Lecture #20: Multi-Version Concurrency Control

15-445/645 Database Systems (Fall 2025)
https://15445.courses.cs.cmu.edu/fall2025/
Carnegie Mellon University
Andy Pavlo

1 Multi-Version Concurrency Control

Multi-Version Concurrency Control (MVCC) is a larger concept than just a concurrency control protocol.
It involves all aspects of the DBMS’s design and implementation. MVCC is the most widely used scheme
in DBMSs. It is now used in almost every new DBMS implemented in last 10 years. Even some systems
(e.g., NoSQL) that do not support multi-statement transactions use it.

With MVCC, the DBMS maintains multiple physical versions of a single logical object in the database.
When a transaction writes to an object, the DBMS creates a new version of that object. When a transaction
reads an object, it reads the newest version that existed when the transaction started.

The fundamental concept/benefit of MVCC is that writers do not block readers and readers do not block
writers. This means that one transaction can modify an object while other transactions read old versions.
Writers may still block other writers if they are writing the same object, since there is still a lock on the
versions related to the database object. See slide 8 for an example.

One advantage of using MVCC is that read-only transactions can read a consistent snapshot of the
database without using locks of any kind, and it naturally supports Snapshot Isolation (SI). In MVCC, times-
tamps are used to determine visibility of versions to transactions. Additionally, MVCC without garbage
collection allows the DBMS to support time-travel queries, which are queries based on the state of the
database at some other point in time (e.g. performing a query on the database as it was 3 hours ago).

A typical MVCC-based database design will:

1. Have a versioned storage which stores different versions of the same logical object. (Note: Do not do
this!)

2. Takes a snapshot of the database (by copying the transaction status table) when a transaction starts.

3. Use the snapshot to determine which versions of objects are visible to the transaction.

Snapshot Isolation

Snapshot Isolation involves providing a transaction with a consistent snapshot of the database when the
transaction started. Data values from a snapshot consist of only values from committed transactions, and
the transaction operates in complete isolation from other transactions until it finishes. This is ideal for read-
only transactions since they do not need to wait for writes from other transactions. Writes are maintained
in a transaction’s private workspace or written to the storage with transaction metadata and only become
visible to the database once the transaction successfully commits.

Write Conflicts If two transactions update the same object, the first writer wins.

Write Skew Anomaly can occur in Snapshot Isolation when two concurrent transactions modify different
objects resulting in non-serializable schedules. For example, if one transaction changes all white marbles to


https://15445.courses.cs.cmu.edu/fall2025/
https://15445.courses.cs.cmu.edu/fall2025/
https://www.cs.cmu.edu/~pavlo/

Fall 2025 - Lecture #20 Multi-Version Concurrency Control

black and the other changes all black marbles to white, the outcome may not correspond to any serializable
schedule. See slides 28 to 31 for details.

There are five important MVCC design considerations:

Concurrency Control Protocol
Version Storage

Garbage Collection

Index Management

Deletes

M .

The choice of concurrency protocol is between the approaches discussed in previous lectures (two-phase
locking, timestamp ordering, optimistic concurrency control).

2 Design consideration: Version Storage

This is how the DBMS will store the different physical versions of a logical object and how transactions
find the newest version visible to them.

The DBMS uses the tuple’s pointer field to create a version chain per logical tuple, which is essentially
a linked list of versions sorted by timestamp. This allows the DBMS to find the version that is visible to
a particular transaction at runtime. Indexes always point to the “head” of the chain, which is either the
newest or oldest version depending on implementation. A thread traverses chain until it finds the correct
version. Different storage schemes determine where/what to store for each version.

Approach #1: Append-Only Storage

All physical versions of a logical tuple are stored in the same table space. Versions are mixed together in
the table and each update just appends a new version of the tuple into the table and updates the version
chain. The chain can either be sorted oldest-to-newest (O2N) which requires chain traversal on look-ups,
or newest-to-oldest (N20), which requires updating index pointers for every new version (i.e. no need to
traverse the chain. This is typically the better approach because most txns only care about the newest
version). See slides 37 to 40 for an example.

Approach #2: Time-Travel Storage

The DBMS maintains a separate table called the time-travel table which stores older versions of tuples.
On every update, the DBMS copies the old version of the tuple to the time-travel table and overwrites the
tuple in the main table with the new data. Pointers of tuples in the main table point to past versions in the
time-travel table. See slides 42 to 46 for an example.

Approach #3: Delta Storage

Like time-travel storage, but instead of the entire past tuples, the DBMS only stores the deltas, or changes
between tuples in what is known as the delta storage segment. Transactions can then recreate older ver-
sions by iterating through the deltas in reverse order and applying them. This results in faster writes than
time-travel storage but slower reads. See slides 47 to 51 for an example.

15-445/645 Database Systems
Page 2 of 4


https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #20 Multi-Version Concurrency Control

3 Design consideration: Garbage Collection

The DBMS needs to remove reclaimable physical versions from the database over time. A version is re-
claimable if no active transaction can “see” that version or if it was created by a transaction that was
aborted. We can either perform tuple level, or transaction level garbage collection.

Approach #1: Tuple-level GC
With tuple-level garbage collection, the DBMS finds old versions by examining tuples directly. There are
two approaches to achieve this:

« Background Vacuuming: Separate threads periodically scan the table and look for reclaimable
versions. This works with any version storage scheme. A simple optimization is to maintain a “dirty
page bitmap,” which keeps track of which pages have been modified since the last scan. This allows
the threads to skip pages which have not changed. See slides 54 to 60 for an example.

« Cooperative Cleaning: Worker threads identify reclaimable versions as they traverse version
chain. This only works with O2N chains. The data will never be cleaned if it is not accessed.

Approach #2: Transaction-level GC

Under transaction-level garbage collection, each transaction is responsible for keeping track of their own
old versions so the DBMS does not have to scan tuples. Each transaction maintains its own read/write set.
When a transaction completes, the garbage collector can use that to identify which tuples to reclaim. The
DBMS determines when all versions created by a finished transaction are no longer visible. See slides 66
to 73 for an example.

4 Design consideration: Index Management

All primary key (pkey) indexes always point to version chain head. How often the DBMS has to update the
pkey index depends on whether the system creates new versions when a tuple is updated. If a transaction
updates a pkey attribute(s), then this is treated as a DELETE followed by an INSERT.

Managing secondary indexes is more complicated. There are two approaches to handling them.

Approach #1: Logical Pointers

The DBMS uses a fixed identifier per tuple that does not change. This requires an extra indirection layer
that maps the logical id to the physical location of the tuple. Then, updates to tuples can just update the
mapping in the indirection layer.

Approach #2: Physical Pointers

The DBMS uses the physical address to the version chain head. This requires updating every index when
the version chain head is updated, which can be very expensive.

Imaging a table with a primary index, and multiple secondary indices, using physical pointers requires
each secondary index to point to the tuple version chain’s physical address, and each update to the tuple
requires and update to all the secondary indices. With a logical pointer approach, the secondary indices
point to the location in the primary index corresponding to the tuple, thus requiring less overhead when
the tuple is updated.

15-445/645 Database Systems
Page 3 of 4


https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #20 Multi-Version Concurrency Control

MVCC duplicate key problem

MVCC DBMS indexes (usually) do not store version information about tuples with their keys. Instead,
every index must support duplicate keys from different snapshots, since the same key may point to different
logical tuples in different snapshots.

MVCC Duplicate Key Problem describes this need to support duplicate keys in MVCC DBMS indexes
when multiple transactions need multiple versions of the same logical tuple. For example, say TXN 1
points to version 0 of a logical tuple, and TXN 2 creates a version 1 of that same logical tuple. Our index
would need to point to both of these versions for both TXNs so the proper version is accessible to each
transaction at all times.

Workers may get back multiple entries for a single fetch, and they then must follow the pointers to find
their proper physical version.

5 Design consideration: Deletes

The DBMS physically deletes a tuple from the database only when all versions of a logically deleted tuple
are not visible. If a tuple is a deleted, then there cannot be a new version of that tuple after the newest
version. This means no write-write conflicts, and the first-writer wins.

We need a way to denote that a tuple has been logically deleted at some point in time. There are two
approaches to this.

Approach #1: Deleted Flag
Maintain a flag to indicate that the logical tuple has been deleted after the newest physical version. This
can either be in the tuple header or a separate column.

Approach #2: Tombstone Tuple

Create an empty physical version to indicate that a logical tuple is deleted. Use a separate pool for tomb-
stone tuples with only a special bit pattern in version chain pointer to reduce storage overhead.

15-445/645 Database Systems
Page 4 of 4


https://15445.courses.cs.cmu.edu/fall2025/

	Multi-Version Concurrency Control
	Design consideration: Version Storage
	Design consideration: Garbage Collection
	Design consideration: Index Management
	Design consideration: Deletes

