLE PHASE
	Slide 65: SHUFFLE PHASE
	Slide 66: SHUFFLE PHASE
	Slide 67: SHUFFLE PHASE

	Cloud Systems
	Slide 68: CLOUD SYSTEMS
	Slide 69: CLOUD SYSTEMS
	Slide 70: SERVERLESS DATABASES
	Slide 71: SERVERLESS DATABASES
	Slide 72: SERVERLESS DATABASES
	Slide 73: SERVERLESS DATABASES
	Slide 74: SERVERLESS DATABASES
	Slide 75: SERVERLESS DATABASES
	Slide 76: SERVERLESS DATABASES
	Slide 77: DATA LAKES
	Slide 78: DATA LAKES
	Slide 79: DATA LAKES
	Slide 80: DATA LAKES
	Slide 81: DATA LAKES
	Slide 82: DATA LAKES
	Slide 83: OLAP DBMS COMPONENTS
	Slide 84: SYSTEM CATALOGS
	Slide 85: SYSTEM CATALOGS
	Slide 86: QUERY OPTIMIZERS
	Slide 87: DATA FILE FORMATS
	Slide 88: DATA FILE FORMATS
	Slide 89: DATA FILE FORMATS
	Slide 90: EXECUTION ENGINES

	Conclusion
	Slide 91: CONCLUSION
	Slide 92: NEXT CLASS

