
Lecture #17: Concurrency Control Theory
15-445/645 Database Systems (Fall 2025)

https://15445.courses.cs.cmu.edu/fall2025/
Carnegie Mellon University

Andy Pavlo

1 Motivation
• Lost Update Problem (Concurrency Control): How do we handle two or more transactions
trying to update the same data at the same time?

• Durability Problem (Recovery): How can we ensure the correct state in case of a power failure?

2 Transactions
A transaction is the execution of a sequence of one or more operations (e.g., SQL queries) on a shared
database to perform some higher level function. They are the basic unit of change in a DBMS. Partial
transactions are not allowed (i.e. transactions must be atomic).
Example: Pay $25 from Andy’s bank account with balance $100 to a concert promoter.

1. Read Andy’s account balance.
2. Check if balance > $25.
3. Deduct $25 from his account.
4. Write Andy’s new balance $75 back to the database.

Either all of the steps need to be completed or none of them should be completed.

The Strawman System
A simple system for handling transactions is to execute one transaction at a time using a single worker
(i.e. serial order). Thus, only one transaction can be running at a time in the DBMS. before a transaction
starts, the DBMS copies the entire database to a new file and makes all changes to that file.

• If the transaction succeeds, the new file becomes the current database file.
• If the transaction fails, the DBMS discards the dirty copy and none of the transaction’s changes
would have been saved.

This method (also known as shadow paging) is slow as it does not allow for concurrent transactions and
throws away any parallelism, while also requires copying the whole database file for every transaction.
A (potentially) better approach is to allow concurrent execution of independent transactions while also
maintaining correctness and fairness (as in all transactions are treated with equal priority and don’t get
”starved” by never being executed). Taking advantage of all the additional parallelism available in modern
hardware (multiple cores, multiple disks, etc.) can significantly improve throughput and latency of transac-
tions. But executing concurrent transactions in a DBMS is challenging. It is difficult to ensure correctness
(for example, if Andy only has $100 and tries to pay off two promoters at once, who should get paid?)
while also executing transactions quickly (our strawman example guarantees sequential correctness, but
at the cost of parallelism).
Arbitrary interleaving of operations can lead to:

https://15445.courses.cs.cmu.edu/fall2025/
https://15445.courses.cs.cmu.edu/fall2025/
https://www.cs.cmu.edu/~pavlo/

Fall 2025 – Lecture #17 Concurrency Control Theory

• Temporary Inconsistency: Unavoidable, but not an issue.
• Permanent Inconsistency: Unacceptable, cause problems with correctness and integrity of data.

The DBMS is only concerned about what data is read/written from/to the database. Changes to the outside
world are beyond the scope of the DBMS. For example, if a transaction causes an email to be sent, this
cannot be rolled back by the DBMS if the transaction is aborted. We want formal correctness criteria to
determine whether an interleaving is valid.

3 Definitions
Formally, a database can be represented as a fixed set of named data objects (A,B,C, . . .). These objects
can be attributes, tuples, pages, tables, or even databases. The algorithms that we will discuss work on any
type of object but all objects must be of the same type.
A transaction is a sequence of read and write operations (e.g., R(A),W (B)) on those objects, which is
DBMS’s abstract view of a user program.
The boundaries of transactions are defined by the client. In SQL, a new transaction starts with the BEGIN
command. Then the transaction stops with either COMMIT or ABORT. For COMMIT, either all of the transac-
tion’s modifications are saved to the database, or the DBMS overrides this and aborts instead. For ABORT,
all of the transaction’s changes are undone so that it is like the transaction never happened. Aborts can be
either self-inflicted or caused by the DBMS.
The criteria used to ensure the correctness of a database is given by the acronym ACID.

• Atomicity: Atomicity ensures that either all actions in the transaction happen, or none happen.
• Consistency: If each transaction is consistent and the database is consistent at the beginning of the
transaction, then the database is guaranteed to be consistent when the transaction completes. Data
is consistent if it satisfies all validation rules such as constraints, cascades and triggers.

• Isolation: Isolation means that when a transaction executes, it should have the illusion that it is
isolated from other transactions. Isolation ensures that concurrent execution of transactions should
have the same resulting database state as a sequential execution of the transactions.

• Durability: If a transaction commits, then its effects on the database should persist no matter what
happens (e.g. power failure, OS crash).

4 ACID: Atomicity
The DBMS guarantees that transactions are atomic. From application’s point of view: the transaction
either executes all its actions or none of them. Two possible outcomes of executing a transaction:

• Commit: Commit after compelting all its actions
• Abort: Abort (or be aborted by the DBMS) after executing some actions

There are two approaches to ensure atomicity:
Approach #1: Logging
DBMS logs all actions in an ordered ledger so that it can undo the actions in case of an aborted transaction.
It maintains undo records both in memory and on disk. The logs will be replayed after crash to put database
back in correct state. Logging is used by almost all modern systems for audit and efficiency reasons.
Approach #2: Shadow Paging
The DBMS makes copies of pages modified by the transactions and transactions make changes to those
copies. Only when the transaction succesfully commits is the page made visible to other transactions.

15-445/645 Database Systems
Page 2 of 5

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 – Lecture #17 Concurrency Control Theory

This approach is typically slower at runtime than a logging-based DBMS. However, one benefit is, if you
are only single threaded, there is no need for logging, so there are less writes to disk when transactions
modify the database. This also makes recovery instant and simple, as all you need to do is delete all pages
from uncommitted transactions. In general, though, better runtime performance is preferred over better
recovery performance, so this is rarely used in practice.

5 ACID: Consistency
At a high level, consistency means the “world” represented by the database is logically correct. SQL has
methods to specify integrity constraints (e.g., key definitions, CHECK, ADD CONSTRAINT) and the DBMS will
enforce them. Then it is up to the application to define these constraints. The DBMS is responsible for
ensuring that all integrity constraints are true before and after the transaction ends.

Eventual Consistency: A commited transaction may see inconsistent results (e.g. may not see the up-
dates of an older commited transaction immediately). Then it becomes difficult for developers to reason
about such semantics, so the trend is to move away from eventual consistency and towards stronger con-
sistency models.

6 ACID: Isolation
TheDBMS provides transactions the illusion that they are running alone in the system. They do not see the
effects of concurrent transactions. This is equivalent to a system where transactions are executed in serial
order (i.e., one at a time). But to achieve better performance, the DBMS has to interleave the operations of
concurrent transactions while maintaining the illusion of isolation.

Concurrency Control
A concurrency control protocol is how the DBMS decides the proper interleaving of operations frommultiple
transactions at runtime.
There are two categories of concurrency control protocols:

1. Pessimistic: The DBMS assumes that transactions will conflict, so it doesn’t let problems arise in
the first place.

2. Optimistic: The DBMS assumes that conflicts between transactions are rare, so it chooses to deal
with conflicts after they happen.

Example: assuming A and B both start with $ 1000

There are many possible outcomes of running T1 and T2 concurrently. But the ground rule isA+B should
be 2000 ∗ 1.06 = 2120. There is no guarantee on the order of transaction execution, but the outcome of
the database must be equivalent to some serial execution of the transactions.

15-445/645 Database Systems
Page 3 of 5

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 – Lecture #17 Concurrency Control Theory

Figure 1: Good interleaving schedule Figure 2: Bad interleaving schedule

The order in which the DBMS executes operations is called an execution schedule. We want to interleave
transactions to maximize concurrency while ensuring that the output is “correct”. The goal of a concur-
rency control protocol is to generate an execution schedule that is is equivalent to some serial execution:

• Serial Schedule: Schedule that does not interleave the actions of different transactions.
• Equivalent Schedules: For any database state, if the effect of executing the first schedule is identical
to the effect of executing the second schedule, the two schedules are equivalent.

• Serializable Schedule: A serializable schedule is a schedule that is equivalent to some serial execu-
tion of the transactions. Different serial executions can produce different results, but all are consid-
ered “correct”. Note that if each transaction preserves the consistency, every serializable schedule
also preserves the consistency.

A conflict between two operations occurs if the operations are for different transactions, they are performed
on the same object, and at least one of the operations is a write. There are three variations of conflicts (note
that there are also Phantom Reads and Write-Skew to be covered later):

• Read-Write Conflicts (“Unrepeatable Reads”): A transaction is not able to get the same value
when reading the same object multiple times.

• Write-Read Conflicts (“Dirty Reads”): A transaction sees the write effects of a different transac-
tion before that transaction commits its changes.

• Write-Write Conflicts (“Lost Updates”): One transaction overwrites the uncommitted data of
another uncommitted transaction.

There are two types for serializability: (1) conflict serializability and (2) view serializability. Neither defini-
tion allows all schedules that one would consider serializable. In practice, DBMSs support conflict serial-
izability because it can be enforced efficiently.

Conflict Serializability
Two schedules are conflict equivalent if and only if they involve the same operations of the same transac-
tions and every pair of conflicting operations is ordered in the same way in both schedules. A schedule S
is conflict serializable if it is conflict equivalent to some serial schedule.
One can verify that a schedule is conflict serializable by swapping consecutive non-conflicting operations
of different transactions until a serial schedule is formed. For schedules with many transactions, this
becomes too expensive. A better way to verify schedules is to use a dependency graph (precedence graph).
In a dependency graph, each transaction is a node in the graph. There exists a directed edge from node Ti

to Tj iff an operation Oi from Ti conflicts with an operation Oj from Tj and Oi occurs before Oj in the
schedule. Then, a schedule is conflict serializable iff the dependency graph is acyclic.

15-445/645 Database Systems
Page 4 of 5

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 – Lecture #17 Concurrency Control Theory

Figure 3: Dependency Graph Example

View Serializability
View serializability is a weaker notion of serializibility that allows for all schedules that are conflict serial-
izable and “blind writes” (i.e. performing writes regardless of its original value). Thus, it allows for more
schedules than conflict serializability, but is difficult to enforce efficiently. This is because the DBMS does
not know how the application will “interpret” values. As such, view serializability is not used in practice.
Formally, two schedules S1 and S2 are view equivalent if

• If T1 reads initial value of A in S1, then T1 also reads initial value of A in S2 .
• If T1 reads value of A written by T2 in S1 , then T1 also reads value of A written by T2 in S2 .
• If T1 writes final value of A in S1 , then T1 also writes final value of A in S2

About ”blind writes” : From a database perspective, all that matters is whether the database state is equiv-
alent to some sort of serial execution, so blind writes can still make a set of transactions view serializable
even if its dependency graph has cycles.

Universe of Schedules
SerialSchedules ⊂ ConflictSerializableSchedules ⊂ ViewSerializableSchedules ⊂ AllSchedules

7 ACID: Durability
All of the changes of committed transactions must be durable (i.e., persistent) after a crash or restart, so
there will be no torn updates nor changes from failed transactions. The DBMS can either use logging or
shadow paging to ensure that all changes are durable. This usually requires that committed transactions
are stored in non-volatile memory.

15-445/645 Database Systems
Page 5 of 5

https://15445.courses.cs.cmu.edu/fall2025/

	Motivation
	Transactions
	Definitions
	ACID: Atomicity
	ACID: Consistency
	ACID: Isolation
	ACID: Durability

