Carnegie Mellon University

DATABASE
GYSTEMS

Sortlng & Aggregatlo

LECTURE #11)) 15-445/645 FALL 2025)) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Homework #3 is due Sunday Oct 5 @ 11:59pm

Mid-Term Exam is on Wednesday Oct 8™
— Lectures #01-11 (inclusive)

— Study guide is now available (@126)

— Bring your CMU ID!

Project #2 is due Sunday Oct 26" @ 11:59pm

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025/schedule.html#oct-08-2025
https://15445.courses.cs.cmu.edu/fall2025/schedule.html#oct-08-2025
https://15445.courses.cs.cmu.edu/fall2025/schedule.html#oct-08-2025
https://piazza.com/class/me9159rcdhm69w/post/126

COURSE OUTLINE =

We are now going to talk about how Query Planning

to execute queries using the DBMS

components we have discussed so far. ‘ Operator Execution ‘
Access Methods

Next four lectures:

— Operator Algorithms Buffer Pool Manager
— Query Processing Models

— Runtime Architectures Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

QUERY PLAN

The operators are arranged in a tree.

Data flows from the leaves of the tree

up towards the root.
— We will discuss the granularity of the data
movement next week.

The output of the root node is the
result of the query.

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

1
n R.id, S.cdate
!

Dirz. id=S.1id

q value>100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DISK-ORIENTED DBMS

Just like it cannot assume that a table fits entirely in
memory, a disk-oriented DBMS cannot assume that
query results fit in memory.

We will use the buffer pool to implement algorithms
that need to spill to disk.

We are also going to prefer algorithms that maximize
the amount of sequential I/O.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WHY DO WE NEED TO SORT?

Relational model/SQL is unsorted.

Queries may request that tuples are sorted in a specific
way (ORDER BY).

But even if a query does not specify an order, we may

still want to sort to do other things:

— Trivial to support duplicate elimination (DISTINCT).
— Bulk loading sorted tuples into a B+Tree index is faster.
— Aggregations (GROUP BY).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

IN-MEMORY SORTING

[f data fits in memory, then the DBMS can use a

standard sorting algorithm.

— Optimized algorithms if data is mostly sorted (VergeSort).
— Otherwise use your favorite (QuickSort, TimSort, RadixSort).
— Many online visualization tools.

[f data does not fit in memory, then we need to use a
technique that is aware of the cost of reading and
writing disk pages...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://github.com/Morwenn/vergesort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Timsort
https://en.wikipedia.org/wiki/Radix_sort
https://www.toptal.com/developers/sorting-algorithms

SORTING ALGORITHMS

For a given input run (i.e., list of
key/value pairs), sort it based on a
comparison function and sorting
parameters.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
— Tuple (early materialization).
— Record ID (late materialization).

Early Materialization
K, <Tuple Data>
K, <Tuple Data>
Late Materialization
K, o K, O [eee
\Record ID/
Offset

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SORTING ALGORITHMS

F—

For a given input run (i.
key/value pairs), sort it |

. . |
compadarison function ang

parameters. / lntrOdUCing

Key: The attribute(s) /’ it
ey: The attribute(s) to PNT -
to compute the sort ord material 1zation

Clickhouse gets lazier
(and faster)

Value: Two choices
— Tuple (early materialization).
— Record ID (late materialization).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://clickhouse.com/blog/clickhouse-gets-lazier-and-faster-introducing-lazy-materialization

TODAY'S AGENDA

Top-N Heap Sort

External Merge Sort
Aggregations

DB Flash Talk: MotherDuck

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://motherduck.com/

TUDAY'S IIQDuckDB
'Redesigning
Top-N Heap Sort | DUCkDB'S SOI‘t, Again
External Merge Sort P

2025-09-24 - 16 min

A g gr e g atio n S TL;DR: After four years, we've decided to redesign DuckDB's sort

implementation, again. In this Post, we present and evaluate the new design.

5DB FlaSh Talk: MOtherDu ! DuckDB v1.4.0 was just released, which includes a complete redesign of

‘ DuckDB's sort implementation. We redesigned DuckDB's sort just four years ago,
which allowed DuckDB to sort more data than fits in main memory, in parallel, with
highly efficient comparisons. This implementation served us well, but since then
we've implemented larger-than-memory query processing for more operators,
such as the hash join 7 and hash aggregation 7, which both use a new and
improved spillable page layout (7. We presented this layout in an earlier blog post.
We decided to integrate this layout in DuckDB's sort, and completely redesigned
the implementation =.

Not interested in the implementation? Jump straight to the benchmark!
——1R-straight to the benchmark!

Two-Phase Sorting

DuckDB implements parallel query execution using Morsel-Driven Parallelism 7.
OrSel-Driven Parallelism

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://motherduck.com/
https://duckdb.org/2025/09/24/sorting-again.html

TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS

WITH TIES

Original Data

3114|6291]|4]|4]|38

Sorted Heap

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS

WITH TIES

Original Data

3114|6291]|4]|4]|38

Sorted Heap

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS

WITH TIES

Original Data

3114|6291]|4]|4]|38

*

Sorted Heap

3|4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS

WITH TIES

Original Data

3114|6291]|4]|4]|38

*

Sorted Heap

3|14(6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS

WITH TIES

Original Data

3114|6291]|4]|4]|38

*

Sorted Heap

3|14(6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS

WITH TIES

Original Data

3114|6291]|4]|4]|38

*

Sorted Heap

2 (3|46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

TOP-N HEAP SORT

SELECT * FROM enrolled
ORDER BY sid ASC

[f a query contains an ORDER BY with a

LIMIT, then the DBMS only needs to FETCH FIRST 2 ROWS
scan the data once to find the top-IN WITH TIES
elements. .

Original Data
Ideal scenario for HeapSort if the top- ARARALI SN AN LA RAL
N elements fit in memory. ‘.‘
— Scan data once, maintain an in-memory Skip!

sorted priority queue.

Sorted Heap

2 (3|46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

TOP-N HEAP SORT

SELECT * FROM enrolled
ORDER BY sid ASC

[f a query contains an ORDER BY with a

LIMIT, then the DBMS only needs to FETCH FIRST 4 ROWS
scan the data once to find the top-IN WITH TIES
elements. —

Original Data

3114|6291]|4]|4]|38

Ideal scenario for HeapSort if the top-
N elements fit in memory. ‘.‘

— Scan data once, maintain an in-memory
sorted priority queue.

Sorted Heap

112|3] 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

TOP-N HEAP SORT

SELECT * FROM enrolled
ORDER BY sid ASC

[f a query contains an ORDER BY with a

LIMIT, then the DBMS only needs to FETCH FIRST 4 ROWS
scan the data once to find the top-N WITH TIES
elements.
Original Data

Ideal scenario for HeapSort if the top- 214]012]9)T]21%)°
N elements fit in memory. ‘.‘
— Scan data once, maintain an in-memory

sorted priority queue. Sorted Hea

112|3)4]| 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

TOP-N HEAP SORT

SELECT * FROM enrolled
ORDER BY sid ASC

[f a query contains an ORDER BY with a

LIMIT, then the DBMS only needs to FETCH FIRST 4 ROWS
scan the data once to find the top-N WITH TIES
elements.
Original Data

Ideal scenario for HeapSort if the top- 214]012]9)T]2]1%)°
N elements fit in memory. ‘.‘
— Scan data once, maintain an in-memory

sorted priority queue. Sorted Hea

112|344 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

T0P-N HEAP SORT 5

SELECT * FROM enrolled
ORDER BY sid ASC

[f a query contains an ORDER BY with a

LIMIT, then the DBMS only needs to FETCH FIRST 2 ROWS
scan the data once to find the top-IN WITH TIES
elements.
Original Data
Id 1 . f H S . _ 314|629 ([1]4)|4](38
eal scenario for HeapSort if the top
N elements fit in memory. ‘t
— Scan data once, maintain an in-memory Skip and done!
sorted priority queue. Sorted Hea

1123444

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

EXTERNAL MERGE SORT

Divide-and-conquer algorithm that splits data into
separate runs, sorts them individually, and then
combines them into longer sorted runs.

Phase #1 — Sorting

— Sort chunks of data that fit in memory and then write back the
sorted chunks to a file on disk.
— Pick your favorite in-memory sorting algorithm.

Phase #2 — Merging

— Combine sorted runs into larger chunks.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

2-WAY EXTERNAL MERGE SORT 5

We will start with a simple example of a 2-way external

merge sort.
— “2” is the number of runs to merge into a new run for each pass.

Data is broken up into N pages.

The DBMS has a finite number of B buffer pool pages
to hold input and output data.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT ™

Pass #0

— Read one page of the table into memory
— Sort page into a “run” and write it back to disk
— Repeat until the whole table has been sorted into runs

Pass #1,2,3,...

— Recursively merge pairs of runs into runs twice as long
— Need at least 3 buffer pages (2 for input, 1 for output)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

[314 | 612 | 914 | 817 | 516 [311 | 911 |

In each pass, the DBMSreadsand |, /[[\ -
writes every page in the file. |

(314 |[216 |[419 |[718 |[516][113 || 119 |

Pass#1 0NN e
Runs
Number of passes
=1+ [log, N]
Total I/O cost

= 2N - (# of passes)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

[314 | 612 | 914 | 817 | 516 | 311 | 911 |

In each pass, the DBMSreadsand |, /[[\ -
writes every page in the file. Lapell e [1o [[718 |[sts |[113 || 11 |

Pass #1

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

|3|4|6|2|9|4|8|7|5|6|3|1|9|1|

In each pass, the DBMS readsand , IJL\ Y/ S — — -
writes every page in the file. 3¢] 2te [[4 '9 [RETTN I [IETEN | T

Pass #1

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

[314 | 612 | 914 | 817 | 516 [311 | 911 |

In each pass, the DBMS reads and
writes every page in the file.

Pass

Pass #1
Number of passes |
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

[314 | 612 | 914 | 817 | 516 [311 | 911 |

In each pass, the DBMS reads and
writes every page in the file.

Pass

Pass #1
Number of passes |
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

- [314f612 914 817516 311|911]

Pass #0

N N ==

Pass #1

216 || 419 || 718 |[516 |[113 || 119]

2|3
416

Runs

2-Page
Runs

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

[314 | 612 | 914 | 817 | 516 | 311 | 911 |

In each pass, the DBMS readsand . /[[]} -\ e
writes every page in the file. TN | ETEN | TR TN | IETCH) KTERIKTEN gy 7
Pass #1 2)3 417 113 -Pa
5 416 819 516 Runs

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

[314 | 612 | 914 | 817 | 516 | 311 | 911 |

Pass #0

Pass #1

Pass #2

Pass #3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT ™

This algorithm only requires three buffer pool pages to

perform the sorting (B=3).
— Two input pages, one output page

But even if we have more buffer space available (B>3), it
does not effectively utilize them if the worker must

block on disk I/0...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BENERAL EXTERNAL MERGE SORT

Pass #0
— Use B buffer pages
— Produce [N/ B] sorted runs of size B

Pass #1,2,3,...

— Merge B-1runs (i.e., M-way merge)

Number of passes =1+ [logg, [N/ B] |
Total I/O Cost = 2N+ (# of passes)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE

Determine how many passes it takes to sort 108 pages

with 5 buffer pool pages: N=108, B=5

— Pass #0: [N/ B] = [108 / 5] = 22 sorted runs of 5 pages each (last
run is only 3 pages).

— Pass #1: [N’/ B-1] = [22 / 4] = 6 sorted runs of 20 pages each (last
run is only 8 pages).

— Pass #2: [N”/ B-1] = [6 / 4] = 2 sorted runs, first one has 80 pages

and second one has 28 pages.
— Pass #3: Sorted file of 108 pages.

1+[logz [N/ B] | = 1+[log, 22] = 1+]2.229...]
= 4 passes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool
Buffer

output
Buffer Buffer

Page

Page

Buffer

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool

Page

output
Page Buffer

Page

Page

Page

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool

Page

output
Page Buffer

Page

Page

Page

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool

Page

s e
Page verged page | _ToDist Sl Sorted Run

Page

Page

Page

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.
— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool
Buffer
Buffer output
Buffer Buffer
Page Buffer Buffer

Page

Buffer
Buffer

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool

Page

Page

Page

Merged Page

-mm

Page

Page

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool

Page

Sorted Run

Merged Page

Page
Merged Page

Page

Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

COMPARISON OPTIMIZATIONS

Approach #1: Code Specialization

— Instead of providing a comparison function as a pointer to
sorting algorithm, create a hardcoded version of sort that is
specific to a key type.

Approach #2: Suffix Truncation

— First compare a binary prefix of long VARCHAR keys instead of
slower string comparison. Fallback to slower version if prefixes
are equal.

Approach #3: Key Normalization
— Transform variable-length attribute(s) into a single
encoded/padded string that preserves sort order.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

USING B+TREES FOR SORTING

[f the table that must be sorted already has a B+Tree
index on the sort attribute(s), then we can use that to

accelerate sorting.
— Some DBMSs support prefix key scans for sorting.

Retrieve tuples in desired sort order by simply
traversing the leaf pages of the tree.

Cases to consider:
— Clustered B+Tree
— Unclustered B+Tree

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CASE 1: CLUSTERED B+TREE
Traverse to the left-most leaf page, BiTree Index
AN

and then retrieve tuples from all leaf
pages.

This is always better than external
sorting because there is no
computational cost, and all disk access
is sequential.

Tuple Pages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CASE #2: UNCLUSTERED B+TREE
Chase each pointer to the page that BiTree Index
N

contains the data.

This is almost always a bad idea
except for Top-N queries where N is
small enough relative to total number

of tuples in table.
— In general, one I/O per data record.

Tuple Pages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AGGREGATIONS

Collapse values for a single attribute from multiple
tuples into a single scalar value.

The DBMS needs a way to quickly find tuples with the
same distinguishing attributes for grouping.

Two implementation choices:
— Sorting
— Hashing

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Filter

SORTING AGGREGATION

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")
ORDER BY cid

53666 |15-445|C
53688 |15-826 »

B
53666 15-721|C
. Remove

53655 15-445
Columns

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 |15-826 |B
53666 |15-721 |C
53655 |15-445 |C
cid cid
15-445 » 15-445
15-826 15-445
15-721 Sort 15-721
15-445 15-826

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Filter

SORTING AGGREGATION

SELECT DISTINCT cid

FROM enrolled
WHERE grade IN ('B','C")
ORDER BY cid

53666 |15-445|C

53688 |15-826

=

Remove

B
53666 |15-721|C
53655 [15-445|C

Columns

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 [15-826 |B
53666 |[15-721 |C
53655 |15-445 |C
cid cid
15-445 15-445 «
15-826 15-445
15-721 Sort 15-721
15-445 15-826
Eliminate

Duplicates

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Filter

SORTING AGGREGATION

SELECT DISTINCT cid

FROM enrolled
WHERE grade IN ('B','C")
ORDER BY cid

53666 |15-445|C

53688 |15-826

=

Remove

B
53666 |15-721|C
53655 [15-445|C

Columns

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 |15-826 |B
53666 |[15-721 |C
53655 |[15-445 |C
cid cid
15-826 15985
15-721 Sort 15-721
15-445 15-826 “.
Eliminate

Duplicates

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)

WHERE s.sid = e.sid
GROUP BY cid

Running Totals
AVG(col) > (COUNT, SUM)

FROM student AS s, enrolled AS e MIN(col) =+ (MIN)

MAX(col) =» (MAX)
SUM(col) » (SUM)

cid
15-445|3.62 15-445|3.62
» 15-826(2.89 » 15-445|3.7
O ERFA] EFEE R 15-721/3.33
Join 15-445|3.7 Ol 5 526]2.89

COUNT(col) » (COUNT)

Previous: null

(1, 3.62)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)

WHERE s.sid = e.sid
GROUP BY cid

Running Totals
AVG(col) > (COUNT, SUM)

FROM student AS s, enrolled AS e MIN(col) =+ (MIN)

MAX(col) =» (MAX)
SUM(col) » (SUM)

cid
15-445|3.62 15-445|3.62
» 15-826(2.89 » 15-445|3.7
O ERFA] EFEE R 15-721/3.33
Join 15-445|3.7 Ol 5 526]2.89

COUNT(col) » (COUNT)

Previous: 15-445
(1, 3.62)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AGGREGATION SUMMARIZATION

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)
WHERE s.siq = e.sid MAX(col) = (MAX)
GROUP BY cid SUM(col) = (SUM)

COUNT(col) » (COUNT)

cid Previous: 15-445
15-445(3.62 15-445(3.62 (2, 7.32)
» 15-826/2.89 » 15-445(3.7 ‘
Join 157211333 | @, [15-721]3.33
15-445(3.7 15-826(2.89

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AGGREGATION SUMMARIZATION

WHERE s.sid = e.sid
GROUP BY cid

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)

MAX(col) =» (MAX)
SUM(col) =» (SUM)

cid cid s.gpa
15-445(3.62 15-445(3.62
» 15-826/2.89 » 15-445(3.7
i [57213.38 | ¢ 15-721(3.33 ‘
Join 15-445(3.7 0Tl s so6]0. 89

COUNT(col) » (COUNT)

Previous: 15-721 Final Result

(1, 3.33)

15-445 | 3.66

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AGGREGATION SUMMARIZATION

WHERE s.sid = e.sid
GROUP BY cid

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)

MAX(col) =» (MAX)
SUM(col) =» (SUM)

cid cid s.gpa
15-445(3.62 15-445(3.62
» 15-826/2.89 » 15-445(3.7
i [57213.38 | ¢ 15-721(3.33
Join 15-445(3.7 0Tl s so6]0. 89 ‘

COUNT(col) » (COUNT)

Previous: 15-721 Final Result

(1, 3.33)

15-445 | 3.66

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AGGREGATION SUMMARIZATION

WHERE s.sid = e.sid
GROUP BY cid

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)

MAX(col) =» (MAX)
SUM(col) =» (SUM)

cid cid s.gpa
15-445(3.62 15-445(3.62
» 15-826/2.89 » 15-445(3.7
i [57213.38 | ¢ 15-721(3.33
Join 15-445(3.7 0Tl s so6]0. 89 ‘

COUNT(col) » (COUNT)

Previous: 15-826 Final Result

(1, 2.89)

15-445 | 3.66
15-721 | 3.33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AGGREGATION SUMMARIZATION

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)
WHERE s.siql = e.sid MAX(col) = (MAX)
GROUP BY cid SUM(col) = (SUM)

COUNT(col) » (COUNT)

cid Final Result
15-445|3.62 15-445|3.62
» 15-8262.89 » 15-445(3.7 15-445 |3.66
o 15-721(3.33 S 15-72113.33 15-721 |1 3.33
IOln 15-445(3.7 ort 15-8261(2.89 15-826 | 2.89

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ALTERNATIVES TO SORTING

What if we do not need the data to be ordered?

— Forming groups in GROUP BY (no ordering)
— Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario.
— Only need to remove duplicates, no need for ordering.
— Can be computationally cheaper than sorting.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HASHING AGGREGATE

Populate an ephemeral hash table as the DBMS scans
the table. For each record, check whether there is

already an entry in the hash table:

— DISTINCT: Discard duplicate
— GROUP BY: Perform aggregate computation

[f everything fits in memory, then this is easy.

[f the DBMS must spill data to disk, then we need to be
smarter...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXTERNAL HASHING AGGREGATE

Divide-and-conquer approach to computing an
aggregation when data does not fit in memory.

Phase #1 — Partition

— Split tuples into buckets based on hash key
— Write them out to disk when they get full

Phase #2 - ReHash

— Build in-memory hash table for each partition and compute the
aggregation

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHASE #1: PARTITION

Use a hash function h;, to split tuples into partitions on

disk.

— A partition is one or more pages that contain the set of keys
with the same hash value.
— Partitions are “spilled” to disk via output buffers.

Assume that we have B buffers.

We will use B-1 buffers for the partitions and 1 buffer
for the input data.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Filter

PHASE #1: PARTITION

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

53666 [15-445|C

=

53688 15-826(B

53666 15-721|C

53655 15-445|C Remove
Columns

cid
15-445

15-826

15-721

15-445

=

enrolled (sid, cid, grade)

sid cid grade
53666 |[15-445 |C
53688 [15-721 |A
53688 |[15-826 |B
53666 [15-721 |C
53655 [15-445 |C

B B-1 partitions

15-445 15-445
15-445 15-312
15-312 15-445

15-826
15-210

15-721

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Filter

PHASE #1: PARTITION

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

53666 [15-445|C

=

53688 15-826(B

53666 15-721|C

53655 15-445|C Remove
Columns

cid
15-445

15-826

15-721

15-445

=

enrolled (sid, cid, grade)

sid cid grade
53666 |[15-445 |C
53688 [15-721 |A
53688 |[15-826 |B
53666 [15-721 |C
53655 [15-445 |C

B B-1 partitions

15-445 15-445
15-445 15-312
15-312 15-445

15-826
15-210

15-721

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Filter

PHASE #1: PARTITION

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

53666 [15-445|C

53688 [15-826

=

Remove

B
53666 [15-721|C
53655 [15-445|C

Columns

cid
15-445

15-826

15-721

15-445

=

enrolled (sid, cid, grade)

sid cid grade
53666 |[15-445 |C
53688 [15-721 |A
53688 |[15-826 |B
53666 [15-721 |C
53655 [15-445 |C

B B-1 partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHASE #2: REHASH

For each partition on disk:

— Read it into memory and build an in-memory hash table based
on a second hash function h.,,.

— Then go through each bucket of this hash table to bring
together matching tuples.

This assumes that each partition fits in memory.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 [15-826 (B
53666 [15-721 |C
53655 [15-445 |C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

@\'\ifash Table
15-445

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 [15-826 (B
53666 [15-721 |C
53655 [15-445 |C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 [15-826 (B
53666 [15-721 |C
53655 [15-445 |C

Hash Table

15-445 15-445
15-445 15-445
15-445 15-445

15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHASE

SELECT DISTINCT cid
FROM enrolled

WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445 (a
15-445 15-445
15-445 15-445

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade
53666 |[15-445 |C
53688 [15-721 |A
53688 |15-826 |B
53666 [15-721 |C
53655 |15-445 |C
Hash Table
Final Result
15-445 cid
--.~\\‘-._,15—445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Phase #1 Buckets

PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

Hash Table

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade

53666 15-445 |C

53688 15-721 |A

53688 15-826 |B

53666 15-721 |C

53655 15-445 |C
Final Result

cid

15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Phase #1 Buckets

PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

Hash Table

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade

53666 15-445 |C

53688 15-721 |A

53688 15-826 |B

53666 15-721 |C

53655 15-445 |C
Final Result

cid

15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHASE #2: REHASH

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
53688 [15-826 |B
53666 |15-721 |C
Phase #1 Buckets 53655 157445 |C
15-445 15-445
e Hash Table
15-445 15-445 Flnal Result
15-445 15-445
15-445 15-445 .
.. cid
15-826
15-826 15-445

_/'” 2820

=

enrolled (sid, cid, grade)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

Hash Table

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade

53666 |15-445 |C

53688 |15-721 |A

53688 |15-826 |B

53666 |15-721 |C

53655 |15-445 |C
Final Result

cid

15-445

15-826

15-721

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade

53666 |15-445 |C

53688 |15-721 |A

53688 |15-826 |B

53666 |15-721 |C

53655 |15-445 |C
Final Result

cid

15-445

15-826

15-721

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HASHING SUMMARIZATION

During the rehash phase, store pairs of the form
(GroupKey»RunningVal)

When we want to insert a new tuple into the hash table

as we compute the aggregate:

— If we find a matching GroupKey, just update the RunningVal
appropriately

— Else insert a new GroupKey»RunningVal

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

Phase #1 |
Buckets

15-445
15-445

»

15-826

»

15-721

»

Hash Table

key
15-445

value
(2, 7.32)

Running Totals
AVG(col) = (COUNT, SUM)
MIN(col) =+ (MIN)
MAX(col) = (MAX)
SUM(col) =» (SUM)
COUNT(col) » (COUNT)

15-826

(1, 3.33)

15-721

(1, 2.89)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

Phase #1 |
Buckets

15-445
15-445

»

15-826

»

15-721

»

Hash Table

key
15-445

value
(2, 7.32)

Running Totals
AVG(col) = (COUNT, SUM)
MIN(col) =+ (MIN)
MAX(col) = (MAX)
SUM(col) =» (SUM)
COUNT(col) » (COUNT)

15-826

(1, 3.33)

15-721

(1, 2.89)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HASHING SUMMARIZATION

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)
WHERE s.siq = e.sid MAX(col) = (MAX)
GROUP BY cid SUM(col) = (SUM)

COUNT(col) » (COUNT)

15-445
15-445 . - Hash Table Final Result
Buckets | 15-445|(2, 7.32) » 15-445 |3.66

15-826|(1, 3.33) 15-826 [3.33

15-721 . » 15-721|(1, 2.89) 15-721 |2.89

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCLUSION

Choice of sorting vs. hashing is subtle and depends on
optimizations done in each case.

We already discussed the optimizations for sorting:

— Chunk I/0 into large blocks to amortize costs
— Double-buffering to overlap CPU and I/O

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NEXT CLASS

Nested Loop Join
Sort-Merge Join
Hash Join

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Sorting & Aggregations
	Slide 2: ADMINISTRIVIA
	Slide 3: COURSE OUTLINE
	Slide 4: QUERY PLAN
	Slide 5: DISK-ORIENTED DBMS
	Slide 6: WHY DO WE NEED TO SORT?
	Slide 7: IN-MEMORY SORTING
	Slide 8: SORTING ALGORITHMS
	Slide 9: SORTING ALGORITHMS
	Slide 10: TODAY'S AGENDA
	Slide 11: TODAY'S AGENDA

	Heap Sort
	Slide 12: TOP-N HEAP SORT
	Slide 13: TOP-N HEAP SORT
	Slide 14: TOP-N HEAP SORT
	Slide 15: TOP-N HEAP SORT
	Slide 16: TOP-N HEAP SORT
	Slide 17: TOP-N HEAP SORT
	Slide 18: TOP-N HEAP SORT
	Slide 19: TOP-N HEAP SORT
	Slide 20: TOP-N HEAP SORT
	Slide 21: TOP-N HEAP SORT
	Slide 22: TOP-N HEAP SORT

	External Merge Sort
	Slide 23: EXTERNAL MERGE SORT
	Slide 24: 2-WAY EXTERNAL MERGE SORT
	Slide 25: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 26: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 27: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 28: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 29: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 30: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 31: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 32: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 33: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 34: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 35: GENERAL EXTERNAL MERGE SORT
	Slide 36: EXAMPLE
	Slide 37: DOUBLE BUFFERING
	Slide 38: DOUBLE BUFFERING
	Slide 39: DOUBLE BUFFERING
	Slide 40: DOUBLE BUFFERING
	Slide 41: DOUBLE BUFFERING
	Slide 42: DOUBLE BUFFERING
	Slide 43: DOUBLE BUFFERING
	Slide 44: COMPARISON OPTIMIZATIONS

	Tree Sorting
	Slide 45: USING B+TREES FOR SORTING
	Slide 46: CASE #1: CLUSTERED B+TREE
	Slide 47: CASE #2: UNCLUSTERED B+TREE

	Aggregations
	Slide 48: AGGREGATIONS
	Slide 49: SORTING AGGREGATION
	Slide 50: SORTING AGGREGATION
	Slide 51: SORTING AGGREGATION
	Slide 52: AGGREGATION SUMMARIZATION
	Slide 53: AGGREGATION SUMMARIZATION
	Slide 54: AGGREGATION SUMMARIZATION
	Slide 55: AGGREGATION SUMMARIZATION
	Slide 56: AGGREGATION SUMMARIZATION
	Slide 57: AGGREGATION SUMMARIZATION
	Slide 58: AGGREGATION SUMMARIZATION
	Slide 59: ALTERNATIVES TO SORTING
	Slide 60: HASHING AGGREGATE
	Slide 61: EXTERNAL HASHING AGGREGATE
	Slide 62: PHASE #1: PARTITION
	Slide 63: PHASE #1: PARTITION
	Slide 64: PHASE #1: PARTITION
	Slide 65: PHASE #1: PARTITION
	Slide 66: PHASE #2: REHASH
	Slide 67: PHASE #2: REHASH
	Slide 68: PHASE #2: REHASH
	Slide 69: PHASE #2: REHASH
	Slide 70: PHASE #2: REHASH
	Slide 71: PHASE #2: REHASH
	Slide 72: PHASE #2: REHASH
	Slide 73: PHASE #2: REHASH
	Slide 74: PHASE #2: REHASH
	Slide 75: PHASE #2: REHASH
	Slide 76: HASHING SUMMARIZATION
	Slide 77: HASHING SUMMARIZATION
	Slide 78: HASHING SUMMARIZATION
	Slide 79: HASHING SUMMARIZATION

	Conclusion
	Slide 80: CONCLUSION
	Slide 81: NEXT CLASS

