Lecture #22: Database Crash Recovery

15-445/645 Database Systems (Fall 2025)
https://15445.courses.cs.cmu.edu/fall2025/
Carnegie Mellon University
Andy Pavlo

1 Crash Recovery

The DBMS relies on its recovery algorithms to ensure database consistency, transaction atomicity, and
durability despite failures. Each recovery algorithm is comprised of two parts:

+ Actions during normal transaction processing to ensure that the DBMS can recover from a failure
« Actions after a failure to recover the database to a state that ensures the atomicity, consistency, and
durability of transactions.

The key to database resilience is the management of transaction integrity and durability, particularly in
failure scenarios. This foundational concept sets the stage for the introduction of the ARIES recovery
algorithm.

Algorithms for Recovery and Isolation Exploiting Semantics (ARIES) is a recovery algorithm developed
at IBM research in early 1990s for the DB2 system.

There are three key concepts in the ARIES recovery protocol:

« Write Ahead Logging: Any change is recorded in log on stable storage before the database change
is written to disk (STEAL + NO-FORCE).

+ Repeating History During Redo: On restart, retrace actions and restore database to exact state
before crash.

+ Logging Changes During Undo: Record undo actions to log to ensure action is not repeated in
the event of repeated failures.

2 WAL Records

Write-ahead log records extend the DBMS’s log record format to include a globally unique log sequence
number (LSN). All log records have an LSN. A high level diagram of how log records with LSN’s are written
is shown in Figure 1.

Each data page contains a pageL SN, which is the LSN of the most recent update to that page. The pagelLSN
is updated every time a transaction modifies a record in the page.

The DBMS also keeps track of the max LSN flushed so far (flushedLSN). The flushedLSN in memory is
updated every time the DBMS writes out the WAL buffer to disk.

Various components in the system keep track of LSNs that pertain to them. Section 2 shows a summary
of these LSNs.

3 Normal Execution

Every transaction invokes a sequence of reads and writes, followed by a commit or abort. It is this sequence
of events that recovery algorithms must have.

https://15445.courses.cs.cmu.edu/fall2025/
https://15445.courses.cs.cmu.edu/fall2025/
https://www.cs.cmu.edu/~pavlo/

Fall 2025 - Lecture #22 Database Crash Recovery

= e e \ pm——————— A— L— ————— \|

1 R 1 ‘A’

1 i 1 1

1 WAL (Tall) : 1 001:<T, BEGIN> 1

1 017:<T- BEGIN> i I 002:<T;, A, 1, 2> 1
. 5 003:<T; COMMIT>

i |]018:<Ts, A, 9, & : : e T |

1| |019:<T5, B, 5, 1> I I ae7. CheceoniT> :

:<T, >

: 020:<T5; COMMIT> : : 009:<T;, A, 3, 4> 1
H 010:<T, BEGIN> I
: 011:<Ty, X, 5, 6

: : : B12:ZT:, Y, 9, 7; 1

013:<Ts, B, 4, 2>

[IS J 1 1 014:<T) COMMIT> 1

1 1 1 015:<T,, B, 2, 3> 1

1 N 1 016:<T,. C. 1, 2> 1

i Buffer Pool 1 i L/ I

! : ' :

: a=]B=5]c=2 . 1 [la-sle=slc2 :

- | g — |

1 flushedLSN 1 1 1

(W J 1 I Database]

Figure 1: Writing Log Records — Each WAL has a counter of LSNs that is incre-
mented at every step. The page also keeps a pageLSN, which stores the most recent
log record that updated this page. The flushedLSN is a pointer to the last LSN that
was written out to disk. Before the DBMS can write page 7 to disk, it must flush log
at least to the point where pageLSN; < flushedLSN. The MasterRecord points to the
last successful checkpoint passed.

Name | Location Definition
flushedLSN | Memory Last LSN in log on disk
pageLSN | page, Newest update to page,
recLSN | Dirty Page Table Oldest update to pagex since it was last flushed
lastLSN | Active Transaction Table | Latest record of txn T; (managed by transaction)
MasterRecord | Disk LSN of latest checkpoint

Table 1: Log Sequence Number Types — A list of the different LSNs that a DBMS
maintains in its internal components and data structures.

Transaction Commit

When a transaction goes to commit, the DBMS first writes COMMIT record to log buffer in memory. Then
the DBMS flushes all log records up to and including the transaction’s COMMIT record to disk. Note that
these log flushes are sequential, synchronous writes to disk. There can be multiple log records per log
page. A diagram of a transaction commit is shown in Figure 2.

Once the COMMIT record is safely stored on disk, the DBMS returns an acknowledgment back to the ap-
plication that the transaction has committed. At some later point, the DBMS will write a special TXN-END
record to log. This indicates that the transaction is completely finished in the system and there will not be
anymore log records for it. These TXN-END records are used for internal bookkeeping and do not need to
be flushed immediately.

Transaction Abort
Aborting a transaction is a special case of the ARIES undo operation applied to only one transaction.

An additional field is added to the log records called the prevLSN. This corresponds to the previous LSN
for the transaction. The DBMS uses these prevLSN values to maintain a linked-list for each transaction
that makes it easier to walk through the log to find its records.

A new type of record called the compensation log record (CLR) is also introduced. A CLR describes the

15-445/645 Database Systems
Page 2 of 6

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #22 Database Crash Recovery

e i e e \ ym———————— A_ L_ _____ \|
1 AN ! W
[i [1
i WAL (Tall) : I 991:<T, BEGIN> 1
<Ty, A, 1, 2>
| 017:<T; BEGIN> 1 | 003:<T, COMMIT> :
| |o18:<T5, A, 9, 8> ! | 0o LR 5 i
006:<T; BEGIN>
1 019:<T;, B, 5, 1> 1 | 907 : CHECKPOINT> ¢ :
:<T, >
| [[020:Ts comwir> l L i !
! : ! ! Ll |
1 1 1 013:<Ts. B, 4, 2> I
I U J 1 | 014:<T; COMMIT>
1 1 1 015:<T,, B, 2, 3> |
I N\ g } 016:<T,, C, 1, 2> 1
I Buffer Pool - 1 [— I
) oo : } :
i —o[B=5]c- i |la=g[B=5c=2 i
| A=9 Cc=2 1 i [
1 1 # MasterRecord |
1 flushedL SN 1 1 1
I y I Database J

Figure 2: Transaction Commit — After the transaction commits (015), the log is
flushed out and the flushedLSN is modified to point to the last log record generated.
At some later point, a transaction end message is written to signify in the log that
this transaction will not appear again. Then we can trim the in-memory log up to
flushedLSN.

actions taken to undo the actions of a previous update record. It has all the fields of an update log record
plus the undoNextLSN pointer (i.e., the next-to-be-undone LSN). The DBMS adds CLRs to the log like any
other record but they never need to be undone. Moreover, the DBMS does not wait for CLRs to be flushed to
disk before notifying the application that the transaction has been aborted. This approach ensures efficient
transaction management, especially in scenarios involving transaction rollbacks.

To abort a transaction, the DBMS first appends a ABORT record to the log buffer in memory. It then undoes
the transaction’s updates in reverse order to remove their effects from the database. For each undone
update, the DBMS creates CLR entry in the log and restore old value. After all of the aborted transaction’s
updates are reversed, the DBMS then writes a TXN-END log record. A diagram of this is shown in Figure 3.

4 Checkpointing

The DBMS periodically takes checkpoints where it writes the dirty pages in its buffer pool out to disk. This
is used to minimize how much of the log it has to replay upon recovery.

The first two blocking checkpoint methods discussed below pause transactions during the checkpoint
process. This pausing is necessary to ensure that the DBMS does not miss updates to pages during the
checkpoint. Then, a better approach that allows transactions to continue to execute during the checkpoint
but requires the DBMS to record additional information to determine what updates it may have missed is
presented.

Non-Fuzzy Checkpoints
The DBMS halts the execution of transactions and queries when it takes a checkpoint to ensure that it writes
a consistent snapshot of the database to disk. The is the same approach discussed in previous lecture:

« Halt the start of any new transactions.
« Wait until all active transactions finish executing.
« Flush dirty pages to disk.

15-445/645 Database Systems
Page 3 of 6

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #22 Database Crash Recovery

TRANSACTION ABORT - CLR EXAMPLE

LSN prevLSN TxnId Type Object Before After UndoNextLSN
001 nil i BEGIN - - - -
002 001 T, UPDATE A 30 40 -
011 002 T, ABORT - - - -
026 011 T, CLR-002 A 40 30 001
027 026 T, TXN-END - - = nil
prevLSN prevLSN prevLSN prevLSN prevLSN
P N N
utl][[JfJu2|lT][] []us [JarsN [JoareN [[arN
A LS — undoNextLsN
T SV undoNextLSN }

i (Spring 2024)

Figure 3: Transaction Abort — The DBMS maintains an LSN and prevLSN for each
log record that the transaction creates. When the transaction aborts, all of the pre-
vious changes are reversed. After the log entries of the reversed changes make it to
disk, the DBMS appends the TXN-END record to the log for the aborted transaction.

While this process impacts runtime performance, it significantly simplifies recovery.

Slightly Better Blocking Checkpoints

Like previous checkpoint scheme except that you the DBMS does not have to wait for active transactions
to finish executing. The DBMS now records the internal system state as of the beginning of the checkpoint.

« Halt the start of any new transactions.
+ Pause transactions while the DBMS takes the checkpoint.

The checkpoint process requires recording the internal state at its commencement. This includes two key
components: the Active Transaction Table (ATT), which tracks ongoing transactions, and the Dirty Page
Table (DPT), which lists all modified pages not yet written to disk.

Active Transaction Table (ATT): The ATT represents the state of transactions that are actively running
in the DBMS. A transaction’s entry is removed after the DBMS completes the commit/abort process for
that transaction. For each transaction entry, the ATT contains the following information:

« transactionld: Unique transaction identifier
« status: The current “mode” of the transaction (Running, Committing, Undo Candidate).
+ lastLSN: Most recent LSN written by transaction

Note that the ATT contains every transcation without the TXN-END log record. This includes both trans-
actions that are either committed or abort.

Dirty Page Table (DPT): The DPT contains information about the pages in the buffer pool that were
modified by uncommitted transactions. There is one entry per dirty page containing the recLSN (i.e., the
LSN of the log record that first caused the page to be dirty).

The DPT contains all pages that are dirty in the buffer pool. It doesn’t matter if the changes were caused
by a transaction that is running, committed, or aborted.

Overall, the ATT and DPT are vital in both checkpointing and recovery processes. During checkpointing,
they capture the database’s current state, with the ATT tracking active transactions and the DPT listing

15-445/645 Database Systems
Page 4 of 6

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #22 Database Crash Recovery

unflushed modified pages. In recovery, such as with the ARIES protocol, these tables aid in restoring the
database to its consistent pre-crash state.

Fuzzy Checkpoints
A fuzzy checkpoint is where the DBMS allows other transactions to continue to run. This is what ARIES
uses in its protocol.

The DBMS uses additional log records to track checkpoint boundaries:

« <CHECKPOINT-BEGIN>: Indicates the start of the checkpoint. At this point, the DBMS takes a snap-
shot of the current ATT and DPT, which are referenced in the <CHECKPOINT-END> record. Transac-
tions that start after the checkpoint initiation are not included in the ATT.

« <CHECKPOINT-END>: When the checkpoint has completed. It contains the ATT + DPT, captured just
as the <CHECKPOINT-BEGIN> log record is written.

Upon the completion of the checkpoint, the LSN of the <CHECKPOINT-BEGIN> record is recorded in the
MasterRecord.

Fuzzy checkpoints strike a balance between performance and recoverability by minimizing transaction
disruption while still capturing sufficient recovery information.

5 ARIES Recovery

The ARIES protocol is comprised of three phases. Upon start-up after a crash, the DBMS will execute the
following phases as shown in Figure 4:

1. Analysis: Read the WAL to identify dirty pages in the buffer pool and active transactions at the
time of the crash. At the end of the analysis phase the ATT tells the DBMS which transactions were
active at the time of the crash. The DPT tells the DBMS which dirty pages might not have made it
to disk.

2. Redo: Repeat all actions starting from an appropriate point in the log (even txns that will abort).

3. Undo: Reverse the actions of transactions that did not commit before the crash.

Analysis Phase
Start from last checkpoint found via the database’s MasterRecord LSN.

1. Scan log forward from the checkpoint.

2. If the DBMS finds a TXN-END record, remove its transaction from ATT.

3. All other records, add transaction to ATT with status UNDO, and on commit, change transaction
status to COMMIT.

4. For UPDATE log records, if page P is not in the DPT, then add P to DPT and set P’s recLSN to the
log record’s LSN.

Redo Phase

The goal of this phase is for the DBMS to repeat history to reconstruct its state up to the moment of the
crash. It will reapply all updates (even aborted transactions) and redo CLRs.

The DBMS scans forward from log record containing smallest recLSN in the DPT. For each update log
record or CLR with a given LSN, the DBMS re-applies the update unless:

« Affected page is not in the DPT, or

15-445/645 Database Systems
Page 5 of 6

https://15445.courses.cs.cmu.edu/fall2025/

Fall 2025 - Lecture #22 Database Crash Recovery

:

Oldest log
record of txn

active at crash

Smallest
recLSN in DPT

after Analysis

Start of last
checkpoint

CRASH! .

o
—————————————————————————————

Figure 4: ARIES Recovery: The DBMS starts the recovery process by examining
the log starting from the last BEGIN-CHECKPOINT found via MasterRecord. It then
begins the Analysis phase by scanning forward through time to build out ATT and
DPT. In the Redo phase, the algorithm jumps to the smallest recLSN, which is the
oldest log record that may have modified a page not written to disk. The DBMS then
applies all changes from the smallest recLSN. The Undo phase starts at the oldest log
record of a transaction active at crash and reverses all changes up to that point.

« Affected page is in DPT but that log record’s LSN is less than the page’s recLSN, (the update was
propagated to disk), or

« Affected pageLSN (on disk) > LSN. (Note, we must fetch the page from the disk to read the page
value.)

To redo an action, the DBMS re-applies the change in the log record and then sets the affected page’s
pageLSN to that log record’s LSN. Also, there is no additional logging or forced flushes.

At the end of the redo phase, write TXN-END log records for all transactions with status COMMIT and
remove them from the ATT.

Undo Phase
In the last phase, the DBMS reverses all transactions that were active at the time of crash. These are all
transactions with UNDO status in the ATT after the Analysis phase.

The DBMS processes transactions in reverse LSN order using the lastLSN to speed up traversal. At each
step, pick the largest lastLSN across all transactions in the ATT. As it reverses the updates of a transaction,
the DBMS writes a CLR entry to the log for each modification.

Once the last transaction has been successfully aborted, the DBMS flushes out the log and then is ready to
start processing new transactions.

15-445/645 Database Systems
Page 6 of 6

https://15445.courses.cs.cmu.edu/fall2025/

	Crash Recovery
	WAL Records
	Normal Execution
	Checkpointing
	ARIES Recovery

