Lecture #14: Query Execution II

15-445/645 Database Systems (Fall 2025)
https://15445.courses.cs.cmu.edu/fall2025/
Carnegie Mellon University
Andy Pavlo

1 Background

Previous discussions of query executions assumed that the queries executed with a single worker (i.e
thread). However, in practice, queries are often executed in parallel with multiple workers.

Parallel execution spreads the database over multiple resources. These resources may be computational
(e.g., CPU cores, CPU sockets, GPUs, additional machines) or storage (e.g., disks, memory). Spreading the
database over many resources allows it to:

+ Deal with large data sets that don’t fit on a single machine/node
« Have higher performance due to parallel processing
+ Have a higher level of redundancy/fault-tolerance

There are two types of parallelism that DBMSs support: inter-query parallelism and intra-query paral-
lelism.

2 Parallel vs Distributed Databases

It is important to distinguish between parallel and distributed systems:

« Parallel DBMS In a parallel DBMS, resources, or nodes, are physically close to each other. These
nodes communicate over a high-speed interconnect. It is assumed that communication between
resources is not only fast, but also cheap and reliable.

+ Distributed DBMS In a distributed DBMS, resources may be far away from each other; this might
mean the database spans racks or data centers in different parts of the world. As a result, resources
communicate using a slower interconnect (often over a public network). Communication costs be-
tween nodes are higher and failures cannot be ignored.

Even though a database may be physically divided over multiple resources, it still appears as a single
logical database instance to the application. Thus, a SQL query executed against a single-node DBMS
should generate the same result on a parallel or distributed DBMS.

3 Process Models

A DBMS process model defines how the system supports concurrent requests from a multi-user applica-
tion/environment. The DBMS is comprised of one or more workers that are responsible for executing tasks
on behalf of the client and returning the results. An application may send a large request or multiple
requests at the same time that must be divided across different workers.

There are two major process models that a DBMS may adopt: process per worker and thread per worker.
A third common database usage pattern takes an embedded approach.

https://15445.courses.cs.cmu.edu/fall2025/
https://15445.courses.cs.cmu.edu/fall2025/
https://www.cs.cmu.edu/~pavlo/

Fall 2025 — Lecture #14 Query Execution II

SQL Commands

-

I o - <
o a Lo Bk e B o

Worker

Application Dispatcher Processes

Figure 1: Process per Worker Model

Process per Worker

The most basic approach is process per worker. Here, each worker is a separate OS process, and thus relies
on the OS scheduler. An application sends a request and opens a connection to the databases system. When
some dispatcher receives this request, it selects one of its worker processes to manage the connection. The
application then communicates directly with the worker who is responsible for executing the request that
the query wants. This sequence of events is shown in Figure 1.

Relying on the operating system for scheduling effectively reduces the DBMS’s control over execution.
Further, this model depends on shared memory to maintain global data structures or relies on message
passing, which has a higher overhead.

An advantage of the process per worker approach is that a process crash doesn’t disrupt the whole system
because each worker runs in the context of its own OS process.

This process model raises the issue of multiple workers on separate processes making numerous copies of
the same page. A solution to maximize memory usage is to use shared-memory for global data structures
so that they can be shared by workers running in different processes.

Examples of systems that utilize the process-per-worker process model include IBM DB2, Postgres, and
Oracle. When these DBMSs were developed, pthreads had not yet become the standard threading model.
The semantics of threading varied from OS to OS while fork() was better defined.

Thread per Worker

The most common model nowadays is thread per worker. Instead of having different processes doing differ-
ent tasks, each database system has only one process with multiple worker threads. In this environment,
the DBMS has full control over the tasks and threads, it can manage it own scheduling. The multi-threaded
model may or may not use a dispatcher thread. A diagram of the thread per worker model is shown in
Figure 2.

Using multi-threaded architecture provides certain advantages. For one, there is less overhead per context
switch. Additionally, a shared model does not have to be maintained. However, it is possible that a thread
crash can kill the entire database process. Also, the thread per worker model does not necessarily imply
that the DBMS supports intra-query parallelism.

Almost every DBMS created in the last 20 years uses this approach, including Microsoft SQL Server and
MySQL. IBM DB2 and Oracle have updated their models to provide support for this approach, as well.
Postgres and Postgres-derived databases largely still use the process-based approach.

Embedded DBMS

A very different usage pattern for databases involves running the system in the same address space of the
application, as opposed to a client-server model where the database stands independent of the application.
In this scenario, the application will set up the threads and tasks to run on the database system. The

15-445/645 Database Systems
Page 2 of 6

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #14 Query Execution II

SQL Commands

[[> g
o] & & =
Application Dispatcher Worker Threads

Figure 2: Thread per Worker Model

(00 (e (e

Application

Figure 3: Embedded DBMS Scheduling

application itself will largely be responsible for scheduling. A diagram of an embedded DBMS’s scheduling
behaviors is shown in Figure 3.

DuckDB, SQLite, and RocksDB are the most famous embedded DBMSs.

Scheduling

For each query plan, the DBMS has to decide where, when, and how to execute. Relevant questions include:

« How many tasks should it use?

« How many CPU cores should it use?

« What CPU cores should the tasks execute on?
« Where should a task store its output?

When making decisions regarding query plans, the DBMS always knows more than the OS and should be
prioritized as such.

4 Inter-Query Parallelism

In inter-query parallelism, the DBMS executes different queries concurrently. Since multiple workers are
running requests simultaneously, overall performance is improved. This increases throughput and reduces
latency.

If the queries are read-only, then little coordination is required between queries. However, if multiple
queries are updating the database concurrently, more complicated conflicts arise. These issues are discussed
further in lecture 17.

5 Intra-Query parallelism

In intra-query parallelism, the DBMS executes the operations of a single query in parallel. This decreases
latency for long-running queries.

The organization of intra-query parallelism can be thought of in terms of a producer/consumer paradigm.
Each operator is a producer of data as well as a consumer of data from some operator running below it.

15-445/645 Database Systems
Page 3 of 6

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 — Lecture #14 Query Execution II

SELECT * FROM A
WHERE A.value > 99

Gvalue>99

I
A

Figure 4: Intra-Operator Parallelism — The query plan for this SELECT is a se-
quential scan on A that is fed into a filter operator. To run this in parallel, the query
plan is partitioned into disjoint fragments. A given plan fragment is operated on a
by a distinct worker. The exchange operator calls Next concurrently on all fragments
which then retrieve data from their respective pages.

Parallel algorithms exist for every relational operator. The DBMS can either have multiple threads access
centralized data structures or use partitioning to divide work up.

Within intra-query parallelism, there are three types of parallelism: intra-operator, inter-operator, and
bushy. These approaches are not mutually exclusive. It is the DBMS’ responsibility to combine these
techniques in a way that optimizes performance on a given workload.

Intra-Operator Parallelism (Horizontal)

In intra-operator parallelism, the query plan’s operators are decomposed into independent fragments that
perform the same function on different (disjoint) subsets of data.

The DBMS inserts an exchange operator into the query plan to coalesce results from child operators. The
exchange operator prevents the DBMS from executing operators above it in the plan until it receives all of
the data from the children. An example of this is shown in Figure 4.

In general, there are three types of exchange operators:

« Gather: Combine the results from multiple workers into a single output stream. This is the most
common type used in parallel DBMSs.

« Distribute: Split a single input stream into multiple output streams.

+ Repartition: Reorganize multiple input streams across multiple output streams. This allows the
DBMS take inputs that are partitioned one way and then redistribute them in another way.

Inter-Operator Parallelism (Vertical)

In inter-operator parallelism, the DBMS overlaps operators in order to pipeline data from one stage to the
next without materialization. This is sometimes called pipelined parallelism. See example in Figure 5.

This approach is widely used in stream processing systems, which are systems that continually execute a
query over a stream of input tuples.

15-445/645 Database Systems
Page 4 of 6

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #14 Query Execution II

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99

AND B.value > 100 i TC for r € incoming:
“_— emit(7r)

T I
for r, € outer:

A F M for r, € inner:
A B o emit(r1l><1r2)

Figure 5: Inter-operator Parallelism — In the JOIN statement to the left, a single
worker performs the join and then emits the result to another worker that performs
the projection and then emits the result again.

> <
] Lyt |
M /'N'\

SELECT * 7N
FRoM A JoINB JoiNc JoIND | [[A B

€

0

Figure 6: Bushy Parallelism - To perform a 4-way JOIN on three tables, the query
plan is divided into four fragments as shown. Different portions of the query plan
run at the same time, in a manner similar to inter-operator parallelism.

Bushy Parallelism
Bushy parallelism is a hybrid of intra-operator and inter-operator parallelism where workers execute mul-
tiple operators from different segments of the query plan at the same time.

The DBMS still uses exchange operators to combine intermediate results from these segments. An example
is shown in Figure 6.

6 I/0 Parallelism

Using additional processes/threads to execute queries in parallel will not improve performance if the disk
is always the main bottleneck. Therefore, it is important to be able to split a database across multiple
storage devices.

To get around this, DBMSs use I/O parallelism to split installation across multiple devices. Two approaches
to I/O parallelism are multi-disk parallelism and database partitioning.

15-445/645 Database Systems
Page 5 of 6

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #14 Query Execution I

Multi-Disk Parallelism

In multi-disk parallelism, the OS/hardware is configured to store the DBMS’s files across multiple storage
devices. This can be done through storage appliances or RAID configuration based on performance, dura-
bility, and capacity constraints. All of the storage setup is transparent to the DBMS so workers cannot
operate on different devices because the DBMS is unaware of the underlying parallelism.

Database Partitioning

In database partitioning, the database is split up into disjoint subsets that can be assigned to discrete disks.
Some DBMSs allow for specification of the disk location of each individual database. This is easy to do at
the file-system level if the DBMS stores each database in a separate directory. The log file of changes made
is usually shared.

The idea of logical partitioning is to split single logical table into disjoint physical segments that are stored/-
managed separately. Such partitioning is ideally transparent to the application. That is, the application
should be able to access logical tables without caring how things are stored.

We will cover these approaches later in the semester when discussing distributed databases.

15-445/645 Database Systems
Page 6 of 6

https://15445.courses.cs.cmu.edu/fall2025/

	Background
	Parallel vs Distributed Databases
	Process Models
	Inter-Query Parallelism
	Intra-Query parallelism
	I/O Parallelism

