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DATABASE SYSTEMS (FALL 2025)

ADMINISTRIVIA

Homework #3 is due Sunday Oct 5th @ 11:59pm

Mid-Term Exam is on Wednesday Oct 8th

→ Lectures #01–11 (inclusive)
→ Study guide is now available (@126)
→ Bring your CMU ID!

Project #2 is due Sunday Oct 26th @ 11:59pm
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DATABASE SYSTEMS (FALL 2025)

COURSE OUTLINE

We are now going to talk about how 
to execute queries using the DBMS 
components we have discussed so far.

Next four lectures:
→ Operator Algorithms
→ Query Processing Models
→ Runtime Architectures
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Query Planning
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Access Methods
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DATABASE SYSTEMS (FALL 2025)

SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




QUERY PLAN

The operators are arranged in a tree.

Data flows from the leaves of the tree 
up towards the root.
→ We will discuss the granularity of the data 

movement next week.

The output of the root node is the 
result of the query.
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DISK-ORIENTED DBMS

Just like it cannot assume that a table fits entirely in 
memory, a disk-oriented DBMS cannot assume that 
query results fit in memory.

We will use the buffer pool to implement algorithms 
that need to spill to disk.

We are also going to prefer algorithms that maximize 
the amount of sequential I/O.
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WHY DO WE NEED TO SORT?

Relational model/SQL is unsorted.

Queries may request that tuples are sorted in a specific 
way (ORDER BY).

But even if a query does not specify an order, we may 
still want to sort to do other things:
→ Trivial to support duplicate elimination (DISTINCT).
→ Bulk loading sorted tuples into a B+Tree index is faster.
→ Aggregations (GROUP BY).
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IN-MEMORY SORTING

If data fits in memory, then the DBMS can use a 
standard sorting algorithm. 
→ Optimized algorithms if data is mostly sorted (VergeSort).
→ Otherwise use your favorite (QuickSort, TimSort, RadixSort).
→ Many online visualization tools.

If data does not fit in memory, then we need to use a 
technique that is aware of the cost of reading and 
writing disk pages …
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SORTING ALGORITHMS

For a given input run (i.e., list of 
key/value pairs),  sort it based on a 
comparison function and sorting 
parameters.

Key: The attribute(s) to compare
to compute the sort order.

Value: Two choices
→ Tuple (early materialization).
→ Record ID (late materialization).

Late Materialization

• • •K1 ¤ K2 ¤ ¤Kn
Record ID / 
Offset

Early Materialization

• • •

K1 <Tuple Data>

K2 <Tuple Data>
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TODAY'S AGENDA

MotherDuck

Top-N Heap Sort

External Merge Sort

Aggregations

DB Flash Talk: MotherDuck
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TODAY'S AGENDA

MotherDuck

Top-N Heap Sort

External Merge Sort

Aggregations

DB Flash Talk: MotherDuck
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TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a 
LIMIT, then the DBMS only needs to 
scan the data once to find the top-N 
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory 

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
  WITH TIES

Sorted Heap

3 4 6 2 9 1 4 4

Original Data
8
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TOP-N HEAP SORT

HeapSort
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If a query contains an ORDER BY with a 
LIMIT, then the DBMS only needs to 
scan the data once to find the top-N 
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory 

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
  WITH TIES

Sorted Heap
3 421

3 4 6 2 9 1 4 4

Original Data
8

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort


DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a 
LIMIT, then the DBMS only needs to 
scan the data once to find the top-N 
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory 

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
  WITH TIES

Sorted Heap
3 421

3 4 6 2 9 1 4 4

Original Data
8

4

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort


DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a 
LIMIT, then the DBMS only needs to 
scan the data once to find the top-N 
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory 

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
  WITH TIES

Sorted Heap
3 421

3 4 6 2 9 1 4 4

Original Data
8

4 4

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Heapsort


DATABASE SYSTEMS (FALL 2025)

TOP-N HEAP SORT

HeapSort

If a query contains an ORDER BY with a 
LIMIT, then the DBMS only needs to 
scan the data once to find the top-N 
elements.

Ideal scenario for HeapSort if the top-
N elements fit in memory.
→ Scan data once, maintain an in-memory 

sorted priority queue.

SELECT * FROM enrolled
 ORDER BY sid ASC
 FETCH FIRST 4 ROWS
  WITH TIES

Sorted Heap
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3 4 6 2 9 1 4 4

Original Data
8

4 4

Skip and done!
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EXTERNAL MERGE SORT

Divide-and-conquer algorithm that splits data into 
separate runs, sorts them individually, and then 
combines them into longer sorted runs.

Phase #1 – Sorting
→ Sort chunks of data that fit in memory and then write back the 

sorted chunks to a file on disk.
→ Pick your favorite in-memory sorting algorithm.

Phase #2 – Merging
→ Combine sorted runs into larger chunks. 
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2-WAY EXTERNAL MERGE SORT

We will start with a simple example of a 2-way external 
merge sort.
→ “2” is the number of runs to merge into a new run for each pass.

Data is broken up into N pages.

The DBMS has a finite number of B buffer pool pages 
to hold input and output data.
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

Pass #0
→ Read one page of the table into memory
→ Sort page into a “run” and write it back to disk
→ Repeat until the whole table has been sorted into runs

Pass #1,2,3,…
→ Recursively merge pairs of runs into runs twice as long
→ Need at least 3 buffer pages (2 for input, 1 for output)
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and 
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)

1-Page
Runs

Pass #0

2-Page
Runs

Pass #1

3|4 2|6 4|9 7|8 5|6 1|3 1|9

6|2 9|4 8|7 5|6 3|1 9|13|4
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

In each pass, the DBMS reads and 
writes every page in the file.

Number of passes
= 1 + ⌈ log2 N ⌉

Total I/O cost
= 2N ∙ (# of passes)
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1|3
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4|4
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SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

This algorithm only requires three buffer pool pages to 
perform the sorting (B=3).
→ Two input pages, one output page

But even if we have more buffer space available (B>3), it 
does not effectively utilize them if the worker must 
block on disk I/O…
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GENERAL EXTERNAL MERGE SORT

Pass #0
→ Use B buffer pages
→ Produce ⌈N / B⌉ sorted runs of size B

Pass #1,2,3,…
→ Merge B-1 runs (i.e., M-way merge)

Number of passes = 1 + ⌈ logB-1 ⌈N / B⌉ ⌉ 

Total I/O Cost = 2N ∙ (# of passes)
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EXAMPLE

Determine how many passes it takes to sort 108 pages 
with 5 buffer pool pages: N=108, B=5
→ Pass #0: ⌈N / B⌉ = ⌈108 / 5⌉ = 22 sorted runs of 5 pages each (last 

run is only 3 pages).
→ Pass #1: ⌈N’ / B-1⌉ = ⌈22 / 4⌉ = 6 sorted runs of 20 pages each (last 

run is only 8 pages).
→ Pass #2: ⌈N’’ / B-1⌉ = ⌈6 / 4⌉ = 2 sorted runs, first one has 80 pages 

and second one has 28 pages.
→ Pass #3: Sorted file of 108 pages.

1+⌈ logB-1⌈N / B⌉ ⌉ = 1+⌈log4 22⌉ = 1+⌈2.229...⌉
                                = 4 passes

36
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DOUBLE BUFFERING

Prefetch next run in the background and store in a 
second buffer while processing the current run.
→ Overlap CPU and I/O operations
→ Reduces effective buffers available by half
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output

Buffer Pool

⋮ ⋮
⋮

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page
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Page

18
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Page

Page

Page

Page

Page
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DATABASE SYSTEMS (FALL 2025)

COMPARISON OPTIMIZATIONS

Approach #1: Code Specialization
→ Instead of providing a comparison function as a pointer to 

sorting algorithm, create a hardcoded version of sort that is 
specific to a key type.

Approach #2: Suffix Truncation
→ First compare a binary prefix of long VARCHAR keys instead of 

slower string comparison. Fallback to slower version if prefixes 
are equal.

Approach #3: Key Normalization
→ Transform variable-length attribute(s) into a single 

encoded/padded string that preserves sort order.

19
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DATABASE SYSTEMS (FALL 2025)

USING B+TREES FOR SORTING

If the table that must be sorted already has a B+Tree 
index on the sort attribute(s), then we can use that to 
accelerate sorting.
→ Some DBMSs support prefix key scans for sorting.

Retrieve tuples in desired sort order by simply 
traversing the leaf pages of the tree.

Cases to consider:
→ Clustered B+Tree
→ Unclustered B+Tree 

20
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DATABASE SYSTEMS (FALL 2025)

CASE #1: CLUSTERED B+TREE

Traverse to the left-most leaf page, 
and then retrieve tuples from all leaf 
pages.

This is always better than external 
sorting because there is no 
computational cost, and all disk access 
is sequential.

B+Tree Index

101 102 103 104

Tuple Pages

21
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DATABASE SYSTEMS (FALL 2025)

CASE #2: UNCLUSTERED B+TREE
Chase each pointer to the page that 
contains the data.

This is almost always a bad idea 
except for Top-N queries where N is 
small enough relative to total number 
of tuples in table.
→ In general, one I/O per data record. 

101 102 103 104

Tuple Pages

B+Tree Index

22
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DATABASE SYSTEMS (FALL 2025)

AGGREGATIONS

Collapse values for a single attribute from multiple 
tuples into a single scalar value.

The DBMS needs a way to quickly find tuples with the 
same distinguishing attributes for grouping.

Two implementation choices:
→ Sorting
→ Hashing

23
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DATABASE SYSTEMS (FALL 2025)

cid

15-445
15-445
15-721
15-826

SORTING AGGREGATION

Remove
Columns

SortFilter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')
 ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)
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cid

15-445
15-445
15-721
15-826

SORTING AGGREGATION

Remove
Columns

Sort

Eliminate
Duplicates

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')
 ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

24
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cid

15-445
15-445
15-721
15-826

SORTING AGGREGATION

Remove
Columns

Sort

Eliminate
Duplicates

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')
 ORDER BY cid

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

24
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DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

AVG(col)   → (COUNT, SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(1, 3.62)

Previous: null
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DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

AVG(col)   → (COUNT, SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(1, 3.62)

Previous: 15-445
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DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

AVG(col)   → (COUNT, SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(2, 7.32)

Previous: 15-445
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DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

cid AVG(gpa)

Final Result

AVG(col)   → (COUNT, SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(1, 3.33)
15-445  3.66

Previous: 15-721
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AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

cid AVG(gpa)

Final Result

AVG(col)   → (COUNT, SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(1, 3.33)
15-445  3.66

Previous: 15-721
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AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

cid AVG(gpa)

Final Result

AVG(col)   → (COUNT, SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

(1, 2.89)
15-445  3.66

15-721  3.33

Previous: 15-826
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DATABASE SYSTEMS (FALL 2025)

AGGREGATION SUMMARIZATION

SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

cid AVG(gpa)

Final Result

AVG(col)   → (COUNT, SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals

25

Join

cid s.gpa

15-445 3.62

15-826 2.89

15-721 3.33

15-445 3.7 Sort

cid s.gpa

15-445 3.62

15-445 3.7

15-721 3.33

15-826 2.89

15-445  3.66

15-721  3.33

15-826  2.89
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DATABASE SYSTEMS (FALL 2025)

ALTERNATIVES TO SORTING

What if we do not need the data to be ordered?
→ Forming groups in GROUP BY (no ordering)
→ Removing duplicates in DISTINCT (no ordering)

Hashing is a better alternative in this scenario.
→ Only need to remove duplicates, no need for ordering.
→ Can be computationally cheaper than sorting.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

HASHING AGGREGATE

Populate an ephemeral hash table as the DBMS scans 
the table. For each record, check whether there is 
already an entry in the hash table:
→ DISTINCT: Discard duplicate
→ GROUP BY: Perform aggregate computation

If everything fits in memory, then this is easy.

If the DBMS must spill data to disk, then we need to be 
smarter…

27
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DATABASE SYSTEMS (FALL 2025)

EXTERNAL HASHING AGGREGATE

Divide-and-conquer approach to computing an 
aggregation when data does not fit in memory.

Phase #1 – Partition
→ Split tuples into buckets based on hash key
→ Write them out to disk when they get full

Phase #2 – ReHash
→ Build in-memory hash table for each partition and compute the 

aggregation

28
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DATABASE SYSTEMS (FALL 2025)

PHASE #1: PARTITION
Use a hash function h1 to split tuples into partitions on 
disk.
→ A partition is one or more pages that contain the set of keys 

with the same hash value. 
→ Partitions are “spilled” to disk via output buffers.

Assume that we have B buffers.

We will use B-1 buffers for the partitions and 1 buffer 
for the input data.
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DATABASE SYSTEMS (FALL 2025)

PHASE #1: PARTITION

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

15-826
15-210

15-721

⋮

h1

⋮

15-445 15-445
15-445 15-312
15-312 15-445

⋮

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

30

0

1

B-1
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PHASE #1: PARTITION

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

15-826
15-210

15-721

⋮

h1

⋮

15-445 15-445
15-445 15-312
15-312 15-445

⋮

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

30

0

1

B-1
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PHASE #1: PARTITION

Remove
Columns

Filter

sid cid grade

53666 15-445 C

53688 15-826 B

53666 15-721 C

53655 15-445 C

cid

15-445
15-826
15-721
15-445

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

15-826
15-210

15-721

⋮

h1

⋮

15-445
15-312

⋮

B-1 partitions

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

30

0

1

B-1
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DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH
For each partition on disk:
→ Read it into memory and build an in-memory hash table based 

on a second hash function h2.
→ Then go through each bucket of this hash table to bring 

together matching tuples.

This assumes that each partition fits in memory.
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PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1
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PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

Phase #1 Buckets

Hash Table

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

15-445
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PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

Phase #1 Buckets

Hash Table

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

15-445
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PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

h2

Phase #1 Buckets

cid

15-445

Hash Table
Final Result

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

15-445
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PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

cid

15-445

Hash Table
Final Result

15-826

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

h2
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PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

cid

15-445

Hash Table
Final Result

15-826

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

h2
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PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

cid

15-445

Hash Table
Final Result

15-826

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

15-826
h2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮
h2

Phase #1 Buckets

cid

15-445

Hash Table
Final Result

15-721

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32

0

1

B-1

15-826

15-721
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PHASE #2: REHASH

15-721

15-445 15-445
15-445 15-445
15-445 15-445

15-445 15-445
15-445 15-445
15-445 15-445

15-826
15-826

⋮

Phase #1 Buckets

cid

15-445

Final Result

15-721

SELECT DISTINCT cid
  FROM enrolled
 WHERE grade IN ('B','C')

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53666 15-721 C

53655 15-445 C

enrolled (sid, cid, grade)

32
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1

B-1

15-826

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

HASHING SUMMARIZATION

During the rehash phase, store pairs of the form 
(GroupKey→RunningVal)

When we want to insert a new tuple into the hash table 
as we compute the aggregate:
→ If we find a matching GroupKey, just update the RunningVal 

appropriately
→ Else insert a new GroupKey→RunningVal
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HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table

AVG(col)   → (COUNT, SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals

34
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HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table

AVG(col)   → (COUNT, SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals

34
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DATABASE SYSTEMS (FALL 2025)

HASHING SUMMARIZATION

SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
 WHERE s.sid = e.sid
 GROUP BY cid

15-445
15-445

15-826

15-721

⋮

h2

h2

h2

Phase #1
Buckets

key value

15-445 (2, 7.32)

15-826 (1, 3.33)

15-721 (1, 2.89)

Hash Table
cid AVG(gpa)

15-445 3.66

15-826 3.33

15-721 2.89

Final Result

AVG(col)   → (COUNT, SUM)
MIN(col)   → (MIN)
MAX(col)   → (MAX)
SUM(col)   → (SUM)
COUNT(col) → (COUNT)

Running Totals
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CONCLUSION

Choice of sorting vs. hashing is subtle and depends on 
optimizations done in each case.

We already discussed the optimizations for sorting:
→ Chunk I/O into large blocks to amortize costs
→ Double-buffering to overlap CPU and I/O
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NEXT CLASS

Nested Loop Join

Sort-Merge Join

Hash Join
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