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ADMINISTRIVIA

DBMS Potpourri Lecture on Wednesday Dec 4™
Project #4 is due Sunday Dec 8™ @ 11:59pm
Homework #6 is due Monday Dec 9" @ 11:59pm

Final Exam is on Friday Dec 13" @ 8:30am

— Early exam will not be offered.
— Study guide will be released tomorrow.
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UPCOMING DATABASE TALKS

OpenDAL / DataBend (DB Seminar)
— Monday Dec 2™ @ 4:30pm
— Zoom

GreptimeDB (DB Seminar)
— Monday Dec 9" @ 4:30pm
— Zoom
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DECISION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema
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STAR SCHEMA
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SNOWFLAKE SCHEMA
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STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization

— Snowflake schemas take up less storage space.

— Denormalized data models may incur integrity and
consistency violations.

Issue #2: Query Complexity

— Snowflake schemas require more joins to get the data
needed for a query.

— Queries on star schemas will (usually) be faster.
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PROBLEM SETUP

SELECT * FROM R JOIN S
ON R.id = S.id
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PROBLEM SETUP

SELECT * FROM R JOIN S Partitions
ON R.id = S.id

Application
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TODAY'S AGENDA

Execution Models

Query Planning

Distributed Join Algorithms
Cloud Systems
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DISTRIBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS is

roughly the same as on a single-node DBMS.
— Query plan is a DAG of physical operators.

For each operator, the DBMS considers where

input is coming from and where to send output.
— Table Scans

— Joins

— Aggregations

— Sorting
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DISTRIBUTED QUERY EXECUTION

Persistent Data

W orker Nodes
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DISTRIBUTED QUERY EXECUTION
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Persistent Data

DISTRIBUTED QUERY EXECUTION
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DISTRIBUTED OUERY EXECUTION

Scheduler /
Coordinator

Shuffle Nodes W orker Nodes
(Optional)

4444444444444444444


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

DATA CATEGORIES

Persistent Data:

— The "source of record" for the database (e.g., tables).

— Modern systems assume that these data files are immutable
but can support updates by rewriting them.

Intermediate Data;

— Short-lived artifacts produced by query operators during
execution and then consumed by other operators.

— The amount of intermediate data that a query generates
has little to no correlation to amount of persistent data that
it reads or the execution time.
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DISTRIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
the location of the database's data files. This affects
how nodes coordinate with each other and where
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
— Push Query to Data
— Pull Data to Query
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PUSH VS. PULL

Approach #1: Push Query to Data

— Send the query (or a portion of it) to the node that
contains the data,

— Perform as much filtering and processing as possible where
data resides before transmitting over network.

Approach #2: Pull Data to Query

— Bring the data to the node that is executing a query that
needs it for processing.

— This is necessary when there is no compute resources
available where database files are located.
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PUSH QUERY TO DATA

SELECT * FROM R JOIN S

ON R.id = S.1id
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PULL DATA TO QUERY
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PULL DATA TO QUERY
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PULL DATA TO QUERY
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OBSERVATION

The data that a node receives from remote sources

are cached in the buffer pool.

— This allows the DBMS to support intermediate results that
are large than the amount of memory available.

— Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?
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QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs are
designed to assume that nodes do not fail during

query execution.

— If one node fails during query execution, then the whole
query fails.

The DBMS could take a snapshot of the

intermediate results for a query during execution to
allow it to recover if nodes fail.
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QUERY PLANNING

All the optimizations that we talked about before

are still applicable in a distributed environment.
— Predicate Pushdown

— Projection Pushdown

— Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.
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QUERY PLAN FRAGMENTS

Approach #1: Physical Operators

— Generate a single query plan and then break it up into
partition-specific fragments.

— Most systems implement this approach.

Approach #2: SQL

— Rewrite original query into partition-specific queries.

— Allows for local optimization at each node.

— SingleStore + Vitess are the only systems we know that use
this approach.
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QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
ON R.id = S.1id

:

Ill

b

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 101 AND 200

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 201 AND 300

id:1-100
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Union the output of
each join to produce

final ”e‘il;\rkOM R JOIN S
ON~\id = S.id

:

N FRAGMENTS

b

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 101 AND 200

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 201 AND 300

id:1-100
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OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single

node and then perform the join.
— You lose the parallelism of a distributed DBMS.
— Costly data transfer over the network.
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DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we discussed

earlier in the semester.
— Need to produce the correct answer as if all the data is
located in a single node system.
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The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key

SCENARIO #1

SELECT * FROM R JOIN S
ON R.id = S.1id

¥

id:1-100
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SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key

¥

id:1-100

Replicated

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
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SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key

¥

id:1-100

Replicated
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SCENARIO #2

Both data sets are partitioned on the

].o¥n attribute. Each node performs the SELECT * FROM R JOIN S
join on local data and then sends to a ON R.id = S.id

coordinator node for coalescing.

id:1-100 id:101-200

1d:101-200

id:1-100
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SCENARIO #2

Both data sets are partitioned on the

].o%n attribute. Each node performs the SELECT * FROM R JOIN S
join on local data and then sends to a ON R.id = S.id

coordinator node for coalescing.

id:1-100 id:101-200

1d:101-200

id:1-100
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SCENARIO #3 - BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

SCENARIO #3 - BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100
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SCENARIO #3 - BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100
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SCENARIO #3 - BROADCAST JOIN

Both data sets are partitioned on
different keys. If one oﬁ the data sets is SELECT * FROM R JOIN S
small, then the DBMS "broadcasts ON R.id = S.id

that data to all nodes.

e~

P2:RPXS

id:1-100 id:101-200

val:1-50 val:51-100
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SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

name:A-M

val:1-50

$2CMU-DB

15-445/645 (Fall 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

name:N-Z

val:51-100
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SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

name:A-M

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id
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SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

id:1-100

name:A-M

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

name:N-Z

val:51-100
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SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

id:1-100

name:A-M

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100
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SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

id:1-100 R{id}
id:1-100

name:A-M

L4
....

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100
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SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

SELECT * FROM R JOIN S
ON R.id = S.1id

id:1-100 R{id} R{id}
id:1-100

name:A-M

val:1-50
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SCENARIO #4 - SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally

deleted when the query is done. P1:RIXS

id:1-100 R{id} R{id}
id:1-100

name:A-M

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

=» N

id:101-200

id:101-200

name:N-Z

val:51-100
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SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [e5EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.1id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).
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SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [e5EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.1id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

Dim,, ;=114 (Gzip _ 15213 Dim)
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SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [e5EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.1id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

Dim,, ;=114 (Gzip _ 15213 Dim)

F-small = Fact X Dim

semi
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SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [e5EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.1id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

Fact : — ;
sl Dimg,,,.; =114 (Gzip _152i3 Dim)

F-small = Fact X Dim

semi
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SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [e5EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.1id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

Result =11 (Dim 4 FaCtsmall)

price
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OBSERVATION

Direct communication between compute nodes
means the DBMS knows which nodes will
participate in query execution ahead of time.

But data skew can cause imbalances...

A better approach is to dynamically adjust compute
resources on the fly as a query executes.
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SHUEFLE PHASE -

Redistribute of intermediate data Goodle ““”""AZ
across nodes between query plan @ Big ngry SpQr K
pipelines.

— Can repartition / rebalance data based on
observed data characteristics.

Some DBMSs support standalone

fault-tolerant shuffle services. APACHE
— Example: You can replace Spark's built-in C@I eborn
in-memory shuffle implementation or

replace it with a separate service. Qv Apache Uniffle
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SHUFFLE PHASE

e Shuffle Nodes

§ Worker % % i
] 3 3

: Worker : =
§ 3

g 1/
: Worker : &

Shared-Disk
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SHUFFLE PHASE

e Shuf ﬂe Nodes

§ Worker % % i
§ 3 \ : :
S 3

s -
, ‘ N : Worker : §
H 3 3
: Worker : 4

Stagen .............. @ @ Stage n+1

Shared-Disk

: Worker : =
8 3
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SHUFFLE PHASE

S : Worker :
] 3 3

™ i Worker : =
§ 3

g . Worker : 4

Stage n @ @ Stage n+1

Shared-Disk
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S : Worker :
] 3 3

™ i Worker : =
§ 3

o - Worker : 4

$2CMU-DB

15-445/645 (Fall 2024)

SHUFFLE PHASE

Shared-Disk

Stage n+1
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SHUFFLE PHASE
EXCHANGE OPERATOR

Exchange Type #1 - Gather
— Combine the results from multiple workers
into a single output stream.

n W orker

Exchange Type #2 - Distribute

— Split a single input stream into multiple
output streams,

n W orker

Exchange Type #3 - Repartition

— Shuffle multiple inpyt Streams acrosg
multiple output streams,
5, . Workei — Some DBMSs always perform this step after
€very pipeline (e.g., Dremel/ BigQuery).

Source: Craig Freedman
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CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines

between shared-nothing and shared-disk.
— Example: You can do simple filtering on Amazon S3 before
copying data to compute nodes.
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CLOUD SYSTEMS

Approach #1: Managed DBMSs

— No significant modification to the DBMS to be "aware"
that it is running in a cloud environment.
— Examples: Most vendors

Approach #2: Cloud-Native DBMS

— System designed explicitly to run in a cloud environment.
— Usually based on a shared-disk architecture.
— Examples: Snowflake, Google BigQuery
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

= — ol S

Application
Server
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

oil S =2

| Application
Server
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

([ Storage |

e | @@
>
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I
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Application g
Server
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

([ Storage |

[ Node | a Q
o

| Application ) g

> Server
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

([ Storage |

Buffer Pool
N Page Table a Q

>

o
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

([ Storage |

| Application g
> Server
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Wolanetscale

§ CockroachDB ([ Storage |
[ 1/ NEON

amazon S a Q
Y fauna

S — Application
& SQLAzure  Server
$=CMU-DB
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DATA LAKES

Repository for storing large amounts CREATE TABLE foo (...):
of structured, semi-structured, and

unstructured data without having to l
define a schema or ingest the data into ~Node

proprietary internal formats.
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DATA LAKES

Repository for storing large amounts CREATE TABLE foo (...):

of structured, seml-s.tructured,.and T L e S
unstructured data without having to I

define a schema or ingest the data into ~Node

proprietary internal formats.

o

-“‘

Storage

BB

(((. P Thhd

OO
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DATA LAKES

Repository for storing large amounts CREATE TABLE foo (...):

of structured, seml-s.tructured,.and T L e S
unstructured data without having to I

define a schema or ingest the data into ~Node

proprietary internal formats.

o
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to l
define a schema or ingest the data into ~Node

proprietary internal formats. %

SELECT * FROM foo

-“‘

[ Stoiage

S S
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and

unstructured data without having to l
define a schema or ingest the data into -

proprietary internal formats. :
g: = rnnnnnny #%
Y

SELECT * FROM foo

@

& Data Lake

Ehl
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and

unstructured data without having to l
define a schema or ingest the data into r
proprietary internal formats.

SELECT * FROM foo

amazon Google r
gtran -REDSHIFT B;ggugry %

< databricks 34z snowflake presto =HIVE
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OLAP DBMS COMPONENTS

One recent trend of the last decade is the breakout
of OLAP DBMS components into standalone

services and libraries:

— System Catalogs

— Intermediate Representation
— Query Optimizers

— File Format / Access Libraries
— Execution Engines / Fabrics

Lots of engineering challenges to make these
components interoperable + performant.
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SYSTEM CATALOGS

A DBMS tracks a database's schema (table, columns)

and data files in its catalog.

— [f the DBMS is on the data ingestion path, then it can
maintain the catalog incrementally.

— [f an external process adds data files, then it also needs to
update the catalog so that the DBMS is aware of them.

Notable implementations:
— HCatalog

— Google Data Catalog

— Amazon Glue Data Catalog
— Databricks Unity

— Apache Iceberg
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SYSTEM C it

A DBMS tracks a database' Why Databricks Paid $1B for

and data files in its catalog.] Person startup (Tabular)
— If the DBMS is on the data if
maintain the catalog increm(
— If an external process adds d]
update the catalog so that thj

Notable implementations
— HCatalog
— Google Data Catalog

— Databricks Unity
— Apache Iceberg
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QUERY OPTIMIZERS

Extendible search engine framework for heuristic-

and cost-based query optimization.
— DBMS provides transformation rules and cost estimates.
— Framework returns either a logical or physical query plan.

Notable implementations:
— Greenplum Orca
— Apache Calcite

This is what 15-799 will cover next semester!
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DATA FILE FORMATS

Most DBMSs use a proprietary on-disk binary file

format for their databases.
— Think of the BusTub page types...

The only way to share data between systems is to

convert data into a common text-based format
— Examples: CSV, JSON, XML

There are new open-source binary file formats that
make it easier to access data across systems.
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DATA FILE FORMATS

Apache Parquet

— Compressed columnar storage from
Cloudera/Twitter

Apache ORC

— Compressed columnar storage from
Apache Hive.

Apache CarbonData

— Compressed columnar storage with
indexes from Huawei.

$2CMU-DB
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Apache Iceberg

— Flexible data format that supports
schema evolution from Netflix.

HDF5

— Multi-dimensional arrays for
scientific workloads.

Apache Arrow

— In-memory compressed columnar
storage from Pandas/Dremio.
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EXECUTION ENGINES

Standalone libraries for executing vectorized query

operators on columnar data.
— Input is a DAG of physical operators.
— Require external scheduling and orchestration.

Notable implementations:
— Velox

— DataFusion
— Intel OAP
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CONCLUSION

The cloud has made the distributed OLAP DBMS
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems...
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NEXT CLASS

Final Review

15-721 in a single lecture!
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