
Lecture #12: Joins Algorithms
15-445/645 Database Systems (Fall 2025)

https://15445.courses.cs.cmu.edu/fall2025/
Carnegie Mellon University

Andy Pavlo

1 Introduction
The goal of a good database design is to minimize unnecessary repetition of information. This is why tables
are often composed based on normalization theory. Joins are then needed to reconstruct the original tables.
We focus on inner equijoin algorithms for combining two tables. An equijoin algorithm joins tables
where keys are equal. These algorithms can be tweaked to support other joins. For binary joins, we often
prefer the left table (the ”outer table” ) to be the smaller one of the two. Multi-way joins exist primarily in
research literature (e.g., worst-case optimal joins).

2 Join Operators
In a query plan, the operators are arranged in a directed tree where the data flows from the leaves towards
the root. The output of the root node is the result of the query. The following subsections will discuss the
decisions for designing any join operator.

Operator Output
For a tuple r ∈ R and a tuple s ∈ S that match on join attributes, the join operator concatenates r and s
together into a new output tuple.
In reality, the content of output tuples generated by a join operator varies. It depends on the DBMS’s query
processing model, storage model, and the query itself. There are multiple approaches to designing the join
operator’s output.

• Data approach: The join creates new output tuples containing copies of the values in the joined
tables. These tuples are put into an intermediate result table for the operator. The advantage of this
approach is that future query plan operators never need to return to the base tables to get data. This
is more useful in the case of row stores since all the tuple data will be brought into memory anyway.
The disadvantage is that this requires more memory to materialize the entire tuple. This is called
early materialization.
The DBMS can also do additional computation and omit attributes that will not be needed later in
the query to optimize this approach further.

• Record id approach: The DBMS only copies the join keys and the matching tuple record ids. This
approach is ideal for column stores since the join can avoid bringing additional columns intomemory
to copy them. This is called late materialization.

In the real world, DBMS often mix and match between the two approaches, wherein based on the number
of tuples, columns, and further operators, a combination of the two strategies can be taken.

https://15445.courses.cs.cmu.edu/fall2025/
https://15445.courses.cs.cmu.edu/fall2025/
https://www.cs.cmu.edu/~pavlo/
https://en.wikipedia.org/wiki/Database_normalization


Fall 2025 – Lecture #12 Joins Algorithms

Cost Analysis
The cost metric used here to analyze different join algorithms will be the number of disk I/Os used to
compute the join. For now, compute and network costs will be ignored, as I/O costs dominate in disk-
based DBMSs.
Note that I/Os needed to output the join result are not considered in this analysis. This is because the
output cost depends on the data and will be the same for all join algorithms.

Given a query that joins table R with table S, assume the DBMS knows the following about those tables:
• M pages in table R (Outer Table),m tuples total
• N pages in table S (Inner Table), n tuples total

Also, note that R ▷◁ S (the natural join of tables R and S) is the most common operation and must be
carefully optimized. One inefficient algorithm is to compute R × S (the cross product of tables R and S)
and select relevant tuples. However, the cross-product is huge and results in a very inefficient approach.
In general, there will be many algorithms and optimizations which can reduce join costs in some cases,
but no single algorithm works well in every scenario.

3 Nested Loop Join
At a high level, this join algorithm contains two nested for loops that iterate over the tuples in both tables
and perform a pairwise comparison. If the tuples match the join predicate, then it outputs them. The table
in the outer for loop is called the outer table, while the table in the inner for loop is called the inner table.
The DBMS will always want to use the “smaller” table as the outer table. Smaller generally is based on
the number of pages but can sometimes mean tuples as well. We will buffer as much of the outer table in
memory as possible, and use indexes where available.

Naı̈ve Nested Loop Join
Compare each tuple in the outer table with each tuple in the inner table. This is the worst-case scenario
where the DBMS must scan the entirety of the inner table for each tuple in the outer table without any
caching or access locality.
Cost: M + (m×N)

Block Nested Loop Join
For each block in the outer table, fetch each block from the inner table and compare all the tuples in those
two blocks. Based on the # of pages and not the # of tuples, the smaller table should be the outer table.
This algorithm performs fewer disk accesses because the DBMS scans the inner table for every outer table
block instead of for every tuple.
Cost: M + (M ×N)

Buffer Pool Usage: If the DBMS has B buffer pool frames available to compute the join, it can use B− 2
buffers to scan the outer table. It will use one buffer to scan the inner table and one buffer to store the
join’s output.
Cost: M +

(⌈
M

B−2

⌉
×N

)

15-445/645 Database Systems
Page 2 of 5

https://15445.courses.cs.cmu.edu/fall2025/


Fall 2025 – Lecture #12 Joins Algorithms

Index Nested Loop Join
The previous nested loop based algorithms perform poorly because the DBMS has to do a sequential scan
to check for a match in the inner table. However, if the database already has an index for one of the tables
on the join key, it can use that to speed up the comparison. The DBMS can use an existing index or build
a temporary one for the join operation.
The inner table will be the one that requires an index. Assume the cost of each index probe is some constant
value C per tuple and the DBMS does a sequential scan on the outer table.
Cost: M + (m× C)

4 Sort-Merge Join
At a high level, a sort-merge join sorts the two tables on their join key(s). The DBMS can use the external
mergesort algorithm for this. It then steps through each table with cursors and emits matches (like in
Mergesort).
This algorithm is useful if one or both tables are already sorted on join attribute(s) (like with a clustered
index) or if the output needs to be sorted on the join key anyway.
The worst-case scenario for this algorithm is if the join attribute for all the tuples in both tables contains
the same value, which is very unlikely to happen in real databases. In this case, the cost of merging would
beM ·N since, for each outer page, we will have to match the entire inner table. Most of the time, though,
the keys are mostly unique, so the merge cost can be assumed to be approximatelyM +N .
Assume that the DBMS has B buffers to use for the algorithm:

• Sort cost for table R: 2M ×
(
1 +

⌈
logB−1

⌈
M
B

⌉⌉)
• Sort cost for table S: 2N ×

(
1 +

⌈
logB−1

⌈
N
B

⌉⌉)
• Merge cost: M +N
• Worst-Case Merge Cost: M ×N

Total Cost: Sort + Merge

5 Hash Join
Hash join algorithms use a hash table to split the tuples into smaller chunks based on their join attribute(s).
This reduces the number of comparisons that the DBMS needs to perform per tuple to compute the join.
Hash joins can only be used for equi-joins on the complete join key.
If a tuple r ∈ R and a tuple s ∈ S satisfy the join condition, then they have the same value for the join
attributes. If that value is hashed to some value i, theR tuple has to be in bucket ri, and the S tuple has to
be in bucket si. Thus, the R tuples in bucket ri need only to be compared with the S tuples in bucket si.

Basic Hash Join
• Phase #1 – Build: First, scan the outer relation and populate a hash table using the hash function
h1 on the join attributes. The key in the hash table is the join attributes. The value depends on the
implementation, and can be a full tuple or a record ID (early vs. late materialization).

• Phase #2 – Probe: Scan the inner relation and use the hash function h1 on each tuple’s join at-
tributes to jump to the corresponding location in the hash table and find matching tuples. Since
there may be collisions in the hash table, the DBMS must examine the original values of the join
attribute(s) to determine whether tuples satisfy the join condition. The probe table can be of any
size, with only the build side needing to fit in memory.

15-445/645 Database Systems
Page 3 of 5

https://15445.courses.cs.cmu.edu/fall2025/


Fall 2025 – Lecture #12 Joins Algorithms

One optimization for the probe phase is the usage of a Bloom Filter, which is created as the DBMS builds
the hash table on the outer table in the first phase. This is a probabilistic data structure that can fit in CPU
caches and answer the question “is key x in the hash table?” with either definitely no or probably yes. It
reduces the amount of disk I/O by preventing disk reads that will not result in a match. Such techniques
of providing extra metadata are called sideways information passing.
If the DBMS knows the size of the outer table, the join can use a static hash table. If it does not know the
size, the join must use a dynamic hash table or allow for overflow pages.

Grace Hash Join / Partitioned Hash Join
When the tables do not fit in the main memory, the DBMS has to swap tables in and out at random, leading
to poor performance and not leveraging the buffer pool. The Grace Hash Join is an extension of the basic
hash join that also hashes the inner table into partitions that are written out to disk.

• Phase #1 – Build: First, scan both the outer and inner tables and populate a hash table using the
hash function h1 on the join attributes. The hash table’s buckets are written out to disk as needed. If
a single bucket does not fit in memory, the DBMS can use recursive partitioning with different hash
function h2 (where h1 ̸= h2) to further divide the bucket. This can continue recursively until the
buckets fit into memory.

• Phase #2 – Probe: For each bucket level, retrieve the corresponding outer and inner table pages.
Then, perform a hash join on their contents.

Partitioning phase cost: 2× (M +N)
Probe phase cost: M +N
Total Cost: 3× (M +N)

One edge case is that if a single join key has too many matching records that do not fit in memory, we can
use a block nested loop join just for that key, which avoids random I/O in exchange for sequential I/O.
Hybrid hash join optimization: adapts between basic hash join and Grace hash join; if the keys are skewed,
keep the hot partition in memory and immediately perform the comparison instead of spilling it to disk.
Difficult to implement correctly and rarely done in practice.

6 Conclusion
Joins are an essential part of relational databases, and it’s critical to have efficient algorithms for them.

Algorithm I/O Cost Example
Simple Nested Loop Join M + (m ·N) 1.4 hours
Block Nested Loop Join M +

(⌈
M

B−2

⌉
·N

)
6.5 seconds

Index Nested Loop Join M + (m · C) Varies
Sort-Merge Join M +N + (sort cost) 0.75 seconds

Hash Join 3 · (M +N) 0.45 seconds

Figure 1: The table above assume the following: M = 1000,m = 100000, N =
500, n = 40000, B = 100 and 0.1 ms per I/O. Sort cost is R+ S = 4000 + 2000 IOs,
whereR = 2 ·M ·

(
1 + ⌈logB−1⌈M/B⌉⌉

)
= 2000 · (1+ ⌈log99⌈1000/100⌉) = 4000

and S = 2 ·N ·
(
1 + ⌈logB−1⌈N/B⌉⌉

)
= 1000 · (1 + ⌈log99⌈500/100⌉) = 2000.

Hash joins are almost always better than sort-based join algorithms, but there are cases in which sort-based

15-445/645 Database Systems
Page 4 of 5

https://en.wikipedia.org/wiki/Bloom_filter
https://15445.courses.cs.cmu.edu/fall2025/


Fall 2025 – Lecture #12 Joins Algorithms

joins would be preferred. This includes queries on non-uniform data, when the data is already sorted on
the join key, or when the result needs to be sorted. Good DBMSs will use either or both.

15-445/645 Database Systems
Page 5 of 5

https://15445.courses.cs.cmu.edu/fall2025/

	Introduction
	Join Operators
	Nested Loop Join
	Sort-Merge Join
	Hash Join
	Conclusion

