Lecture #19: Timestamp Ordering Concurrency Control

15-445/645 Database Systems (Fall 2025)
https://15445.courses.cs.cmu.edu/fall2025/
Carnegie Mellon University
Andy Pavlo

1 Timestamp Ordering Concurrency Control

Timestamp ordering (T/O) is an optimistic class of concurrency control protocols where the DBMS assumes
that transaction conflicts are rare. Instead of requiring transactions to acquire locks before they are allowed
to read/write to a database object, the DBMS instead uses timestamps to determine the serializability order
of transactions.

Each transaction T; is assigned a unique fixed timestamp TS(7};) that is monotonically increasing. Different
schemes assign timestamps at different times during the transaction. Some advanced schemes even assign
multiple timestamps per transaction.

If TS(T;) < TS(T}), then the DBMS must ensure that the execution schedule is equivalent to the serial
schedule where T; appears before 7).

There are multiple timestamp allocation implementation strategies. The DBMS can use the system clock as
a timestamp, typically using UTC to avoid issues from daylight saving. Some DBMSs can get accurate clock
time from satellites. Another option is to use a logical counter. However, this has issues with overflow and
with maintaining the counter across a distributed system with multiple machines. There are also hybrid
approaches that use a combination of both methods.

2 Optimistic Concurrency Control (OCC)

Optimistic concurrency control (OCC) is an optimistic concurrency control protocol which uses times-
tamps to validate transactions. OCC works best when the number of conflicts is low. This is when either
all of the transactions are read-only or when transactions access disjoint subsets of data. If the database
is large and the workload is not skewed, then there is a low probability of conflict, making OCC a good
choice.

In OCC, the DBMS creates a private workspace for each transaction. All modifications of the transaction are
applied to this workspace. Any object written is copied to the workspace and modified there, any object
read is copied to the workspace only if the isolation level guarantees repeatable read. No other transaction
can read the changes made by another transaction in its private workspace.

When a transaction commits, the DBMS compares the transaction’s workspace write set to see whether
it conflicts with other transactions. If there are no conflicts, the write set is installed into the “global”
database.

OCC consists of three phases:

1. Read Phase: Here, the DBMS tracks the read/write sets of transactions and stores their writes in
a private workspace. The DBMS copies every tuple accessed to its private workspace to ensure
repeatable reads.


https://15445.courses.cs.cmu.edu/fall2025/
https://15445.courses.cs.cmu.edu/fall2025/
https://www.cs.cmu.edu/~pavlo/

Fall 2025 — Lecture #19 Timestamp Ordering Concurrency Control

2. Validation Phase: When a transaction commits, it is assigned a unique timestamp and the DBMS
checks whether it conflicts with other transactions.

3. Write Phase: If validation succeeds, the write timestamp is assigned to all modified objects in the
private workspace, and the DBMS installs the private workspace’s changes to the global database
atomically. Otherwise, it aborts and restarts the transaction.

The read phase is where the transaction performs all the works, the validation and the write phase consists
the commit protocol.

Validation Phase

The DBMS assigns transactions timestamps when they enter the validation phase. To ensure only serial-
izable schedules are permitted, the DBMS checks 7; against other transactions for RW and WW conflicts
and makes sure that all conflicts go one way.

+ Approach 1: Forward validation (from older transactions to younger transactions)
« Approach 2: Backward validation (from younger transactions to older transactions)

In forward validation, the DBMS checks the timestamp ordering of the committing transaction with all
other running transactions that have not yet committed. Transactions that have not yet entered the vali-
dation phase are assigned a timestamp of co.

If TS(T;) < TS(1}), then one of the following three conditions must hold:

1. T; completes its Write phase before T} begins its Read phase (serial ordering) (slide 16).
2. T; completes its Write phase before 7 starts its Write phase, and 7; does not write to any object
read by T (slide 17).
« WriteSet(7;) N ReadSet(T;) = @.
3. T; completes its Read phase before T); completes its Read phase, and T; does not write to any object
that is either read or written by 77 (slide 20).
« WriteSet(T;) N ReadSet(T}) = &, and WriteSet(7;) N WriteSet(T}) = @.

In backward validation, the DBMS checks the timestamp ordering of the committing transaction with the
Read/Write sets of transactions that have already committed since the current transaction started, using
the same three conditions as above. This is the more common approach compared to forward validation.

Ideal scenario for OCC: OCC works well when the number of conflicts is low, ideally when all transac-
tions are read-only, or when transactions access disjoint subsets of data.

Potential Issues:

« High overhead for copying data locally into the transaction’s private workspace.

« Validation/Write phase bottlenecks.

+ Aborts are potentially more wasteful than in other protocols because they only occur after a trans-
action has already executed.

« Suffers from timestamp allocation bottleneck.

3 Dynamic Databases and The Phantom Problem

In our previous discussions, we have considered transactions that operate on a static set of objects within
the database. However, when transactions perform insertions, updates, and deletions, we encounter a new
set of complications.

When a transaction scans a range more than once and another transaction inserts or removes tuples that
fall within the range between the scans, the scanning transaction can get different results across multitple

15-445/645 Database Systems
Page 2 of 4


https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 — Lecture #19 Timestamp Ordering Concurrency Control

scans. This is referred to as phantom read.

The phantom problem arises when transactions only lock existing records, neglecting those that are in
the process of being created. Conflict serializability on reads and writes of individual items guarantees
serializability only if the database’s set of objects is fixed.

Approaches to Address the Phantom Problem:

1. Lock Everything:
Transactions may take the lock of the entire table or every page, preventing insertions and deletions
from other transactions during its execution. This approach is expensive as it locks more than the
transaction needs.
2. Re-Execute Scans:
Transactions may re-run queries at commit time to check for different results, indicating missed
changes due to new or deleted records. The DBMS keeps track of the WHERE clauses for all queries
executed by the transaction. At commit time, it re-executes the scans to ensure that the results
remain consistent.
3. Predicate Locking:
This involves acquiring locks based on the predicates of the queries, ensuring that any data that
satisfies the predicate cannot be modified by other transactions. Originally proposed in System R,
this scheme is not widely implemented because of its complexity. However, systems like HyPer
utilize a form of precision locking that is akin to predicate locking.
4. Index Locking;:
Utilizing index keys to protect ranges of data, preventing phantoms by ensuring that no new data
can fall within the locked ranges. Different schemes are employed to prevent phantoms using index
locking:
+ Key-Value Locks: Locks on individual key-values in an index, including virtual keys for non-
existent values.
« Gap Locks: Locks on the gap following a key-value, preventing insertion in these gaps.
« Key-Range Locks: Locks on a range of keys, from one existing key to the next.
« Hierarchical Locking: Allows transactions to hold broader key-range locks with different
modes, reducing lock manager overhead.
In the absence of a suitable index, transactions must fall back to the first approach to lock every
page in the table or the entire table itself to prevent changes that could lead to phantoms. The Index
Locking apporach is the most common among the four.

4 Isolation Levels

Serializability is useful because it allows programmers to ignore concurrency issues but enforcing it may
allow too little parallelism and limit performance. We may want to use a weaker level of consistency to
improve scalability.

Isolation levels control the extent that a transaction is exposed to the actions of other concurrent transac-
tions.

Anomalies:

 Dirty Read: Reading uncommitted data.

« Unrepeatable Reads: Redoing a read retrieves a different result.

« Lost Updates: Transaction overwrites data of another concurrent transaction.

« Phantom Reads: Insertion or deletions result in different results for the same range scan queries.

15-445/645 Database Systems
Page 3 of 4


https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 — Lecture #19 Timestamp Ordering Concurrency Control

Isolation Levels (Strongest to Weakest):

1. SERIALIZABLE: No Phantoms, all reads repeatable, and no dirty reads.
« Possible implementation: Strict 2PL + Phantom Protection (e.g., index locks).
2. REPEATABLE READS: Phantoms may happen.
« Possible implementation: Strict 2PL.
3. READ-COMMITTED: Phantoms, unrepeatable reads, and lost updates may happen.
« Possible implementation: Strict 2PL for exclusive locks, immediate release of the shared lock
after a read.
4. READ-UNCOMMITTED: All anomalies may happen.
« Possible implementation: Strict 2PL for exclusive locks, no shared locks for reads.

The isolation levels defined as part of SQL-92 standard only focused on anomalies that can occur in a
2PL-based DBMS. An application sets a per-transaction isolation level before it starts executing queries.

15-445/645 Database Systems
Page 4 of 4


https://15445.courses.cs.cmu.edu/fall2025/

	Timestamp Ordering Concurrency Control
	Optimistic Concurrency Control (OCC)
	Dynamic Databases and The Phantom Problem
	Isolation Levels

