Lecture #13: Query Processing I

15-445/645 Database Systems (Fall 2025)
https://15445.courses.cs.cmu.edu/fall2025/
Carnegie Mellon University
Andy Pavlo

1 Query Plan

The DBMS converts a SQL statement into a query plan. Operators in the query plan are arranged in a
DAG, oftentimes a tree. Data flows from the leaves of this tree towards the root. The output of the root
node in the tree is the result of the query. Typically operators are unary or binary (1 to 2 children). The
same query plan can be executed in multiple ways.

A pipeline refers to a sequence of operators where tuples can continuously flow in-between each pair
without intermediate storage. A pipeline breaker is an operator that cannot finish until all of its children
have emit their tuples. Some examples include Joins (build Side), Subqueries and Order By.

2 Processing Models

A DBMS’s processing model defines how the system executes a query plan. It specifies things like the
direction in which the query plan is evaluated and what kind of data is passed between operators along
the way. There are several types of processing models with trade-offs for different workloads (For eg: OLTP
vs OLAP).

Each processing model is comprised of two types of execution paths: control flow and data flow. control
flow dictates how the DBMS invokes the operator, while data flow decides how an operator sends its
results. An operator’s output can be either whole tuples (NSM) or subsets of columns (DSM).

The three execution models that we consider are:

« Iterator Model
« Materialization Model
 Vectorized / Batch Model

Iterator Model

The iterator model, also known as the Volcano or Pipeline model, is the most common processing model.
It is used by almost every (row-based) DBMS.

The iterator model implements a Next function for every operator. Nodes in the query plan, except for
leaf nodes, call Next on its children. When called, children nodes emit tuples one by one to their parent
nodes until there’s none. Each tuple is then processed and passed up the plan as far as possible before the
next one is retrieved. This design is efficient for disk-based systems, as it maximizes use of in-memory
data before accessing new tuples or pages. A sample diagram is shown in Figure 1.

Query plan operators in an iterator model are highly composible and easy to reason about. This is because
each operator can be implemented independently from their parent or child operators in the query plan
tree as long as it implements a Next function as follows:

https://15445.courses.cs.cmu.edu/fall2025/
https://15445.courses.cs.cmu.edu/fall2025/
https://www.cs.cmu.edu/~pavlo/

Fall 2025 - Lecture #13 Query Processing I

+ On each call to Next, the operator returns either a single tuple or a null marker if there are no more
tuples to emit.

 The operator implements a loop that calls Next on its children to retrieve their tuples and then
process them. In this way, one node’s Next calls will trigger Next calls on its child. In response, the
child node will return the next tuple that the parent must process.

The iterator model allows for pipelining where the DBMS can process a tuple through as many operators
as possible before having to retrieve the next tuple. The series of tasks performed for a given tuple in the
query plan is called a pipeline.

Some operators will block until children emit all of their tuples. Examples of such operators include joins,
subqueries, and ordering (ORDER BY). Such operators are known as pipeline breakers.

Output control works easily with this approach (LIMIT) because an operator can stop invoking Next on
its child (or children) operator(s) once it has all the tuples that it requires.

for t in child.Next(): SELECT R.id, S.cdate
emit(projection(t)) N, FROM R JOIN S
ON R.id = S.id
....
9 for t, in left.Next(): ..'n,_WHERE S.value > 100
buildHashTable(t,) =
for t, in right.Ne;(t(): ?... ..."n R.id, S.value
if probe(t,): emit(t,>t,) .".... 1
LY
Tra, e
for t in child.Next(): .NR”’S‘“
if evalPred(t): emit(t) ~-7. ‘\
o)
value>100
for t in R: for t in S:
O] [TEHIO< s

Figure 1: Iterator Model Example — Pseudo code of the different Next functions
for each of the operators. The Next functions are essentially for-loops that iterate
over the output of their child operator. For example, the root node calls Next on its
child, the join operator, which is an access method that loops over the relation R and
emits a tuple up that is then operated on. After all tuples have been processed, a null
pointer (or another indicator) is sent that lets the parent nodes know to move on.

Materialization Model

The materialization model is a specialization of the iterator model where each operator processes its input
all at once and then emits its output all at once. Instead of having a next function that returns a single
tuple, each operator returns all of its tuples every time it is reached. To avoid scanning too many tuples,
the DBMS can propagate down information about how many tuples are needed for subsequent operators
(e.g. LIMIT). The operator “materializes” its output as a single result. The output can be either a whole
tuple (NSM) or a subset of columns (DSM). A diagram of the materialization model is shown in Figure 2.

Every query plan operator implements an Output function:
+ The operator processes all the tuples from its children at once.

« The return result of this function is all the tuples that operator will ever emit. When the operator
finishes executing, the DBMS never needs to return to it to retrieve more data.

The materialization model is better for OLTP workloads where queries typically only access a small number
of tuples at a time. Thus, there are fewer function calls to retrieve tuples. It is however not suited for OLAP

15-445/645 Database Systems
Page 2 of 7

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 — Lecture #13 Query Processing I

out = []
for t in child.Output(): :

o P U e e SELECT R.id, S.cdate
return out FROM R JOIN S
T ON R.id = S.id

out =
for t; in left.Output(): WHERE S.value > 100
buildHashTable(t,)
for t, in right.Output(): q
if érobe(tz): out.add(t,pt,) n Roily Sl
return out

pr—— D<{r.i¢=s.id
for t in child.Output(): \
if evalPred(t): out.add(t
return out Gvalue>100
O R S

for t in R: for t in S:
out.add(t) out.add(t)
return out

return out

Figure 2: Materialization Model Example - Starting at the root, the
child.Output () function is called, which invokes the operators below, which re-
turns all tuples back up.

queries with large intermediate results because the DBMS may have to spill those results to disk between
operators.

Vectorization Model

Like the iterator model, each operator in the vectorization model implements a Next function. However,
each operator emits a batch (i.e. vector) of data instead of a single tuple. The operator’s internal loop
implementation is optimized for processing batches of data instead of a single item at a time. The size of
the batch can vary based on hardware or query properties. See Figure 3 for an example of the vectorization
model.

out = []
for t in child.Next(): :
out.add(projection(t)) SELECT R'ld’ S.cdate
if |out|>n: emit(out) FROM R JOIN S
— ON R.id = S.id
out =
e for t, in left.Next(): WHERE S.value > 100
buildHashTable(t,)
for t, in right.Next(): :
if :)robe(ty): out.add(t,Pt,) n R.id, S.value
if |out|>n: emit(out)

1
pa—— NR.id s.id

for t in child.Next(): ‘\
if evalPred(t): out.add(t)
if |out|>n: emit(out) Gvalue>l@@

out = [] out =[]
for t in R: for t in S:
out.add(t) out.add(t)
if |out|>n: emit(out) if |out|>n: emit(out)

Figure 3: Vectorization Model Example — The vectorization model is very similar
to the iterator model except at every operator, an output buffer is compared to the
desired emission size. If the buffered output size is larger than the emission size, the
buffered tuple batch will be sent up.

The vectorization model approach is ideal for OLAP queries that have to scan a large number of tuples
because there are fewer invocations of the Next function.

The vectorization model allows operators to more easily use vectorized (SIMD) instructions to process
batches of tuples. Modern out-of-order CPUS also work efficiently processing tuple batches. This due to
the operators working in tight for-loops over arrays of equal-sized items and having no data or control
dependencies.

15-445/645 Database Systems
Page 3 of 7

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #13 Query Processing I

Processing Direction

The models are implemented to invoke the operators either from top-to-bottom (pull) or from bottom-
to-top (push). Although the top-to-bottom approach is much more common, the bottom-to-top approach
can allow for tighter control of caches/registers in pipelines.

« Approach #1: Top-to-Bottom
— Start with the root and “pull” data from children to parents
— Tuples are always passed with function calls
Easy to control via LIMIT
Parent operator has to block until its child returns with a tuple
Additional overhead from Next functions implemented as virtual functions
Each Next call can involve branching costs
« Approach #2: Bottom-to-Top
- Start with leaf nodes and “push” data from children to parents
— Allows for tighter control of caches / registers in operator pipelines

— Might not have exact control of intermediate result sizes
— Some iterator might be hard to implement in this design.

3 Access Methods

An access method is how the DBMS accesses the data stored in a table. These methods do not have cor-
responding operators defined in relational algebra because physical retrieval of data is not represented in
relational algebra. There are three basic approaches: sequential scan, index scan (with many variants), and

multi-index scans.

Sequential Scan

The sequential scan operator iterates over every page in the table and retrieves it from the buffer pool.
As the scan iterates over all the tuples on each page, it evaluates the predicate to decide whether or not
to emit the tuple to the next operator. The DBMS maintains an internal cursor to track the last examined
page/slot.

A sequential table scan is almost always the least efficient method by which a DBMS may execute a query.
There are a number of optimizations available to help make sequential scans faster:

« Compression: Compression schemes such as RLE (run length encoding) can help retrieve multiple
tuples in a single fetch.

« Prefetching: Fetch the next few pages in advance so that the DBMS does not have to block on
storage I/O when accessing each page.

+ Buffer Pool Bypass: The scan operator stores pages that it fetches from disk in its local memory
instead of the buffer pool in order to avoid sequential flooding.

« Parallelization: Execute the scan using multiple threads/processes in parallel.

« Late Materialization: DSM DBMSs can delay stitching together tuples until reaching the upper
parts of the query plan. This allows each operator to pass the minimal amount of information needed
to the next operator (e.g. record ID, offset to record in column). This is only useful in column-store
systems.

« Heap Clustering: Tuples are stored in the heap pages using an order specified by a clustering index.

+ Result Caching/Materialized Views: Storing (caching) the results of subquery/query which are
more frequently ocurring.

« Code specialization/compilation: Pre compiling functions ahead of time (JIT) in order to obtain

15-445/645 Database Systems
Page 4 of 7

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #13

Query Processing 1

results faster when it’s actually required.
« Approximate Queries (Lossy Data Skipping): Execute queries on a sampled subset of the entire
table to produce approximate results. This is typically done for computing aggregations in a scenario
that allow a low error to produce a nearly accurate answer.
« Zone Map (Lossless Data Skipping): Pre-compute aggregations for each tuple attribute in a page.
The DBMS can then decide whether it needs to access a page by checking its Zone Map first. The
Zone Maps for each page are stored in separate pages and there are typically multiple entries in each
Zone Map page. Thus, it is possible to reduce the total number of pages examined in a sequential
scan. Zone maps are particularly valuable in the cloud database systems where data transfer over a
network incurs a bigger cost. See Figure 4 for an example of a Zone Map.

Original Data

val

SELECT * FROM table
WHERE val > 600

100
i
300

400
400

Zone Map

type val

MIN

100

MAX

400

AVG

280

SUM

1400

COUNT

5

Figure 4: Zone Map Example - The zone map stores pre-computed aggregates for
values in a page. In the example above, the select query realizes from the zone map
that the max value in the original data is only 400. Then, instead of having to iterate
through every tuple in the page, the query can avoid accessing the page at all since
none of the values will be greater than 600.

The limitations of the sequential model include function overhead and lack of parallelization (e.g. not able

to take advantage of vector operations).

Index Scan

In an index scan, the DBMS picks an index to find the tuples that a query needs.

Scenario #1

There are 99 people
under the age of 30 but
only 2 people in the CS

department.

SELECT * FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'

Scenario #2

age of 30.

There are 99 people in
the CS department but
only 2 people under the

Figure 5: Index Scan Example — Consider a single table with 100 tuples and two
indexes: age and department. In the first scenario, it is better to use the department
index in the scan because it only has two tuples to match. Choosing the age index
would not be much better than a simple sequential scan. In the second scenario, the
age index would eliminate more unnecessary scans and is the optimal choice.

There are many factors involved in the DBMSs’ index selection process, including:

« What attributes the index contains;

« What attributes the query references;

15-445/645 Database Systems

Page 5 of 7

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #13 Query Processing I

« The attribute’s value domains;
« Predicate composition;
« Whether the index has unique or non-unique keys.

A simple example of an index scan is shown in Figure 5.

Multi Index Scan

More advanced DBMSs support multi-index scans. When using multiple indexes for a query, the DBMS
computes sets of record IDs using each matching index, combines these sets based on the query’s pred-
icates, and retrieves the records and apply any predicates that may remain. The DBMS can use bitmaps,
hash tables, or Bloom filters to compute record IDs through set intersection. See Figure 6 for an example
that makes use of a multi-index scan.

SELECT * FROM students
WHERE age < 30
AND dept = 'CS'

; AND country = 'US ;

age<30 dept="'CS'

record ids record ids

fetch records country="'US'

Figure 6: Multi-Index Scan Example — Consider the same table in Figure 5. With
multi-index scan support, we first compute the sets of record IDs satisfying the pred-
icate for age and dept respectively, using the corresponding index. We then compute
the intersection of the two sets, fetch the corresponding records, and apply the re-
maining predicate country="US’.

4 Modification Queries

Operators that modify the database (INSERT, UPDATE, DELETE) are responsible for checking constraints
and updating indexes. For UPDATE/DELETE, child operators pass Record IDs for target tuples and must
keep track of previously seen tuples.

There are two implementation choices on how to handle INSERT operators:

« Choice #1: Materialize tuples inside of the operator.
« Choice #2: Operator inserts any tuple passed in from child operators.

Halloween Problem - also known as the Update Query Problem

The Halloween Problem is an anomaly in which an update operation changes the physical location of a
tuple, causing a scan operator to visit the tuple multiple times. This can occur on clustered tables or index
scans.

This phenomenon was originally discovered by IBM researchers while building System R on Halloween
day in 1976. The solution to this problem is to keep track of the modified record IDs for each query.

15-445/645 Database Systems
Page 6 of 7

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #13 Query Processing I

5 Expression Evaluation

The DBMS represents a WHERE clause as an expression tree (see Figure 7 for an example). The nodes in the
tree represent different expression types.

SELECT x FROM S

WHERE

true

Attribute(S. value)l

1000 1000
Parameter(@ Constant(1

Figure 7: Expression Evaluation Example — A WHERE clause and a diagram of its
corresponding expression.

Some examples of expression types that can be stored in tree nodes:

« Comparisons (=, <, >, |=);

+ Conjunction (AND), Disjunction (OR);
« Arithmetic Operators (+, -, *, /, %);
« Constant and Parameter Values;

« Tuple Attribute References.

To evaluate an expression tree at runtime, the DBMS maintains a context handle that contains metadata
for the execution, such as the current tuple, the parameters, and the table schema. The DBMS then walks
the tree to evaluate its operators and produce a result.

Evaluating predicates in this manner is slow for the CPU because the DBMS must traverse the entire
tree and determine the correct action to take for each operator. A better approach is to just evaluate the
expression directly (think JIT compilation). Based on a internal cost model, the DBMS would determine
whether code generation will be adopted to accelerate a query.

A even better approach is to vectorize it to evaluate batch of tuples at the same time.
There are ways to optimize expression evaluations:

« Constant folding: Reducing the overhead by identifying operations that can be performed just
once (for example: UPPER on a constant value) and using it’s results rather than performing it every
single time.

« Sub Expression limitation: Identifying repeated subexpressions in an expression tree and com-
puting its result once to reuse it for all occurences in the plan.

15-445/645 Database Systems
Page 7 of 7

https://15445.courses.cs.cmu.edu/fall2025/

	Query Plan
	Processing Models
	Access Methods
	Modification Queries
	Expression Evaluation

