
Lecture #23: Introduction to Distributed Databases
15-445/645 Database Systems (Fall 2025)

https://15445.courses.cs.cmu.edu/fall2025/
Carnegie Mellon University

Andy Pavlo

1 Distributed DBMSs
A distributed DBMS divides a single logical database across multiple physical resources. The application
is (usually) unaware that data is split across separated hardware. The system relies on the techniques and
algorithms from single-nodeDBMSs to support transaction processing and query execution in a distributed
environment. Important goals of using a distributed DBMS are fault tolerance (avoiding a single node
failure taking down the entire system) and scalability (storing data that does not fit in a single node).
The differences between parallel and distributed DBMSs are:
Parallel Database:

• Nodes are physically close to each other.
• Nodes are connected via high-speed LAN (fast, reliable communication fabric).
• The communication cost between nodes is assumed to be small. As such, one does not need to worry
about nodes crashing or packets getting dropped when designing internal protocols.

Distributed Database:

• Nodes can be far from each other.
• Nodes are potentially connected via a public network, which can be slow and unreliable.
• The communication cost and connection problems cannot be ignored. Nodes can crash and packets
can get dropped.

2 System Architectures
A DBMS’s system architecture specifies what shared resources are directly accessible to CPUs. It affects
how CPUs coordinate with each other and where they retrieve and store objects in the database.
A single-node DBMS uses what is called a shared everything architecture. This single node executes work-
ers on a local CPU(s) with its own local memory and a local disk.

Shared Nothing
In a shared nothing environment, each node has its own CPU, memory, and disk. Nodes only communicate
with each other via network. Before the rise of cloud storage platforms, the shared nothing architecture
was the common way to build distributed DBMSs since it can be built using the off-the-shelf servers.
It is more difficult to increase capacity in this architecture because the DBMS has to physically move data
to new nodes. It is also difficult to ensure consistency across all nodes in the DBMS, since the nodes must
coordinate with each other on the state of transactions. The advantage, however, is that shared nothing
DBMSs can potentially achieve better performance and are more efficient then other types of distributed
DBMS architectures.

https://15445.courses.cs.cmu.edu/fall2025/
https://15445.courses.cs.cmu.edu/fall2025/
https://www.cs.cmu.edu/~pavlo/


Fall 2025 – Lecture #23 Introduction to Distributed Databases

Figure 1: Database System Architectures – Four system architecture approaches
ranging from sharing everything (used by non distributed systems) to sharing mem-
ory, disk, or nothing.

Shared Disk
In a shared disk architecture, all CPUs can read and write to a single logical disk through a network, but
each have its own private memory. Each compute node usually has a small local disk to cache the data
from the shared disk. This approach is more common in cloud-based DBMSs, facilitating data lakes and
serverless systems.
By decoupling DBMS’s storage layer from its execution layer, we can scale them independently. Adding
new storage nodes or execution nodes does not affect the layout or data location in the other layer.
Nodes must send messages between them to learn about other node’s current state. That is, since memory
is local, if data is modified, changes must be communicated to other CPUs in the case that piece of data is
in main memory for the other CPUs.

Shared Memory
In a shared memory architecture, CPUs have access to common memory address space via a fast intercon-
nect. They also share the same disk. Each processor has a global view of all the in-memory data structures.
In practice, most DBMSs do not use this architecture because the network as fast as CPU and memory is
expensive.

3 Design Issues
Distributed DBMSs aim to maintain data transparency, meaning that users should not be required to know
where data is physically located, or how tables are partitioned or replicated. The details of how data is
being stored is hidden from the application. In other words, a SQL query that works on a single-node
DBMS should work the same on a distributed DBMS.
The key design questions that distributed database systems must address are the following:

• How does the application find data?
• Where does the application send queries?
• How should queries be executed on a distributed data? Should the query be pushed to where the
data is located? Or should the data be pooled into a common location to execute the query?

• How should the database be divided across resources?
• How does the DBMS ensure correctness?

15-445/645 Database Systems
Page 2 of 5

https://15445.courses.cs.cmu.edu/fall2025/


Fall 2025 – Lecture #23 Introduction to Distributed Databases

Figure 2: Naive Table Partitioning – Given two tables, place all the tuples in table
one into one partition and the tuples in table two into the other.

4 Partitioning Schemes
Distributed system must partition the database across multiple resources, including disks, nodes, proces-
sors. This process is sometimes called sharding in NoSQL systems. When the DBMS receives a query, it
first analyzes the data that the query plan needs to access. The DBMS may potentially send fragments of
the query plan to different nodes, then combines the results to produce a single answer.
The goal of a partitioning scheme is to maximize single-node transactions, or transactions that only access
data contained on one partition. This allows the DBMS to not need to coordinate the behavior of concurrent
transactions running on other nodes. On the other hand, a distributed transaction accesses data at one or
more partitions. This requires expensive, difficult coordination, discussed in the below section.

Implementation
The simplest way to partition tables is naive data partitioning. Each node stores one table, assuming enough
storage space for a given node. This is easy to implement because a query is just routed to a specific
partitioning. However, this does not scale and is suboptimal when queries join data across tables or when
there is non-uniform access patterns (some nodes are more utilized than others). See Figure 2 for an
example.
Another way of partitioning is vertical partitioning, which splits a table’s attributes into separate partitions.
Each partition must also store tuple information for reconstructing the original record.
A more common approach is horizontal partitioning that splits a table’s tuples into disjoint subsets. Choose
column(s) that divides the database equally in terms of size, load or usage. These keys are called the
partitioning key(s). The DBMS can partition a database physically (shared nothing) or logically (shared
disk) based on hashing, data ranges or predicates. See Figure 3 for an example.

Logical Partitioning: A node is responsible for a set of keys, but it doesn’t actually store those keys.
This is commonly used in a shared disk architecture.

Physical Partitioning: A node is responsible for a set of keys, and it physically stores those keys. This
is commonly used in a shared nothing architecture.

Handling Cluster Size Changes
The problem of hash partitioning is that when a node is added or removed, a lot of data has to be shuf-
fled around. The solution is to use a hashing scheme that can add/remove paritions without having to
reorganize the entire database.

15-445/645 Database Systems
Page 3 of 5

https://15445.courses.cs.cmu.edu/fall2025/


Fall 2025 – Lecture #23 Introduction to Distributed Databases

Figure 3: Horizontal Table Partitioning – Use hash partitioning to decide where
to send the data. When the DBMS receives a query, it will use the table’s partitioning
key(s) to find out where the data is.

Consistent Hashing: This approach assigns every node to a location on some logical ring. Then the
hash of every partition key maps to a location on the ring. The node that is closest to the key in the
clockwise direction is responsible for that key. See Figure 4 for an example. When a node is added or
removed, keys are only moved between nodes adjacent to the new/removed node and so only 1/n fraction
of the keys are moved. A replication factor of k means that each key is replicated at the k closest nodes in
the clockwise direction.

Figure 4: Consistent Hashing – All nodes are responsible for some portion of hash
ring. Here, node P1 is responsible for storing key1 and node P3 is responsible for
storing key2.

RendezvousHashing: Rendezvous Hashing (also called Highest-RandomWeight hashing) assigns each
key to a partition by computing a hash score for every partition and choosing the one with the highest
score. For a key k and partition identifier p, the DBMS computes a hash value over the concatenation
h(k∥p); the partition whose score ranks highest wins the key. This avoids the ring structure required by
Consistent Hashing and provides stable mappings: when nodes join or leave, only keys whose top-ranked
partition changed must be moved.
Consistent Hashing can be viewed as a specialized optimization of Rendezvous Hashing.

5 Distributed Concurrency Control
A single-node transaction accesses data that is contained in one partition and does not require inter-node
coordination. In contrast, a distributed transaction accesses data at one or more partitions, which requires

15-445/645 Database Systems
Page 4 of 5

https://15445.courses.cs.cmu.edu/fall2025/


Fall 2025 – Lecture #23 Introduction to Distributed Databases

Figure 5: Centralized Coordinator – The client communicates with the coordina-
tor to acquire locks on the partitions that the client wants to access. Once it receives
an acknowledgement from the coordinator, the client sends its queries to those par-
titions. Once all queries for a given transaction are done, the client sends a commit
request to the coordinator. The coordinator then communicates with the partitions
involved in the transaction to determine whether the transaction is allowed to com-
mit.

expensive coordination. There are two approaches for the coordination: centralized and decentralized.

Centralized coordinator
The centralized coordinator acts as a global “traffic cop” that coordinates all the behavior. See Figure 5 for
a diagram.
Centralized coordinators can be implemented as a middleware, which accepts query requests and routes
queries to correct partitions.

Decentralized coordinator
In a decentralized approach, nodes organize themselves. The client directly sends queries to one of the
nodes. This leader node will send results back to the client. The leader node is in charge of communicating
with other partitions in other nodes and ensuring correct commit behavior.

6 Federated Databases
These are distributed architectures that connect together multiple DBMSs into a single logical system. This
is more popular in bigger companies. A query can access data at any location. This is hard due to different
data models, query languages, and limitations of each individual DBMS. Additionally, there is no easy way
to optimize queries. Lastly, there is a lot of data copying involved.
For example, say there is an application server which makes some queries. These queries then go through
a middleware layer (which will convert the query into a readable format for a given DBMS used in the
bigger system) that via connectors, will go through the multiple back-end DBMSs that are deployed in the
system. The middleware will then handle the results returned from the DBMSs.

15-445/645 Database Systems
Page 5 of 5

https://15445.courses.cs.cmu.edu/fall2025/

	Distributed DBMSs
	System Architectures
	Design Issues
	Partitioning Schemes
	Distributed Concurrency Control
	Federated Databases

