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ADMINISTRIVIA

Mid-Term Exam is on Wednesday Oct 8™

— Your CMU ID (Mandatory)

— A calculator is recommended (e.g., logarithms)

— A single letter-size page of handwritten notes. You may use

both sides.
— Andy Office Hours: Tuesday Oct 7" @ 4:15pm

Project #2 is due Sunday Oct 26" @ 11:59pm
— Recitation Wednesday Oct 8" @ 8:00pm (@134)
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https://piazza.com/class/me9159rcdhm69w/post/134

UPCOMING DATABASE TALKS

MotherDuck (DB Seminar)

— Monday Oct 6 @ 4:30pm ET
— Zoom

Vortex (DB Seminar)

— Monday Oct 13" @ 4:30pm ET
— Zoom

Columnar (DB Seminar)

— Monday Oct 20 @ 4:30pm ET
— Zoom

MotherDuck

Y& vortex

) Columnar
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https://db.cs.cmu.edu/events/future-data-ducklake-learning-from-cloud-data-warehouses-to-build-a-robust-lakehouse/
https://db.cs.cmu.edu/events/futuredata-vortex/
https://db.cs.cmu.edu/events/futuredata-where-were-going-we-dont-need-rows-columnar-data-connectivity-with-adbc/

LAST CLASS

We started discussing how to implement algorithms to
compute queries and handle data sets that are larger

than available memory.
— Common Pattern: Divide-and-Conquer

There are two high-level strategies to quickly find

tuples with the same attribute values.
— Sorting
— Hashing
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WHY DO WE NEED TO JOIN?

We normalize tables in a relational database to avoid
unnecessary repetition of information.

We then use the join operator to reconstruct the
original tuples without any information loss.
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JOIN AL6ORITHMS

We will focus on performing binary joins (two tables)
using inner equijoin algorithms.
— These algorithms can be tweaked to support other joins.

— Multi-way joins exist primarily in research literature (e.g.,
worst-case optimal joins).

In general, we want the smaller table to always be the

left table ("outer table") in the query plan.
— The optimizer will (try to) figure this out when generating the
physical plan.
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QUERY PLAN

The operators are arranged in a tree.

Data flows from the leaves of the tree

up towards the root.
— We will discuss the granularity of the data
movement next lecture.

The output of the root node is the
result of the query.

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

\
G value>100

X
R S
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JOIN OPERATORS

Decision #1: Qutput
— What data does the join operator emit to
its parent operator in the query plan tree?

Decision #2: Cost Analysis Criteria
— How do we determine whether one join
algorithm is better than another?

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

\
G value>100

X
R S
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OPERATOR OUTPUT

For tuple r e R and tuple s € S that SE:;ES; g }giNSéCdate

match on join att.r1butes, concatenate ‘ ON R.id = S id

rand s together into a new tuple. WHERE S.value > 100

Output contents can vary: t

— Depends on processing model Tc R.id, S.cdate

— Depends on storage model

— Depends on data requirements in query N R.1d=S.1d ‘
G value>100

s
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OPERATOR OUTPUT: DATA

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Early Materialization:
— Copy the values for the attributes in outer
and inner tuples into a new output tuple.

R(id,name)

‘123 ‘abc \M

S(id,value,cdate)

id value cdate

123 11000

10/6/2025

123 (2000

10/6/2025

R.id R.name S.id S.value S.cdate

123

abc

123

1000

10/6/2025

123

abc

123

2000

10/6/2025
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OPERATOR OUTPUT: DATA 5

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Early Materialization:
— Copy the values for the attributes in outer
and inner tuples into a new output tuple.

= n R.id, S.cdate
R.id R.name S.id S.value S.cdate

123 |abc 123 (1000 10/6/2025
R id=S.id
123 |abc 123 |2000 10/6/2025

\
G value>100
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OPERATOR OUTPUT: DATA 5

Early Materialization:
— Copy the values for the attributes in outer
and inner tuples into a new output tuple.

Subsequent operators in the query
plan never need to go back to the base
tables to get more data.

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
n R.id, S.cdate
t
NR.id=S.id

\
G value>100

X
R S
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OPERATOR QUTPUT: RECORD IDS

Late Materialization:
— Only copy the joins keys along with the
Record IDs of the matching tuples.

=

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id

WHERE S.value > 100

R(id,name)

S(id,value,cdate)

id value cdate

‘123 ‘abc \M
L

123

1000 (10/6/2025

123

2000 |10/6/2025

I

R.id R.RID S.id S.RID

123

R. #it#

123

S.#i##

123

R. #itH

123

S.#i##
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OPERATOR OUTPUT: RECORD IS 5

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Late Materialization:

— Only copy the joins keys along with the
Record IDs of the matching tuples.

* T =)
= n R.id,|S.cdate
t

123 [R.### [123 [s.### NR'idzs‘i‘

123 R.#i## (123 |S.#i#H# \
/ Gvalueﬂ@@

A
R S—
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OPERATOR OUTPUT: RECORD IS 5

Late Materialization:

— Only copy the joins keys along with the
Record IDs of the matching tuples.

I[deal for column stores because the
DBMS does not copy data that is not
needed for the query.

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
t
NR.id=S.ic

\
G valueq100

A
R S—
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COST ANALYSIS CRITERIA

Given a query that joins table R with
table S, assume the DBMS has the

following information those tables:
— M pages in table R, m tuples in R
— N pages in table S, n tuples in S

=

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Cost Metric: # of I/Os to compute join
— Ignore result output costs because it depends on the data and is

the same for all algorithms.

— Ignore computation / network costs (for now).
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JOIN VS CROSS-PRODUCT

RP<S is the most common operation and thus must be
carefully optimized.

RxS followed by a selection is inefficient because the

cross-product is large.
— These types of joins are rare and there is no magic algorithm to
make this go faster.

There are many algorithms for reducing join cost, but
no algorithm works well in all scenarios.
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JOIN AL6ORITHMS

Nested Loop Join
— Naive
— Block
— Index

Sort-Merge Join
Hash Join

— Simple
— Partitioned / GRACE
— Hybrid
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NAIVE NESTED LOOP JOIN

R(id,name)
id _name
600 |MethodMan
200 [GZA

100  |Andy

300 |ODB

500 [RZA

700 |Ghostface
400 |Raekwon

=

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

S(id, value,cdate)

id value cdate

100

2222

10/6/2025

500

1777

10/6/2025

400

6666

10/6/2025

100

9999

10/6/2025

200

8888

10/6/2025
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NAIVE NESTED LOOP JOIN

‘o foreach tuple r € R:+—— Quter M
0@,» foreach tuple s € S:<—In1}er / \
Don't if r and s match then emit _,R s
Do This!
R(id, name) S(id,value,cdate)
m id value cdate
MethodMan 100 |2222 (10/6/2025

200 |GZA 500 (7777 [10/6/2025

100  |Andy 400 |6666 [10/6/2025

300 |ODB 100 (9999 [10/6/2025

500 [RZA 200 (8888 [10/6/2025

700 |[Ghostface

400 |Raekwon
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NAIVE NESTED LOOP JOIN &

Why is this algorithm bad?

— For every tuple in R, it scans S once

Cost: M+ (m*N)
R(id, name) S(id, value,cdate)
Bic  rane |
600 [MethodMan 100 (2222 (10/6/2025
200 |GZA 500 [7777 [10/6/2025 | | Npages
M pages | |10@_ |Andy 400 |6666 [10/6/2025 ntuples
mtuples 300 |ODB 100 (9999 [10/6/2025
500 |RZA 200 [8888 [10/6/2025 | _
700 |[Ghostface
| [400 Raekwon
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NAIVE NESTED LOOP JOIN

Example database:

— Table R: M = 1000, m = 100,000
> TableS: N =500, n = 40,000 4 KB pages - 6 MB

Cost Analysis:
— M+ (m+ N) = 1000 + (100000 - 500) = 50,001,000 IOs
— At 0.1 ms/IO, Total time = 1.3 hours

What if smaller table (S) is used as the outer table?
— N+ (n+ M) =500 + (40000 - 1000) = 40,000,500 IOs
— At 0.1 ms/IO, Total time =~ 1.1 hours
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BLOCK NESTED LOOP JOIN

foreach block B, € R:
foreach block Bs € S:
foreach tuple r € Bg:
foreach tuple s e B.:
if r and s match then emit

R(id, name) S(id, value,cdate)
Bic  rane |
600 [MethodMan 100 (2222 (10/6/2025
200 |GZA 500 7777 [10/6/2025 | | Npages
M pages | |10@_ |Andy 400 |6666 [10/6/2025 ntuples
m tuples 300 |ODB 100 (9999 [10/6/2025
500 |RZA 200 [8888 [10/6/2025 | _
700 |[Ghostface
| [400 Raekwon
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BLOCK NESTED LOOP JOIN

This algorithm performs fewer disk accesses.
— For every block in R, it scans S once.

Cost M+ (M- N)
R(id, name) S(id, value,cdate)
Bic  rane |
600 [MethodMan 100 (2222 (10/6/2025
200 |GZA 500 [7777 [10/6/2025 | | Npages
M pages | |10@_ |Andy 400 |6666 [10/6/2025 ntuples
mtuples 300 |ODB 100 (9999 [10/6/2025
500 |RZA 200 [8888 [10/6/2025 | _
700 |[Ghostface
| [400 Raekwon



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BLOCK NESTED LOOP JOIN

The smaller table should be the outer table.

We determine size based on the number of pages, not
the number of tuples.

R(id, name) S(id, value,cdate)
Bic  rane |
600 [MethodMan 100 (2222 (10/6/2025
200 |GZA 500 [7777 [10/6/2025 | | Npages
M pages | |10@_ |Andy 400 |6666 [10/6/2025 ntuples
m tuples 300 |ODB 100 (9999 [10/6/2025
500 |RZA 200 8888 |10/6/2025 | _
700 |[Ghostface
| [400 Raekwon



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BLOCK NESTED LOOP JOIN

If we have B buffers available:
— Use B-2 buffers for each block of the outer table.
— Use one buffer for the inner table, one buffer for output.

R(id, name) S(id, value,cdate)
Bic  rane |
600 [MethodMan 100 (2222 (10/6/2025
200 |GZA 500 [7777 [10/6/2025 | | Npages
M pages | |10@_ |Andy 400 |6666 [10/6/2025 ntuples
m tuples 300 |ODB 100 (9999 [10/6/2025
500 |RZA 200 8888 |10/6/2025 | _
700 |[Ghostface
| [400 Raekwon
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BLOCK NESTED LOOP JOIN

foreach B -2 pages p, € R:
foreach page p; € S:
foreach tuple r € B-2 pages:
foreach tuple s e p.:
if r and s match then emit

R(id, name) S(id, value,cdate)
Bic  rane |
600 [MethodMan 100 (2222 (10/6/2025
200 |GZA 500 7777 [10/6/2025 | | Npages
M pages | |10@_ |Andy 400 |6666 [10/6/2025 ntuples
m tuples 300 |ODB 100 (9999 [10/6/2025
500 |RZA 200 [8888 [10/6/2025 | _
700 |[Ghostface
| [400 Raekwon
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BLOCK NESTED LOOP JOIN

This algorithm uses B-2 buffers for scanning R.
Cost: M+(|M/(B-2)]-N

If the outer relation fits in memory (M<B-2):
— Cost: M + N = 1000 + 500 = 1500 I/Os
— At 0.1ms per I/O, Total time = 0.15 seconds

[f we have B=102 buffer pages:
— Cost: M+ (| M/ (B-2)]| - N) = 1000 + 10-500 = 6000 I/Os
— Or switch inner/outer relations: 500 + 5:1000 = 5500 I/Os



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NESTED LOOP JOIN

Why is the basic nested loop join so bad?

— For each tuple in the outer table, we must do a sequential scan
to check for a match in the inner table.

We can avoid sequential scans by using an index to find

inner table matches.
— Use an existing index for the join.
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INDEX NESTED LOOP JOIN

foreach tuple r € R:
foreach tuple s € Index(r; = s;):
if r and s match then emit

Index(S.id)

R(id, name) S(id, value,cdate)
Bic  rane id value cdate  [NINECSSIesspannyas
600 [MethodMan 100 (2222 (10/6/2025
200 |GZA 500 7777 [10/6/2025 | | Npages
M pages | |10@_ |Andy 400 |6666 [10/6/2025 ntuples
m tuples 300 |ODB 100 (9999 [10/6/2025
500 |RZA 200 8888 |10/6/2025 | _
700 |[Ghostface
| [400 Raekwon
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INDEX NESTED LOOP JOIN

Assume the cost of each index probe is some constant C
per tuple in the outer table.

Cost: M+ (m+C)
Index(S.id)
R(id, name) S(id, value,cdate)
Bic  rane id value cdate  [NINECSSIesspannyas
600 |MethodMan 100 (2222 (10/6/2025
200 |GZA 500 7777 [10/6/2025 | | Npages
M pages | |10@_ |Andy 400 |6666 [10/6/2025 ntuples
mtuples 300 |ODB 100 (9999 [10/6/2025
500 [RZA 200 [8888 [10/6/2025 | _
700 |Ghostface
| [400 Raekwon
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NESTED LOOP JOIN SUMMARY

Key Takeaways

— Pick the smaller table as the outer table, when possible.
— Buffer as much of the outer table in memory as possible.
— Loop over the inner table (or use an index).

Algorithms
— Naive
— Block
— Index
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SORT-MERGE JOIN

Phase #1: Sort

— Sort both tables on the join key(s).

— You can use any appropriate sort algorithm

— These phases are distinct from the sort/merge phases of an
external merge sort, from the previous class

Phase #2: Merge

— Step through the two sorted tables with cursors and emit
matching tuples.

— May need to backtrack depending on the join type.
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SORT-MERGE JOIN

sort R,S on join keys
cursorp < R o4, CUrsorg <« S
while cursory and cursory:
if cursor, > cursorg:
increment cursorg
if cursory < cursorg:
increment cursor,
backtrack cursor, (if necessary)
elif cursory and cursorg match:
emit
increment cursorg

sorted
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R(id, name)
600 |MethodMan
200 [GZA

100 |Andy

300 |ODB

500 [RZA

700 |Ghostface
200 [GZA

400 |Raekwon

SORT-MERGE JOIN

S(id,value,cdate)

id
100

value cdate

2222

10/6/2025

=

500

1777

10/6/2025

400

6666

10/6/2025

SELECT R.id, S.cdate
FROM R JOIN S
ON R.1d = S.id
WHERE S.value > 100

100

9999

10/6/2025

200

8888

10/6/2025
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SORT-MERGE JOIN =

R(id, name) S(id,value,cdate) SELECT R.id, S.cdate
FROM R JOIN S

600 [MethodMan 100 [2222 |10/6/2025 ON R.id = S.id

200 |GzA 500 [7777 [10/6/2025 WHERE S.value > 100

100 JAndy 400 6666 |10/6/2025

300 JODB 100 9999 |10/6/2025

500 |RZA 200 8888 (10/6/2025

700 |JGhostface

200 [GzA f

400 |Raekwon Sort!

*

Sort!
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SORT-MERGE JOIN =

R(id, name) S(id,value,cdate) SELECT R.id, S.cdate
FROM R JOIN S

100 |Andy 100 [2222 [10/6/2025 ON R.id = S.id

200 |GzZA 100 [9999 [10/6/2025 WHERE S.value > 100

200 |GZA 200 |8888 |10/6/2025

300 |obB 400 |6666 |10/6/2025

400  JRaekwon 500 |7777 [10/6/2025

500 JRZA

600 IMethodMan f

700 |Ghostface Sort!

*

Sort!
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R(id, name)
100 |Andy

200 [GZA

200 [GZA

300 |ODB

400 |Raekwon
500 [RZA

600 |MethodMan
700 |Ghostface

SORT-MERGE JOIN

S(id,value,cdate)

id
l‘>1@@

value cdate

2222

10/6/2025

=

100

9999

10/6/2025

200

8888

10/6/2025

SELECT R.id, S.cdate
FROM R JOIN S
ON R.1d = S.id
WHERE S.value > 100

400

6666

10/6/2025

500

1777

10/6/2025

Last Value: ——-
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SORT-MERGE JOIN &

R(id, name) S(id,value,cdate) SELECT R.id, S.cdate
d value cdate FROM R JOIN S

100  JAndy » 100 |2222 [10/6/2025 ON R.id = S.id

200 |GZA 100 [9999 [10/6/2025 WHERE S.value > 100

200 |GZA 200 |8888 (10/6/2025

300 [ODB 400 |6666 |10/6/2025

400 |Raekwon 500 |7777 (10/6/2025

Output Buffer

500 |RZA

600 [MethodMan Last Value: ——- R.id R.name S.id S.value S.cdate

700 |Ghostface 100 |Andy 100 (2222 10/6/2025
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SORT-MERGE JOIN &

R(id, name) S(id,value,cdate) SELECT R.id, S.cdate
FROM R JOIN S

100 JAndy 100 |2222 [10/6/2025 ON R.id = S.id

200 |GZA » 100 [9999 |10/6/2025 WHERE S . value > 100

200 |GZA 200 (8888 [10/6/2025

300 |oDB 400 |6666 [10/6/2025

400 |Raekwon 500 (7777 (10/6/2025

500 |RZA Output Buffer

600 [MethodMan Last Value: ——- R.id R.name S.id S.value S.cdate

700 |Ghostface 100 [Andy 100 (2222 10/6/2025

100 |Andy 100 19999 10/6/2025
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SORT-MERGE JOIN &

R(id, name) S(id,value,cdate) SELECT R.id, S.cdate
FROM R JOIN S

100 JAndy 100 |2222 [10/6/2025 ON R.id = S.id

200 |GZA 100 [9999 |10/6/2025 WHERE S . value > 100

200 |GZA »2@@ 8888 [10/6/2025

300 |oDB 400 6666 [10/6/2025

400 |Raekwon 500 (7777 (10/6/2025

500 |RZA Output Buffer

Last Value: 100

700 |Ghostface 100 [Andy 100 (2222 10/6/2025

100 |Andy 100 19999 10/6/2025
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SORT-MERGE JOIN &

R(id, name) S(id,value,cdate) SELECT R.id, S.cdate
FROM R JOIN S

100  |Andy 100 |2222 [10/6/2025 ON R.id = S.id

200 |GZA 100 [9999 |10/6/2025 WHERE S . value > 100

200 |GZA »2@@ 8888 [10/6/2025

300 |oDB 400 6666 [10/6/2025

400 |Raekwon 500 (7777 (10/6/2025

500 |RZA Output Buffer

Last Value: 100

700 |Ghostface 100 [Andy 100 (2222 10/6/2025

100 [Andy 100 19999 10/6/2025
200 |GZA 200 (8888 10/6/2025
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SORT-MERGE JOIN &

R(id, name) S(id,value,cdate) SELECT R.id, S.cdate
FROM R JOIN S

100  |Andy 100 |2222 [10/6/2025 ON R.id = S.id

200 |GZA 100 [9999 |10/6/2025 WHERE S . value > 100

200 |GZA 200 (8888 [10/6/2025

300 |oDB »4@@ 6666 [10/6/2025

400 |Raekwon 500 (7777 (10/6/2025

500 |RZA Output Buffer

Last Value: 200

700 |Ghostface 100 [Andy 100 (2222 10/6/2025

100 [Andy 100 19999 10/6/2025
200 |GZA 200 (8888 10/6/2025
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SORT-MERGE JOIN &
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SORT-MERGE JOIN

Sort Cost (R): 2M - (1+ [loggz, [M/ B]])
Sort Cost (S): 2N-(1+ [loggz, [N/ B]])
Merge Cost: (M + N)

Total Cost: Sort + Merge
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SORT-MERGE JOIN

Example database:
— Table R: M = 1000, m = 100,000
— Table S: N =500, n = 40,000

With B=100 bufter pages, both R and S can be sorted in

two pasSses:

— Sort Cost (R) = 2000 - (1 + [loge, 1000 /100]) = 4000 I/Os
— Sort Cost (8) = 1000 - (1 + [ logy, 500 / 100]) = 2000 1I/Os
— Merge Cost = (1000 + 500) = 1500 I/Os

— Total Cost = 4000 + 2000 + 1500 = 7500 I/Os

— At 0.1 ms/IO, Total time = 0.75 seconds
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SORT-MERGE JOIN

The worst case for the merging phase is when the join
attribute of all the tuples in both relations contains the
same value.

Cost: (M * N) + (sort cost)
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SORT-MERGE JOIN

Sort-Merge Join is preferable when one of the

following conditions are met:
— One or both tables are already sorted on join key.
— Output must be sorted on join key.

The input relations may be sorted either by an explicit
sort operator, or by scanning the relation using an
index on the join key.
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HASH JOIN

[f tuple r € R and tuple s € S satisfy the join condition,
then they have the same value for the join attributes.

[f that value is hashed to some partition 1, the R tuple
must be in r; and the S tuple in s;.

Therefore, R tuples in r; need only to be compared with
S tuples in s;.
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SIMPLE HASH JOIN AL6ORITHM

Phase #1: Build

— Scan the outer relation and populate a hash table using the hash
function h, on the join attributes.

— We can use any hash table that we discussed before but in
practice linear probing works the best.

Phase #2: Probe

— Scan the inner relation and use h, on each tuple to jump to a
location in the hash table and find a matching tuple.
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SIMPLE HASH JOIN ALGORITHM

foreach tuple r € R:

insert h,(r) into hash table HT;
foreach tuple s € S:

output, if h,(s) e HT;

R(id,name) IJasﬁ%Tabh? . S(id,value,cdate)
R
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SIMPLE HASH JOIN ALGORITHM

foreach tuple r € R:

insert h,(r) into hash table HT;
foreach tuple s € S:

output, if h,(s) e HT;

R(id,name) IJasﬁ%Tabh? . S(id,value,cdate)
R
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SIMPLE HASH JOIN ALGORITHM

foreach tuple r € R:

insert h,(r) into hash table HT;
foreach tuple s € S:

output, if h,(s) e HT;

R(id,name) IJasﬁ%Tabh? . S(id,value,cdate)
R

»



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMPLE HASH JOIN ALGORITHM
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SIMPLE HASH JOIN ALGORITHM

foreach tuple r € R:

insert h,(r) into hash table HT;
foreach tuple s € S:

output, if h,(s) e HT;

R(id,name) IJasﬁ%Tabh? . S(id,value,cdate)
R

<0

»
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OPTIMIZATION: PROBE FILTER &

Hash Table

Create a probe filter (Bloom Filter) as

the DBMS constructs the hash table
on the “build” table in the first phase.

— Always check the filter before probing the
hash table. / \

f

— Faster than probing hash table because the
filter fits in CPU cache.

This technique is sometimes called
sideways information passing.
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Hash Table
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HASH JOINS OF LARGE RELATIONS 5

What happens if we do not have enough memory to fit
the entire hash table?

We do not want to let the buffer pool manager swap
out the hash table pages at random.
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PARTITIONED HASH JOIN

Hash join when tables do not fit in

memory.

— Partition Phase: Hash both tables on the
join attribute into partitioned buckets that
the DBMS writes out to disk.

— Probe Phase: Build a hash table one-at-a-
time per bucket and compares tuples in
corresponding partitions for each table.

Sometimes called GRACE Hash Join. University of Tokyo

— Named after the GRACE database
machine from Japan in the 1980s.
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Britton-Lee’s technical achievements have
created the Intelligent Data Base Machine, oriented
to managers who know the value of a responsive
information system. Truly user-oriented—even to

people without programming knowledge —the
IDM 500 provides some remarkable advantages
Imagine how the features described inside can im-
prove YOUR company’s information productivity.
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PARTITIONED HASH JOIN PARTITION PHASE ™

Hash R into k buckets.

Hash S into k buckets with same hash function.
Write buckets to disk when they get full.

R(id,name) R-buckets S-buckets - S(id,value,cdate)
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PARTITIONED HASH JOIN PROBE PHASE

Read corresponding the buckets into memory one
partition at a time and then perform a hash join their
contents.

R(id,name) R-buckets S-buckets - S(id,value,cdate)
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PARTITIONED HASH JOIN PROBE PHASE

Read corresponding the buckets into memory one
partition at a time and then perform a hash join their
contents.

Hash Table
‘-buckets HTpa rtition=0 S-buckets
h,

__a
»
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PARTITIONED HASH JOIN PROBE PHASE

Read corresponding the buckets into memory one
partition at a time and then perform a hash join their
contents.

Hash Table

‘-buckets HTpartition=0 S-buckets
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PARTITIONED HASH JOIN PROBE PHASE

Read corresponding the buckets into memory one
partition at a time and then perform a hash join their
contents.

Hash Table
HT

partition=0 S-buckets |

‘-buckets
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PARTITIONED HASH JOIN PROBE PHASE

Read corresponding the buckets into memory one
partition at a time and then perform a hash join their
contents.

Hash Table
R-buckets HTpa rtition=1 S-buckets

D & 2 -
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PARTITIONED HASH JOIN EDGE CASES

[f a partition still does not fit in memory after the first
phase, recursively partition it again with a different

hash function
— Repeat as needed
— Eventually hash join the corresponding (sub-)partitions

[f a single join key has too many matching records that
do not fit in memory, use a block nested loop join just
for that key.

— Avoids random I/O in exchange for sequential I/O.
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RECURSIVE PARTITIONING

R-buckets

R(id, name)

1
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RECURSIVE PARTITIONING

R-buckets

R(id, name)

@f\;1
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RECURSIVE PARTITIONING

-buckets
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RECURSIVE PARTITIONING

R-buckets

-buckets

oo
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RECURSIVE PARTITIONING
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RECURSIVE PARTITIONING 5

R-buckets S-buckets
R-buckets

R(id, name)

oo

S(id,value,cdate)

x = = = o©°
|
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RECURSIVE PARTITIONING 5
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RECURSIVE PARTITIONING 5
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COST OF PARTITIONED HASH JOIN 5

[f we do not need recursive partitioning:
— Cost: 3(M + N)

Partition phase:

— Read+write both input tables.
— 2(M+N) I/Os

Probe phase:

— Read both tables' buckets one partition at a time.
— M+N 1/Os
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PARTITIONED HASH JOIN

Example database:
— M = 1000, m = 100,000
— N =500, n = 40,000

Cost Analysis:
— 3(M + N) = 3 -(1000 + 500) = 4,500 IO0s
— At 0.1 ms/IO, Total time = 0.45 seconds
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OPTIMIZATION: HYBRID HASH JOIN 5

[f the buffer pool is larger than k, then use additional =

pages to perform an in-memory join in the first phase
for the first partition. All other partitions are spilled to
disk as in the original partitioned hash join algorithm.

& gQBI“_ Server

R(id,name) - S(id,value,cdate)
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OPTIMIZATION: HYBRID HASH JOIN 5

[f the buffer pool is larger than &, then use additional s

pages to perform an in-memory join in the first phase
for the first partition. All other partitions are spilled to
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OPTIMIZATION: HYBRID HASH JOIN 5

[f the buffer pool is larger than &, then use additional s

pages to perform an in-memory join in the first phase
for the first partition. All other partitions are spilled to
disk as in the original partitioned hash join algorithm.
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OPTIMIZATION: HYBRID HASH JOIN 5

[f the buffer pool is larger than k, then use additional =

pages to perform an in-memory join in the first phase
for the first partition. All other partitions are spilled to
disk as in the original partitioned hash join algorithm.
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HASH JOIN OBSERVATIONS

The probe table can be any size.
— Only the build table (or its partitions) need to fit in memory

[f the probe table entirely fits in memory, then simply
build the hash table on the probe side and scan the build
side probing the hash table (no partitioning needed).

[f we do not know the size, then we must use a dynamic
hash table or allow for overflow pages.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

JOIN ALGORITHMS: SUMMARY 5

Algorithm 10 Cost Example
Naive Nested Loop Join M+ (m-N) 1.3 hours
Block Nested Loop Join M+ (| M/ (B-2)| *N)  0.55 seconds
Index Nested Loop Join M+ (m-C) Variable

Sort-Merge Join M+ N+ (sortcost)  0.75 seconds
Hash Join 3:(M+N)  0.45 seconds
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CONCLUSION

Hashing is almost always better than sorting for
operator execution.

Caveats:
— Sorting is better on non-uniform data.
— Sorting is better when result needs to be sorted.

Good DBMSs use either (or both).
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NEXT CLASS
Mid-Term Exam!
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