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ADMINISTRIVIA

Homework #3 is due Sunday Oct 5 @ 11:59pm

Mid-Term Exam is on Wednesday Oct 8™
— Lectures #01-11 (inclusive)

— Study guide is now available (@126)

— Bring your CMU ID!

Project #2 is due Sunday Oct 26" @ 11:59pm
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COURSE OUTLINE =

We are now going to talk about how Query Planning

to execute queries using the DBMS

components we have discussed so far. ‘ Operator Execution ‘
Access Methods

Next four lectures:

— Operator Algorithms Buffer Pool Manager
— Query Processing Models

— Runtime Architectures Disk Manager
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QUERY PLAN

The operators are arranged in a tree.

Data flows from the leaves of the tree

up towards the root.
— We will discuss the granularity of the data
movement next week.

The output of the root node is the
result of the query.

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

1
n R.id, S.cdate
!

Dirz. id=S.1id

q value>100
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DISK-ORIENTED DBMS

Just like it cannot assume that a table fits entirely in
memory, a disk-oriented DBMS cannot assume that
query results fit in memory.

We will use the buffer pool to implement algorithms
that need to spill to disk.

We are also going to prefer algorithms that maximize
the amount of sequential I/O.
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WHY DO WE NEED TO SORT?

Relational model/SQL is unsorted.

Queries may request that tuples are sorted in a specific
way (ORDER BY).

But even if a query does not specify an order, we may

still want to sort to do other things:

— Trivial to support duplicate elimination (DISTINCT).
— Bulk loading sorted tuples into a B+Tree index is faster.
— Aggregations (GROUP BY).
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IN-MEMORY SORTING

[f data fits in memory, then the DBMS can use a

standard sorting algorithm.

— Optimized algorithms if data is mostly sorted (VergeSort).
— Otherwise use your favorite (QuickSort, TimSort, RadixSort).
— Many online visualization tools.

[f data does not fit in memory, then we need to use a
technique that is aware of the cost of reading and
writing disk pages...
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SORTING ALGORITHMS

For a given input run (i.e., list of
key/value pairs), sort it based on a
comparison function and sorting
parameters.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
— Tuple (early materialization).
— Record ID (late materialization).

Early Materialization
K, <Tuple Data>
K, <Tuple Data>
Late Materialization
K, o K, O [eee
\Record ID/
Offset
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SORTING ALGORITHMS

F—

For a given input run (i.
key/value pairs), sort it |

. . |
compadarison function ang

parameters. / lntrOdUCing

Key: The attribute(s) /’ it
ey: The attribute(s) to PNT -
to compute the sort ord material 1zation

Clickhouse gets lazier
(and faster)

Value: Two choices
— Tuple (early materialization).
— Record ID (late materialization).
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TODAY'S AGENDA

Top-N Heap Sort

External Merge Sort
Aggregations

DB Flash Talk: MotherDuck
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TUDAY'S IIQDuckDB
'Redesigning
Top-N Heap Sort | DUCkDB'S SOI‘t, Again
External Merge Sort P

2025-09-24 - 16 min

A g gr e g atio n S TL;DR: After four years, we've decided to redesign DuckDB's sort

implementation, again. In this Post, we present and evaluate the new design.

5DB FlaSh Talk: MOtherDu ! DuckDB v1.4.0 was just released, which includes a complete redesign of

‘ DuckDB's sort implementation. We redesigned DuckDB's sort just four years ago,
which allowed DuckDB to sort more data than fits in main memory, in parallel, with
highly efficient comparisons. This implementation served us well, but since then
we've implemented larger-than-memory query processing for more operators,
such as the hash join 7 and hash aggregation 7, which both use a new and
improved spillable page layout (7. We presented this layout in an earlier blog post.
We decided to integrate this layout in DuckDB's sort, and completely redesigned
the implementation =.

Not interested in the implementation? Jump straight to the benchmark!
——1R-straight to the benchmark!

Two-Phase Sorting

DuckDB implements parallel query execution using Morsel-Driven Parallelism 7.
OrSel-Driven Parallelism
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TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS

WITH TIES

Original Data

3114|6291 ]|4]|4]|38

Sorted Heap
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TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS

WITH TIES

Original Data

3114|6291 ]|4]|4]|38

Sorted Heap

3



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS

WITH TIES

Original Data

3114|6291 ]|4]|4]|38

*

Sorted Heap

3|4
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TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS

WITH TIES

Original Data

3114|6291 ]|4]|4]|38

*

Sorted Heap

3|14(6
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TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS
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3114|6291 ]|4]|4]|38

*

Sorted Heap

3|14(6



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort

TOP-N HEAP SORT

[f a query contains an ORDER BY with a
LIMIT, then the DBMS only needs to
scan the data once to find the top-N
elements.

Ideal scenario for HeapSort if the top-

N elements fit in memory.
— Scan data once, maintain an in-memory
sorted priority queue.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS

WITH TIES

Original Data

3114|6291 ]|4]|4]|38

*

Sorted Heap

2 (3|46
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TOP-N HEAP SORT

SELECT * FROM enrolled
ORDER BY sid ASC

[f a query contains an ORDER BY with a

LIMIT, then the DBMS only needs to FETCH FIRST 2 ROWS
scan the data once to find the top-IN WITH TIES
elements. .

Original Data
Ideal scenario for HeapSort if the top- ARARALI SN AN LA RAL
N elements fit in memory. ‘.‘
— Scan data once, maintain an in-memory Skip!

sorted priority queue.

Sorted Heap

2 (3|46
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TOP-N HEAP SORT

SELECT * FROM enrolled
ORDER BY sid ASC

[f a query contains an ORDER BY with a

LIMIT, then the DBMS only needs to FETCH FIRST 4 ROWS
scan the data once to find the top-IN WITH TIES
elements. —

Original Data

3114|6291 ]|4]|4]|38

Ideal scenario for HeapSort if the top-
N elements fit in memory. ‘.‘

— Scan data once, maintain an in-memory
sorted priority queue.

Sorted Heap

112|3] 4
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TOP-N HEAP SORT

SELECT * FROM enrolled
ORDER BY sid ASC

[f a query contains an ORDER BY with a

LIMIT, then the DBMS only needs to FETCH FIRST 4 ROWS
scan the data once to find the top-N WITH TIES
elements.
Original Data

Ideal scenario for HeapSort if the top- 214]012]9)T]21%)°
N elements fit in memory. ‘.‘
— Scan data once, maintain an in-memory

sorted priority queue. Sorted Hea

112|3)4]| 4
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TOP-N HEAP SORT

SELECT * FROM enrolled
ORDER BY sid ASC

[f a query contains an ORDER BY with a

LIMIT, then the DBMS only needs to FETCH FIRST 4 ROWS
scan the data once to find the top-N WITH TIES
elements.
Original Data

Ideal scenario for HeapSort if the top- 214]012]9)T]2]1%)°
N elements fit in memory. ‘.‘
— Scan data once, maintain an in-memory

sorted priority queue. Sorted Hea

112|344 4
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T0P-N HEAP SORT 5

SELECT * FROM enrolled
ORDER BY sid ASC

[f a query contains an ORDER BY with a

LIMIT, then the DBMS only needs to FETCH FIRST 2 ROWS
scan the data once to find the top-IN WITH TIES
elements.
Original Data
Id 1 . f H S . _ 314|629 ([1]4)|4](38
eal scenario for HeapSort if the top
N elements fit in memory. ‘t
— Scan data once, maintain an in-memory Skip and done!
sorted priority queue. Sorted Hea

1123444
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EXTERNAL MERGE SORT

Divide-and-conquer algorithm that splits data into
separate runs, sorts them individually, and then
combines them into longer sorted runs.

Phase #1 — Sorting

— Sort chunks of data that fit in memory and then write back the
sorted chunks to a file on disk.
— Pick your favorite in-memory sorting algorithm.

Phase #2 — Merging

— Combine sorted runs into larger chunks.
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2-WAY EXTERNAL MERGE SORT 5

We will start with a simple example of a 2-way external

merge sort.
— “2” is the number of runs to merge into a new run for each pass.

Data is broken up into N pages.

The DBMS has a finite number of B buffer pool pages
to hold input and output data.
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT ™

Pass #0

— Read one page of the table into memory
— Sort page into a “run” and write it back to disk
— Repeat until the whole table has been sorted into runs

Pass #1,2,3,...

— Recursively merge pairs of runs into runs twice as long
— Need at least 3 buffer pages (2 for input, 1 for output)
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

[ 314 | 612 | 914 | 817 | 516 [ 311 | 911 |

In each pass, the DBMSreadsand |, /[ [\ -
writes every page in the file. |

(314 |[ 216 |[ 419 |[ 718 |[ 516 ][ 113 || 119 |

Pass#1 0NN e
Runs
Number of passes
=1+ [log, N]
Total I/O cost

= 2N - (# of passes)
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

[ 314 | 612 | 914 | 817 | 516 | 311 | 911 |

In each pass, the DBMSreadsand |, /[ [\ -
writes every page in the file. Lapell e [ 1o [[ 718 |[ sts |[ 113 || 11 |

Pass #1

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

|3|4|6|2|9|4|8|7|5|6|3|1|9|1|

In each pass, the DBMS readsand , IJL\ Y/ S — — -
writes every page in the file. 3¢ ] 2te [[ 4 '9 [RETTN I [ IETEN | T

Pass #1

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

[ 314 | 612 | 914 | 817 | 516 [ 311 | 911 |

In each pass, the DBMS reads and
writes every page in the file.

Pass

Pass #1
Number of passes |
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

[ 314 | 612 | 914 | 817 | 516 [ 311 | 911 |

In each pass, the DBMS reads and
writes every page in the file.

Pass

Pass #1
Number of passes |
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

- [314f612 914 817516 311|911 ]

Pass #0

N N ==

Pass #1

216 || 419 || 718 |[ 516 |[ 113 || 119 ]

2|3
416

Runs

2-Page
Runs
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

[ 314 | 612 | 914 | 817 | 516 | 311 | 911 |

In each pass, the DBMS readsand . /[ [ ]} -\ e
writes every page in the file. TN | ETEN | TR TN | IETCH) KTERIKTEN gy 7
Pass #1 2)3 417 113 -Pa
5 416 819 516 Runs

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and
writes every page in the file.

Number of passes
=1+ [log, N]

Total I/O cost
= 2N - (# of passes)

[ 314 | 612 | 914 | 817 | 516 | 311 | 911 |

Pass #0

Pass #1

Pass #2

Pass #3
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT ™

This algorithm only requires three buffer pool pages to

perform the sorting (B=3).
— Two input pages, one output page

But even if we have more buffer space available (B>3), it
does not effectively utilize them if the worker must

block on disk I/0...
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BENERAL EXTERNAL MERGE SORT

Pass #0
— Use B buffer pages
— Produce [N/ B] sorted runs of size B

Pass #1,2,3,...

— Merge B-1runs (i.e., M-way merge)

Number of passes =1+ [logg, [N/ B] |
Total I/O Cost = 2N+ (# of passes)
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EXAMPLE

Determine how many passes it takes to sort 108 pages

with 5 buffer pool pages: N=108, B=5

— Pass #0: [N/ B] = [108 / 5] = 22 sorted runs of 5 pages each (last
run is only 3 pages).

— Pass #1: [N’/ B-1] = [22 / 4] = 6 sorted runs of 20 pages each (last
run is only 8 pages).

— Pass #2: [N”/ B-1] = [6 / 4] = 2 sorted runs, first one has 80 pages

and second one has 28 pages.
— Pass #3: Sorted file of 108 pages.

1+[ logz [N/ B] | = 1+[log, 22] = 1+]2.229...]
= 4 passes
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DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool
Buffer

output
Buffer Buffer

Page

Page

Buffer

Page
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DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool

Page

output
Page Buffer

Page

Page

Page

Page
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DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool

Page

output
Page Buffer

Page

Page

Page

Page
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DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool

Page

s e
Page verged page | _ToDist Sl Sorted Run

Page

Page

Page

Page
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DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.
— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool
Buffer
Buffer output
Buffer Buffer
Page Buffer Buffer

Page

Buffer
Buffer

Page
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DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool

Page

Page

Page

Merged Page

-mm

Page

Page

Page
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DOUBLE BUFFERING

Prefetch next run in the background and store in a

second buffer while processing the current run.

— Overlap CPU and I/0 operations
— Reduces effective buffers available by half

Buffer Pool

Page

Sorted Run

Merged Page

Page
Merged Page

Page

Page
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COMPARISON OPTIMIZATIONS

Approach #1: Code Specialization

— Instead of providing a comparison function as a pointer to
sorting algorithm, create a hardcoded version of sort that is
specific to a key type.

Approach #2: Suffix Truncation

— First compare a binary prefix of long VARCHAR keys instead of
slower string comparison. Fallback to slower version if prefixes
are equal.

Approach #3: Key Normalization
— Transform variable-length attribute(s) into a single
encoded/padded string that preserves sort order.
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USING B+TREES FOR SORTING

[f the table that must be sorted already has a B+Tree
index on the sort attribute(s), then we can use that to

accelerate sorting.
— Some DBMSs support prefix key scans for sorting.

Retrieve tuples in desired sort order by simply
traversing the leaf pages of the tree.

Cases to consider:
— Clustered B+Tree
— Unclustered B+Tree



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CASE  1: CLUSTERED B+TREE
Traverse to the left-most leaf page, BiTree Index
AN

and then retrieve tuples from all leaf
pages.

This is always better than external
sorting because there is no
computational cost, and all disk access
is sequential.

Tuple Pages
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CASE #2: UNCLUSTERED B+TREE
Chase each pointer to the page that BiTree Index
N

contains the data.

This is almost always a bad idea
except for Top-N queries where N is
small enough relative to total number

of tuples in table.
— In general, one I/O per data record.

Tuple Pages
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AGGREGATIONS

Collapse values for a single attribute from multiple
tuples into a single scalar value.

The DBMS needs a way to quickly find tuples with the
same distinguishing attributes for grouping.

Two implementation choices:
— Sorting
— Hashing
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Filter

SORTING AGGREGATION

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")
ORDER BY cid

53666 |15-445|C
53688 |15-826 »

B
53666 15-721|C
. Remove

53655 15-445
Columns

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 |15-826 |B
53666 |15-721 |C
53655 |15-445 |C
cid cid
15-445 » 15-445
15-826 15-445
15-721 Sort 15-721
15-445 15-826
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Filter

SORTING AGGREGATION

SELECT DISTINCT cid

FROM enrolled
WHERE grade IN ('B','C")
ORDER BY cid

53666 |15-445|C

53688 |15-826

=

Remove

B
53666 |15-721|C
53655 [15-445|C

Columns

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 [15-826 |B
53666 |[15-721 |C
53655 |15-445 |C
cid cid
15-445 15-445 «
15-826 15-445
15-721 Sort 15-721
15-445 15-826
Eliminate

Duplicates
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Filter

SORTING AGGREGATION

SELECT DISTINCT cid

FROM enrolled
WHERE grade IN ('B','C")
ORDER BY cid

53666 |15-445|C

53688 |15-826

=

Remove

B
53666 |15-721|C
53655 [15-445|C

Columns

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 |15-826 |B
53666 |[15-721 |C
53655 |[15-445 |C
cid cid
15-826 15985
15-721 Sort 15-721
15-445 15-826 “.
Eliminate

Duplicates
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AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)

WHERE s.sid = e.sid
GROUP BY cid

Running Totals
AVG(col) > (COUNT, SUM)

FROM student AS s, enrolled AS e MIN(col) =+ (MIN)

MAX(col) =» (MAX)
SUM(col) » (SUM)

cid
15-445|3.62 15-445|3.62
» 15-826(2.89 » 15-445|3.7
O ERFA] EFEE R 15-721/3.33
Join 15-445|3.7 Ol 5 526]2.89

COUNT(col) » (COUNT)

Previous: null

(1, 3.62)
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AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)

WHERE s.sid = e.sid
GROUP BY cid

Running Totals
AVG(col) > (COUNT, SUM)

FROM student AS s, enrolled AS e MIN(col) =+ (MIN)

MAX(col) =» (MAX)
SUM(col) » (SUM)

cid
15-445|3.62 15-445|3.62
» 15-826(2.89 » 15-445|3.7
O ERFA] EFEE R 15-721/3.33
Join 15-445|3.7 Ol 5 526]2.89

COUNT(col) » (COUNT)

Previous: 15-445
(1, 3.62)
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AGGREGATION SUMMARIZATION

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)
WHERE s.siq = e.sid MAX(col) = (MAX)
GROUP BY cid SUM(col) = (SUM)

COUNT(col) » (COUNT)

cid Previous: 15-445
15-445(3.62 15-445(3.62 (2, 7.32)
» 15-826/2.89 » 15-445(3.7 ‘
Join 157211333 | @, [15-721]3.33
15-445(3.7 15-826(2.89
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AGGREGATION SUMMARIZATION

WHERE s.sid = e.sid
GROUP BY cid

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)

MAX(col) =» (MAX)
SUM(col) =» (SUM)

cid cid s.gpa
15-445(3.62 15-445(3.62
» 15-826/2.89 » 15-445(3.7
i [57213.38 | ¢ 15-721(3.33 ‘
Join 15-445(3.7 0Tl s so6]0. 89

COUNT(col) » (COUNT)

Previous: 15-721 Final Result

(1, 3.33)

15-445 | 3.66
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AGGREGATION SUMMARIZATION

WHERE s.sid = e.sid
GROUP BY cid

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)

MAX(col) =» (MAX)
SUM(col) =» (SUM)

cid cid s.gpa
15-445(3.62 15-445(3.62
» 15-826/2.89 » 15-445(3.7
i [57213.38 | ¢ 15-721(3.33
Join 15-445(3.7 0Tl s so6]0. 89 ‘

COUNT(col) » (COUNT)

Previous: 15-721 Final Result

(1, 3.33)

15-445 | 3.66
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AGGREGATION SUMMARIZATION

WHERE s.sid = e.sid
GROUP BY cid

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)

MAX(col) =» (MAX)
SUM(col) =» (SUM)

cid cid s.gpa
15-445(3.62 15-445(3.62
» 15-826/2.89 » 15-445(3.7
i [57213.38 | ¢ 15-721(3.33
Join 15-445(3.7 0Tl s so6]0. 89 ‘

COUNT(col) » (COUNT)

Previous: 15-826 Final Result

(1, 2.89)

15-445 | 3.66
15-721 | 3.33
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AGGREGATION SUMMARIZATION

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)
WHERE s.siql = e.sid MAX(col) = (MAX)
GROUP BY cid SUM(col) = (SUM)

COUNT(col) » (COUNT)

cid Final Result
15-445|3.62 15-445|3.62
» 15-8262.89 » 15-445(3.7 15-445 |3.66
o 15-721(3.33 S 15-72113.33 15-721 |1 3.33
IOln 15-445(3.7 ort 15-8261(2.89 15-826 | 2.89
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ALTERNATIVES TO SORTING

What if we do not need the data to be ordered?

— Forming groups in GROUP BY (no ordering)
— Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario.
— Only need to remove duplicates, no need for ordering.
— Can be computationally cheaper than sorting.
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HASHING AGGREGATE

Populate an ephemeral hash table as the DBMS scans
the table. For each record, check whether there is

already an entry in the hash table:

— DISTINCT: Discard duplicate
— GROUP BY: Perform aggregate computation

[f everything fits in memory, then this is easy.

[f the DBMS must spill data to disk, then we need to be
smarter...
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EXTERNAL HASHING AGGREGATE

Divide-and-conquer approach to computing an
aggregation when data does not fit in memory.

Phase #1 — Partition

— Split tuples into buckets based on hash key
— Write them out to disk when they get full

Phase #2 - ReHash

— Build in-memory hash table for each partition and compute the
aggregation
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PHASE #1: PARTITION

Use a hash function h;, to split tuples into partitions on

disk.

— A partition is one or more pages that contain the set of keys
with the same hash value.
— Partitions are “spilled” to disk via output buffers.

Assume that we have B buffers.

We will use B-1 buffers for the partitions and 1 buffer
for the input data.
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Filter

PHASE #1: PARTITION

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

53666 [15-445|C

=

53688 15-826(B

53666 15-721|C

53655 15-445|C Remove
Columns

cid
15-445

15-826

15-721

15-445

=

enrolled (sid, cid, grade)

sid cid grade
53666 |[15-445 |C
53688 [15-721 |A
53688 |[15-826 |B
53666 [15-721 |C
53655 [15-445 |C

B B-1 partitions

15-445 15-445
15-445 15-312
15-312 15-445

15-826
15-210

15-721
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Filter

PHASE #1: PARTITION

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

53666 [15-445|C

=

53688 15-826(B

53666 15-721|C

53655 15-445|C Remove
Columns

cid
15-445

15-826

15-721

15-445

=

enrolled (sid, cid, grade)

sid cid grade
53666 |[15-445 |C
53688 [15-721 |A
53688 |[15-826 |B
53666 [15-721 |C
53655 [15-445 |C

B B-1 partitions

15-445 15-445
15-445 15-312
15-312 15-445

15-826
15-210

15-721
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Filter

PHASE #1: PARTITION

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

53666 [15-445|C

53688 [15-826

=

Remove

B
53666 [15-721|C
53655 [15-445|C

Columns

cid
15-445

15-826

15-721

15-445

=

enrolled (sid, cid, grade)

sid cid grade
53666 |[15-445 |C
53688 [15-721 |A
53688 |[15-826 |B
53666 [15-721 |C
53655 [15-445 |C

B B-1 partitions
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PHASE #2: REHASH

For each partition on disk:

— Read it into memory and build an in-memory hash table based
on a second hash function h.,,.

— Then go through each bucket of this hash table to bring
together matching tuples.

This assumes that each partition fits in memory.
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PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 [15-826 (B
53666 [15-721 |C
53655 [15-445 |C
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PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

@\'\ifash Table
15-445

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 [15-826 (B
53666 [15-721 |C
53655 [15-445 |C
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PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade
53666 |15-445 |C
53688 [15-721 |A
53688 [15-826 (B
53666 [15-721 |C
53655 [15-445 |C

Hash Table

15-445 15-445
15-445 15-445
15-445 15-445

15-445
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PHASE

SELECT DISTINCT cid
FROM enrolled

WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445 (a
15-445 15-445
15-445 15-445

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade
53666 |[15-445 |C
53688 [15-721 |A
53688 |15-826 |B
53666 [15-721 |C
53655 |15-445 |C
Hash Table
Final Result
15-445 cid
--.~\\‘-._,15—445
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Phase #1 Buckets

PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

Hash Table

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade

53666 15-445 |C

53688 15-721 |A

53688 15-826 |B

53666 15-721 |C

53655 15-445 |C
Final Result

cid

15-445
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Phase #1 Buckets

PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

Hash Table

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade

53666 15-445 |C

53688 15-721 |A

53688 15-826 |B

53666 15-721 |C

53655 15-445 |C
Final Result

cid

15-445
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PHASE #2: REHASH

SELECT DISTINCT cid sid cid grade
FROM enrolled 53666 |15-445 |C
WHERE grade IN ('B','C") 53688 |15-721 |A
53688 [15-826 |B
53666 |15-721 |C
Phase #1 Buckets 53655 157445 |C
15-445 15-445
e Hash Table
15-445 15-445 Flnal Result
15-445 15-445
15-445 15-445 .
........................................................ cid
15-826
15-826 15-445

_/'” 2820

=

enrolled (sid, cid, grade)
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PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

Hash Table

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade

53666 |15-445 |C

53688 |15-721 |A

53688 |15-826 |B

53666 |15-721 |C

53655 |15-445 |C
Final Result

cid

15-445

15-826

15-721
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PHASE

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C")

Phase #1 Buckets

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

: REHASH

=

enrolled (sid, cid, grade)

sid cid grade

53666 |15-445 |C

53688 |15-721 |A

53688 |15-826 |B

53666 |15-721 |C

53655 |15-445 |C
Final Result

cid

15-445

15-826

15-721
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HASHING SUMMARIZATION

During the rehash phase, store pairs of the form
(GroupKey»RunningVal)

When we want to insert a new tuple into the hash table

as we compute the aggregate:

— If we find a matching GroupKey, just update the RunningVal
appropriately

— Else insert a new GroupKey»RunningVal
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HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

Phase #1 |
Buckets

15-445
15-445

»

15-826

»

15-721

»

Hash Table

key
15-445

value
(2, 7.32)

Running Totals
AVG(col) = (COUNT, SUM)
MIN(col) =+ (MIN)
MAX(col) = (MAX)
SUM(col) =» (SUM)
COUNT(col) » (COUNT)

15-826

(1, 3.33)

15-721

(1, 2.89)
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HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)

FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

Phase #1 |
Buckets

15-445
15-445

»

15-826

»

15-721

»

Hash Table

key
15-445

value
(2, 7.32)

Running Totals
AVG(col) = (COUNT, SUM)
MIN(col) =+ (MIN)
MAX(col) = (MAX)
SUM(col) =» (SUM)
COUNT(col) » (COUNT)

15-826

(1, 3.33)

15-721

(1, 2.89)
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HASHING SUMMARIZATION

. Running Totals
SELECT cid, AVG(s.gpa) AVG(col) » (COUNT, SUM)
FROM student AS s, enrolled AS e MIN(col) =+ (MIN)
WHERE s.siq = e.sid MAX(col) = (MAX)
GROUP BY cid SUM(col) = (SUM)

COUNT(col) » (COUNT)

15-445
15-445 . - Hash Table Final Result
Buckets | 15-445|(2, 7.32) » 15-445 |3.66

15-826|(1, 3.33) 15-826 [3.33

15-721 . » 15-721|(1, 2.89) 15-721 |2.89
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CONCLUSION

Choice of sorting vs. hashing is subtle and depends on
optimizations done in each case.

We already discussed the optimizations for sorting:

— Chunk I/0 into large blocks to amortize costs
— Double-buffering to overlap CPU and I/O
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NEXT CLASS

Nested Loop Join
Sort-Merge Join
Hash Join
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