
Lecture #10: Index Concurrency Control
15-445/645 Database Systems (Fall 2025)

https://15445.courses.cs.cmu.edu/fall2025/
Carnegie Mellon University

Andy Pavlo

1 Index Concurrency Control
So far, we assumed that the data structures we have discussed are single-threaded. However, most DBMSs
needs to allow multiple threads to safely access data structures to take advantage of additional CPU cores
and hide disk I/O stalls.
There are some systems that use a single-threaded model as some arguments say that it would be faster
without latching (e.g. Redis). Additionally, an easy way to convert a single-threaded data structure to a
multi-threaded one is to use a single read-write lock to guard the entire structure, but this is not an efficient
method.
A concurrency control protocol is the method that the DBMS uses to ensure “correct” results for concurrent
operations on a shared object from multiple workers. We use the term “workers” here to more generically
describemultiple concurrent accessors: someDBMSs use processes (e.g. Postgres) while others use threads,
etc.
A protocol’s correctness criteria can vary:

• Logical Correctness: This means that the worker is able to read values that it expects to read, e.g.
a thread should read back the value it had written previously.

• Physical Correctness: This means that the internal representation of the object is sound, e.g. there
are no pointers in the data structure that will cause a worker to read invalid memory locations.

For the purposes of this lecture, we only care about enforcing physical correctness. We will revisit logical
correctness in later lectures.

2 Locks vs. Latches
There is an important distinction between locks and latches when discussing how the DBMS protects its
internal elements.

Locks
A lock is a higher-level, logical primitive that protects the contents of a database (e.g., tuples, tables,
databases) from other transactions. Transactions will typically hold a lock for its entire duration. Database
systems can expose to the user the locks that are being held as queries are run. There should be some
higher-level mechanism to detect deadlocks and rollback changes.

Latches
Latches are the low-level protection primitives used for critical sections theDBMS’s internal data structures
(e.g., data structure, regions ofmemory) from other workers. Latches are held for a short period for a simple

https://15445.courses.cs.cmu.edu/fall2025/
https://15445.courses.cs.cmu.edu/fall2025/
https://www.cs.cmu.edu/~pavlo/


Fall 2025 – Lecture #10 Index Concurrency Control

operation in a database system (i.e., page latch). Unlike with locks, it is the worker’s responsibility to avoid
deadlocks / roll back changes (rather than another mechanism within the system).
There are two modes for latches:

• READ: Multiple workers are allowed to read the same item at the same time. A worker can acquire
the latch in read mode even if another thread has already acquired it in read mode.

• WRITE: Only one worker is allowed to access the item. A worker cannot acquire a write latch if
another thread holds the latch in any mode. A worker holding a write latch also prevents other
worker from acquiring a read latch.

3 Latch Implementations
There are some key goals we want to achieve when implementing latches:

• Small memory footprint (ideally measured in bytes)
• Fast execution path when there is no contention
• Decentralised management of latches
• Avoid expensive system calls

The underlying primitive that used to implement a latch is through atomic instructions that modern CPUs
provide. With this, a thread can check the contents of a memory location to see whether it has a certain
value.

• Atomic Instruction Example: compare-and-swap (CAS)
Atomic instruction that compares contents of a memory location M to a given value V

– If values are equal, installs new given value V’ in M
– Otherwise, operation fails

There are several approaches to implementing a latch in a DBMS. Each approach has different trade-offs
in terms of engineering complexity and runtime performance. These test-and-set steps are performed
atomically (i.e., no other thread can update the value in between the test and set steps.

Test-and-Set Spin Latch (TAS)
Spin latches are a more efficient alternative to an OS mutex as it is controlled by the DBMSs. A spin latch is
essentially a location in memory that threads try to update (e.g., setting a boolean value to true). A thread
performs CAS to attempt to update the memory location. The DBMS can control what happens if it fails to
get the latch. It can choose to try again (for example, using a while loop) or allow the OS to deschedule it.
Thus, this method gives the DBMS more control than the OS mutex, where failing to acquire a latch gives
control to the OS.

• Example: std::atomic<T>
• Advantages: Latch/unlatch operations are efficient (single instruction to lock/unlock on x86).
• Disadvantages: Not scalable nor cache-friendly because with multiple threads, the CAS instruc-
tions will be executed multiple times in different threads. These wasted instructions will pile up
in high contention environments; the threads look busy to the OS even though they are not doing
useful work. Furthermore, in a non-uniform memory architecture polling the memory location of
the latch may be especially expensive if it is located in the local cache/memory of another CPU.

15-445/645 Database Systems
Page 2 of 5

https://15445.courses.cs.cmu.edu/fall2025/


Fall 2025 – Lecture #10 Index Concurrency Control

Blocking OS Mutex
One possible implementation of latches is the OS built-in mutex infrastructure. Linux provides the futex
(fast user-space mutex), which is comprised of (1) a spin latch in user-space and (2) an OS-level mutex. If
the DBMS can acquire the user-space latch, then the latch is set. It appears as a single latch to the DBMS
even though it contains two internal latches. If the DBMS fails to acquire the user-space latch, then it goes
down into the kernel and tries to acquire a more expensive mutex. If the DBMS fails to acquire this second
mutex, the OS de-schedules the thread and notifies the thread when the mutex becomes available.
OS mutex is generally a bad idea inside of DBMSs as it is managed by OS and has large overhead.

• Example: std::mutex
• Advantages: Simple to use and requires no additional coding in DBMS.
• Disadvantages: Expensive and non-scalable (about 25 ns per lock/unlock invocation) because of
OS scheduling. OS has to do its own bookkeeping with its own latching to manage which threads
should be asleep / which shoud be notified.

Reader-Writer Latches
Mutexes and Spin Latches do not differentiate between reads/writes (i.e., they do not support different
modes). The DBMS needs a way to allow for concurrent reads, so if the application has heavy reads it will
have better performance because readers can share resources instead of waiting.
A Reader-Writer Latch allows a latch to be held in either read or write mode. It keeps track of how many
threads hold the latch and are waiting to acquire the latch in each mode. Reader-writer latches use one
of the previous two latch implementations as primitives and have additional logic to handle reader-writer
queues, which are queues requests for the latch in each mode. Different DBMSs can have different policies
for how it handles the queues.
One thing to notice is that different reader-writer lock implementations have different waiting policies.
There are reader-preferred, writer-preferred, and fair reader-writer locks. The behavior differs in different
operating systems and pthread implementations.

• Example: std::shared mutex
• Advantages: Allows for concurrent readers.
• Disadvantages: The DBMS has to manage read/write queues to avoid starvation. Larger storage
overhead than spin Latches due to additional meta-data.

4 Hash Table Latching
It is easy to support concurrent access in a static hash table due to the limited ways threads access the
data structure. For example, all threads move in the same direction when moving from slot to the next
(i.e., top-down). Threads also only access a single page/slot at a time. Thus, deadlocks are not possible in
this situation because no two threads could be competing for latches held by the other. When we need to
resize the table, we can just take a global latch on the entire table to perform the operation.
Latching in a dynamic hashing scheme (e.g., extendible) is a more complicated scheme because there is
more shared state to update, but the general approach is the same.
There are two approaches to support latching in a hash table that differ on the granularity of the latches:

• Page Latches: Each page/block has its own Reader-Writer latch that protects its entire contents.
Threads acquire either a read or write latch before they access a page. This decreases parallelism

15-445/645 Database Systems
Page 3 of 5

https://15445.courses.cs.cmu.edu/fall2025/


Fall 2025 – Lecture #10 Index Concurrency Control

because potentially only one thread can access a page at a time, but accessing multiple slots in a
page will be fast for a single thread because it only has to acquire a single latch.

• Slot Latches: Each slot has its own latch. This increases parallelism because two threads can access
different slots on the same page. But it increases the storage and computational overhead of accessing
the table because threads have to acquire a latch for every slot they access, and each slot has to store
data for the latches. The DBMS can use a single mode latch (i.e., Spin Latch) to reduce meta-data and
computational overhead at the cost of some parallelism.

It is also possible to create a latch-free linear probing hash table directly using compare-and-swap (CAS)
instructions. Insertion at a slot can be achieved by attempting to compare-and-swap a special “null” value
with the tuple we wish to insert. If this fails, we can probe the next slot, continuing until it succeeds.

5 B+Tree Latching
The challenge of B+Tree latching is preventing the two following problems:

• Threads trying to modify the contents of a node at the same time.
• One thread traversing the tree while another thread splits/merges nodes.

Latch crabbing/coupling is a protocol to allow multiple threads to access/modify B+Tree at the same time.
The basic idea is as follows:

1. Get latch for the parent.
2. Get latch for the child.
3. Release latch for the parent if the child is deemed “safe”. A “safe” node is one that will not split,

merge, or redistribute when updated. In other words, a node is “safe” if
• for insertion: it is not full.
• for deletion: it is more than half full.

Note that read operations do not need to worry about the “safe” condition (as read operations will not
change the size of any node in the tree).
Basic Latch Crabbing Protocol:

• Find: Start at the root and go down, repeatedly acquire latch on the child and then unlatch parent.
• Insert/Delete: Start at the root and go down, obtaining X latches as needed. Once the child is
latched, check if it is safe. If the child is safe, release latches on all its ancestors.

The order in which latches are released is not important from a correctness perspective. However, from a
performance point of view, it is better to release the latches that are higher up in the tree since they block
access to a larger portion of leaf nodes.
Optimistic Latch Crabbing Protocol: The problem with the basic latch crabbing algorithm is that trans-
actions always acquire an exclusive latch on the root for every insert/delete operation. This limits paral-
lelism. Instead, one can assume that having to resize (i.e., split/merge nodes) is rare, and thus transactions
can acquire shared latches down to the leaf nodes. Each transaction will assume that the path to the target
leaf node is safe, and use READ latches and crabbing to reach it and verify. If the leaf node is not safe, then
we abort and do the previous algorithm where we acquire WRITE latches.

• Find: Same algorithm as before.
• Insert/Delete: Set READ latches as if for find, go to leaf, and set WRITE latch on leaf. If the leaf is not
safe, release all previous latches, and restart the transaction using the original Insert/Delete protocol.

Some latch implementations allow for upgrading a read latch to a write latch while holding the latch. In

15-445/645 Database Systems
Page 4 of 5

https://15445.courses.cs.cmu.edu/fall2025/


Fall 2025 – Lecture #10 Index Concurrency Control

this way it may be possible to not restart the entire traversal of the B+tree when a leaf is not safe, but it is
less straightforward and possibly requires already holding some ancestor read latches.

Leaf Node Scans
The threads in these protocols acquire latches in a “top-down” manner. This means that a thread can only
acquire a latch from a node that is below its current node. If the desired latch is unavailable, the thread
must wait until it becomes available. Given this, there can never be deadlocks.
However, leaf node scans are susceptible to deadlocks because now we have threads trying to acquire
exclusive locks in two different directions at the same time (e.g., thread 1 tries to delete, thread 2 does a
leaf node scan). Index latches do not support deadlock detection or avoidance.
Thus, the only way programmers can deal with this problem is through coding discipline. The leaf node
sibling latch acquisition protocol must support a “no-wait” mode. That is, the B+tree code must cope with
failed latch acquisitions. Since latches are intended to be held (relatively) briefly, if a thread tries to acquire
a latch on a leaf node but that latch is unavailable, then it should abort its operation (releasing any latches
that it holds) quickly and restart the operation. Some trade-off could be made here is to wait a little more
before restarting itself, the wait time can depend on how much work has been done so far for the thread.
In the case the index is a high-contention data structure where a leaf scan thread could possibly fail consis-
tently, should there be a mechanism to solve this, a higher level system thread scheduler detecting this and
trying to schedule out other threads to get the leaf scan thread done. This mechanism does not necessarily
need to be incorporated in a data structure’s implementation but should rely on a higher level part of the
system.

15-445/645 Database Systems
Page 5 of 5

https://15445.courses.cs.cmu.edu/fall2025/

	Index Concurrency Control
	Locks vs. Latches
	Latch Implementations
	Hash Table Latching
	B+Tree Latching

