
DatabaseSystems

15-445/645 FALL 2025 PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

DATABASE SYSTEMS (FALL 2025)

ADMINISTRIVIA

Homework #3 is due Sunday Oct 5th @ 11:59pm

Mid-Term Exam is on Wednesday Oct 8th

→ Lectures #01–11 (inclusive)
→ Study guide is now available (@126)
→ Bring your CMU ID!

Project #2 is due Sunday Oct 26th @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025/schedule.html#oct-08-2025
https://15445.courses.cs.cmu.edu/fall2025/schedule.html#oct-08-2025
https://15445.courses.cs.cmu.edu/fall2025/schedule.html#oct-08-2025
https://piazza.com/class/me9159rcdhm69w/post/126

DATABASE SYSTEMS (FALL 2025)

COURSE OUTLINE

We are now going to talk about how
to execute queries using the DBMS
components we have discussed so far.

Next four lectures:
→ Operator Algorithms
→ Query Processing Models
→ Runtime Architectures

3

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




QUERY PLAN

The operators are arranged in a tree.

Data flows from the leaves of the tree
up towards the root.
→ We will discuss the granularity of the data

movement next week.

The output of the root node is the
result of the query.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DISK-ORIENTED DBMS

Just like it cannot assume that a table fits entirely in
memory, a disk-oriented DBMS cannot assume that
query results fit in memory.

We will use the buffer pool to implement algorithms
that need to spill to disk.

We are also going to prefer algorithms that maximize
the amount of sequential I/O.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

WHY DO WE NEED TO SORT?

Relational model/SQL is unsorted.

Queries may request that tuples are sorted in a specific
way (ORDER BY).

But even if a query does not specify an order, we may
still want to sort to do other things:
→ Trivial to support duplicate elimination (DISTINCT).
→ Bulk loading sorted tuples into a B+Tree index is faster.
→ Aggregations (GROUP BY).

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

IN-MEMORY SORTING

If data fits in memory, then the DBMS can use a
standard sorting algorithm.
→ Optimized algorithms if data is mostly sorted (VergeSort).
→ Otherwise use your favorite (QuickSort, TimSort, RadixSort).
→ Many online visualization tools.

If data does not fit in memory, then we need to use a
technique that is aware of the cost of reading and
writing disk pages …

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://github.com/Morwenn/vergesort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Timsort
https://en.wikipedia.org/wiki/Radix_sort
https://www.toptal.com/developers/sorting-algorithms

DATABASE SYSTEMS (FALL 2025)

SORTING ALGORITHMS

For a given input run (i.e., list of
key/value pairs), sort it based on a
comparison function and sorting
parameters.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
→ Tuple (early materialization).
→ Record ID (late materialization).

Late Materialization

• • •K1 ¤ K2 ¤ ¤Kn
Record ID /
Offset

Early Materialization

• • •

K1 <Tuple Data>

K2 <Tuple Data>

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SORTING ALGORITHMS

For a given input run (i.e., list of
key/value pairs), sort it based on a
comparison function and sorting
parameters.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
→ Tuple (early materialization).
→ Record ID (late materialization).

Late Materialization

• • •K1 ¤ K2 ¤ ¤Kn
Record ID /
Offset

Early Materialization

• • •

K1 <Tuple Data>

K2 <Tuple Data>

8

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://clickhouse.com/blog/clickhouse-gets-lazier-and-faster-introducing-lazy-materialization

DATABASE SYSTEMS (FALL 2025)

TODAY'S AGENDA

MotherDuck

Top-N Heap Sort

External Merge Sort

Aggregations

DB Flash Talk: MotherDuck

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://motherduck.com/

DATABASE SYSTEMS (FALL 2025)

TODAY'S AGENDA

MotherDuck

Top-N Heap Sort

External Merge Sort

Aggregations

DB Flash Talk: MotherDuck

9
6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://motherduck.com/
https://duckdb.org/2025/09/24/sorting-again.html

DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap

3 4 6 2 9 1 4 4

Original Data
8

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3

3 4 6 2 9 1 4 4

Original Data
8

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 4

3 4 6 2 9 1 4 4

Original Data
8

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 4 6

3 4 6 2 9 1 4 4

Original Data
8

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 4 6

3 4 6 2 9 1 4 4

Original Data
8

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 4 62

3 4 6 2 9 1 4 4

Original Data
8

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 4 62

3 4 6 2 9 1 4 4

Original Data
8

Skip!

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 421

3 4 6 2 9 1 4 4

Original Data
8

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 421

3 4 6 2 9 1 4 4

Original Data
8

4

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 421

3 4 6 2 9 1 4 4

Original Data
8

4 4

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
 WITH TIES

Sorted Heap
3 421

3 4 6 2 9 1 4 4

Original Data
8

4 4

Skip and done!

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

DATABASE SYSTEMS (FALL 2025)

EXTERNAL MERGE SORT

Divide-and-conquer algorithm that splits data into
separate runs, sorts them individually, and then
combines them into longer sorted runs.

Phase #1 – Sorting
→ Sort chunks of data that fit in memory and then write back the

sorted chunks to a file on disk.
→ Pick your favorite in-memory sorting algorithm.

Phase #2 – Merging
→ Combine sorted runs into larger chunks.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

2-WAY EXTERNAL MERGE SORT

We will start with a simple example of a 2-way external
merge sort.
→ “2” is the number of runs to merge into a new run for each pass.

Data is broken up into N pages.

The DBMS has a finite number of B buffer pool pages
to hold input and output data.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

Pass #0
→ Read one page of the table into memory
→ Sort page into a “run” and write it back to disk
→ Repeat until the whole table has been sorted into runs

Pass #1,2,3,…
→ Recursively merge pairs of runs into runs twice as long
→ Need at least 3 buffer pages (2 for input, 1 for output)

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

|

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

|

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

_|_2|_

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

_|_2|_2|3

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

|

4|6

2|_2|3

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

|

4|6

4|7

8|9

1|3

5|6

1|92|_2|3

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

4-Page
Runs

Pass #2

8-Page
Runs

Pass #3

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4

|

4|6

4|7

8|9

1|3

5|6

1|9

4|4

6|7

8|9

2|3 1|1

3|5

6|9

1|1

2|3

3|4

4|5

6|6

7|8

9|9

2|_2|3

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

This algorithm only requires three buffer pool pages to
perform the sorting (B=3).
→ Two input pages, one output page

But even if we have more buffer space available (B>3), it
does not effectively utilize them if the worker must
block on disk I/O…

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

GENERAL EXTERNAL MERGE SORT

Pass #0
→ Use B buffer pages
→ Produce ⌈N / B⌉ sorted runs of size B

Pass #1,2,3,…
→ Merge B-1 runs (i.e., M-way merge)

Number of passes = 1 + ⌈ logB-1 ⌈N / B⌉ ⌉

Total I/O Cost = 2N ∙ (# of passes)

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

EXAMPLE

Determine how many passes it takes to sort 108 pages
with 5 buffer pool pages: N=108, B=5
→ Pass #0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages each (last

run is only 3 pages).
→ Pass #1: ⌈N’ / B-1⌉ = ⌈22 / 4⌉ = 6 sorted runs of 20 pages each (last

run is only 8 pages).
→ Pass #2: ⌈N’’ / B-1⌉ = ⌈6 / 4⌉ = 2 sorted runs, first one has 80 pages

and second one has 28 pages.
→ Pass #3: Sorted file of 108 pages.

1+⌈ logB-1⌈N / B⌉ ⌉ = 1+⌈log4 22⌉ = 1+⌈2.229...⌉
 = 4 passes

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

Buffer

Buffer

Buffer

Buffer

output

Buffer Pool

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

18

Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

Buffer

Buffer

Buffer

Buffer

output

Buffer Pool

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

18

Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

Buffer

Buffer

Buffer

Buffer

output

Buffer Pool

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

18

Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

Buffer

Buffer

Buffer

Buffer

output
Merged Page To Disk

Buffer Pool

Sorted run
Sorted run
Sorted Run

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

18

Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

Buffer

Buffer

Buffer

Buffer

output
Buffer

Buffer

Buffer

Buffer

Buffer Pool

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

18

Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

Buffer

Buffer

Buffer

Buffer

output
Merged Page

Buffer

Buffer

Buffer

Buffer

To Disk

Buffer Pool

Sorted run
Sorted run
Sorted Run

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

18

Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DOUBLE BUFFERING

Prefetch next run in the background and store in a
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half

Buffer

Buffer

Buffer

Buffer

output
Merged Page

Buffer

Buffer

Buffer

BufferMerged Page

To Disk

To Disk

Buffer Pool

Sorted run
Sorted run
Sorted Run

Sorted run
Sorted run
Sorted Run

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

18

Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

COMPARISON OPTIMIZATIONS

Approach #1: Code Specialization
→ Instead of providing a comparison function as a pointer to

sorting algorithm, create a hardcoded version of sort that is
specific to a key type.

Approach #2: Suffix Truncation
→ First compare a binary prefix of long VARCHAR keys instead of

slower string comparison. Fallback to slower version if prefixes
are equal.

Approach #3: Key Normalization
→ Transform variable-length attribute(s) into a single

encoded/padded string that preserves sort order.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

USING B+TREES FOR SORTING

If the table that must be sorted already has a B+Tree
index on the sort attribute(s), then we can use that to
accelerate sorting.
→ Some DBMSs support prefix key scans for sorting.

Retrieve tuples in desired sort order by simply
traversing the leaf pages of the tree.

Cases to consider:
→ Clustered B+Tree
→ Unclustered B+Tree

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

CASE #1: CLUSTERED B+TREE

Traverse to the left-most leaf page,
and then retrieve tuples from all leaf
pages.

This is always better than external
sorting because there is no
computational cost, and all disk access
is sequential.

B+Tree Index

101 102 103 104

Tuple Pages

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

CASE #2: UNCLUSTERED B+TREE
Chase each pointer to the page that
contains the data.

This is almost always a bad idea
except for Top-N queries where N is
small enough relative to total number
of tuples in table.
→ In general, one I/O per data record.

101 102 103 104

Tuple Pages

B+Tree Index

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

AGGREGATIONS

Collapse values for a single attribute from multiple
tuples into a single scalar value.

The DBMS needs a way to quickly find tuples with the
same distinguishing attributes for grouping.

Two implementation choices:
→ Sorting
→ Hashing

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

cid

15-445
15-445
15-721
15-826

SORTING AGGREGATION

Remove
Columns

SortFilter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')
 ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

cid

15-445
15-445
15-721
15-826

SORTING AGGREGATION

Remove
Columns

Sort

Eliminate
Duplicates

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')
 ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

cid

15-445
15-445
15-721
15-826

SORTING AGGREGATION

Remove
Columns

Sort

Eliminate
Duplicates

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')
 ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(1, 3.62)

Previous: null

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(1, 3.62)

Previous: 15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(2, 7.32)

Previous: 15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

cid AVG(gpa)

Final Result

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(1, 3.33)
15-445 3.66

Previous: 15-721

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

cid AVG(gpa)

Final Result

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(1, 3.33)
15-445 3.66

Previous: 15-721

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

cid AVG(gpa)

Final Result

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(1, 2.89)
15-445 3.66

15-721 3.33

Previous: 15-826

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

cid AVG(gpa)

Final Result

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

15-445 3.66

15-721 3.33

15-826 2.89

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

ALTERNATIVES TO SORTING

What if we do not need the data to be ordered?
→ Forming groups in GROUP BY (no ordering)
→ Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario.
→ Only need to remove duplicates, no need for ordering.
→ Can be computationally cheaper than sorting.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

HASHING AGGREGATE

Populate an ephemeral hash table as the DBMS scans
the table. For each record, check whether there is
already an entry in the hash table:
→ DISTINCT: Discard duplicate
→ GROUP BY: Perform aggregate computation

If everything fits in memory, then this is easy.

If the DBMS must spill data to disk, then we need to be
smarter…

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

EXTERNAL HASHING AGGREGATE

Divide-and-conquer approach to computing an
aggregation when data does not fit in memory.

Phase #1 – Partition
→ Split tuples into buckets based on hash key
→ Write them out to disk when they get full

Phase #2 – ReHash
→ Build in-memory hash table for each partition and compute the

aggregation

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #1: PARTITION
Use a hash function h1 to split tuples into partitions on
disk.
→ A partition is one or more pages that contain the set of keys

with the same hash value.
→ Partitions are “spilled” to disk via output buffers.

Assume that we have B buffers.

We will use B-1 buffers for the partitions and 1 buffer
for the input data.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #1: PARTITION

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

15-826
15-210

15-721

⋮

h1

⋮

15-445 15-445
15-445 15-312
15-312 15-445

⋮

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

30

0

1

B-1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #1: PARTITION

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

15-826
15-210

15-721

⋮

h1

⋮

15-445 15-445
15-445 15-312
15-312 15-445

⋮

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

30

0

1

B-1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #1: PARTITION

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

15-826
15-210

15-721

⋮

h1

⋮

15-445
15-312

⋮

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

30

0

1

B-1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH
For each partition on disk:
→ Read it into memory and build an in-memory hash table based

on a second hash function h2.
→ Then go through each bucket of this hash table to bring

together matching tuples.

This assumes that each partition fits in memory.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

Phase #1 Buckets

Hash Table

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

Phase #1 Buckets

Hash Table

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

Phase #1 Buckets

cid

15-445

Hash Table
Final Result

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

cid

15-445

Hash Table
Final Result

15-826

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

h2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

cid

15-445

Hash Table
Final Result

15-826

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

h2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

cid

15-445

Hash Table
Final Result

15-826

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

15-826
h2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮
h2

Phase #1 Buckets

cid

15-445

Hash Table
Final Result

15-721

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

15-826

15-721

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

cid

15-445

Final Result

15-721

SELECT DISTINCT cid
 FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

15-826

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

HASHING SUMMARIZATION

During the rehash phase, store pairs of the form
(GroupKey→RunningVal)

When we want to insert a new tuple into the hash table
as we compute the aggregate:
→ If we find a matching GroupKey, just update the RunningVal

appropriately
→ Else insert a new GroupKey→RunningVal

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)
 FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table
cid AVG(gpa)

15-445 3.66

15-826 3.33

15-721 2.89

Final Result

AVG(col) → (COUNT, SUM)
MIN(col) → (MIN)
MAX(col) → (MAX)
SUM(col) → (SUM)
COUNT(col) → (COUNT)

Running Totals

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

Choice of sorting vs. hashing is subtle and depends on
optimizations done in each case.

We already discussed the optimizations for sorting:
→ Chunk I/O into large blocks to amortize costs
→ Double-buffering to overlap CPU and I/O

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

NEXT CLASS

Nested Loop Join

Sort-Merge Join

Hash Join

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Sorting & Aggregations
	Slide 2: ADMINISTRIVIA
	Slide 3: COURSE OUTLINE
	Slide 4: QUERY PLAN
	Slide 5: DISK-ORIENTED DBMS
	Slide 6: WHY DO WE NEED TO SORT?
	Slide 7: IN-MEMORY SORTING
	Slide 8: SORTING ALGORITHMS
	Slide 9: SORTING ALGORITHMS
	Slide 10: TODAY'S AGENDA
	Slide 11: TODAY'S AGENDA

	Heap Sort
	Slide 12: TOP-N HEAP SORT
	Slide 13: TOP-N HEAP SORT
	Slide 14: TOP-N HEAP SORT
	Slide 15: TOP-N HEAP SORT
	Slide 16: TOP-N HEAP SORT
	Slide 17: TOP-N HEAP SORT
	Slide 18: TOP-N HEAP SORT
	Slide 19: TOP-N HEAP SORT
	Slide 20: TOP-N HEAP SORT
	Slide 21: TOP-N HEAP SORT
	Slide 22: TOP-N HEAP SORT

	External Merge Sort
	Slide 23: EXTERNAL MERGE SORT
	Slide 24: 2-WAY EXTERNAL MERGE SORT
	Slide 25: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 26: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 27: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 28: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 29: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 30: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 31: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 32: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 33: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 34: SIMPLIFIED 2-WAY EXTERNAL MERGE SORT
	Slide 35: GENERAL EXTERNAL MERGE SORT
	Slide 36: EXAMPLE
	Slide 37: DOUBLE BUFFERING
	Slide 38: DOUBLE BUFFERING
	Slide 39: DOUBLE BUFFERING
	Slide 40: DOUBLE BUFFERING
	Slide 41: DOUBLE BUFFERING
	Slide 42: DOUBLE BUFFERING
	Slide 43: DOUBLE BUFFERING
	Slide 44: COMPARISON OPTIMIZATIONS

	Tree Sorting
	Slide 45: USING B+TREES FOR SORTING
	Slide 46: CASE #1: CLUSTERED B+TREE
	Slide 47: CASE #2: UNCLUSTERED B+TREE

	Aggregations
	Slide 48: AGGREGATIONS
	Slide 49: SORTING AGGREGATION
	Slide 50: SORTING AGGREGATION
	Slide 51: SORTING AGGREGATION
	Slide 52: AGGREGATION SUMMARIZATION
	Slide 53: AGGREGATION SUMMARIZATION
	Slide 54: AGGREGATION SUMMARIZATION
	Slide 55: AGGREGATION SUMMARIZATION
	Slide 56: AGGREGATION SUMMARIZATION
	Slide 57: AGGREGATION SUMMARIZATION
	Slide 58: AGGREGATION SUMMARIZATION
	Slide 59: ALTERNATIVES TO SORTING
	Slide 60: HASHING AGGREGATE
	Slide 61: EXTERNAL HASHING AGGREGATE
	Slide 62: PHASE #1: PARTITION
	Slide 63: PHASE #1: PARTITION
	Slide 64: PHASE #1: PARTITION
	Slide 65: PHASE #1: PARTITION
	Slide 66: PHASE #2: REHASH
	Slide 67: PHASE #2: REHASH
	Slide 68: PHASE #2: REHASH
	Slide 69: PHASE #2: REHASH
	Slide 70: PHASE #2: REHASH
	Slide 71: PHASE #2: REHASH
	Slide 72: PHASE #2: REHASH
	Slide 73: PHASE #2: REHASH
	Slide 74: PHASE #2: REHASH
	Slide 75: PHASE #2: REHASH
	Slide 76: HASHING SUMMARIZATION
	Slide 77: HASHING SUMMARIZATION
	Slide 78: HASHING SUMMARIZATION
	Slide 79: HASHING SUMMARIZATION

	Conclusion
	Slide 80: CONCLUSION
	Slide 81: NEXT CLASS

