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ADMINISTRIVIA

Project #2 is due Sunday Oct 26" @ 11:59pm
— See Recitation Video (@158)
— Office Hours: Saturday Oct 25% @ 3:00-5:00pm in GHC 5207

Mid-term exam grades posted
— Come to Andy's OH to view your grade and solution.
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https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/158

UPCOMING DATABASE TALKS 5

Columnar (DB Seminar) III Columnar
— Monday Oct 20" @ 4:30pm ET

— Zoom

Astronomer Tech Talk ASTRONOMER

— Tuesday Oct 21°* @ 12:00pm
— GHC 8115

Wiz,

SingleStore (DB Seminar) e SlngIeStore

— Monday Oct 27% @ 12:00pm
— Zoom

\\\V//


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/futuredata-where-were-going-we-dont-need-rows-columnar-data-connectivity-with-adbc/
https://db.cs.cmu.edu/events/futuredata-singlestore/

LAST CLASS

We discussed different join operator algorithms.

We now know how to implement basic query operators
— Sorting, Aggregations, Joins

The next two weeks are about how put all the pieces
together to execute queries...
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QUERY EXECUTION =

A query plan is a DAG of operators.

A pipeline is a sequence of operators
where tuples continuously flow
between them without intermediate
storage.

A pipeline breaker is an operator
that cannot finish until all its children

emit all their tuples.
— Joins (Build Side), Subqueries, Order By

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

...... | I
Pipeh’ne #2 n R.id, S. cdate

Ptpelme #1
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TODAY'S AGENDA

Processing Models
Access Methods
Modification Queries

Expression Evaluation
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PROCESSING MODEL

A DBMS's processing model defines how the system
executes a query plan and moves data from one

operator to the next.
— Different trade-offs for workloads (OLTP vs. OLAP).

Each processing model is comprised of two types of

execution paths:
— Control Flow: How the DBMS invokes an operator.
— Data Flow: How an operator sends its results.

The output of an operator can be either whole tuples
(NSM) or subsets of columns (DSM).
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PROCESSING MODEL

Approach #1: Iterator Model « Most Common
Approach #2: Materialization Model « Rare

Approach #3: Vectorized / Batch Model « Common
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ITERATOR MODEL

Each query plan operator implements a Next ()

function.

— On each invocation, the operator returns either a single tuple
or a EOF marker if there are no more tuples.

— The operator implements a loop that calls Next() on its
children to retrieve their tuples and then process them.

Each operator implementation also has Open() and

Close() functions.
— Analogous to constructors/destructors, but for operators.

Also called Volcano or Pipeline Model.
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ITERATOR MODEL
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SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100
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Control Flow =——»
Data Flow=> npoxt() [for t in child.Next():
emit(projection(t))
l\kxxt() for t, in left.Next():
buildHashTable(t,)
for t, in right.Next(): M
if probe(t,): emit(t,Xt,)
Next() |for t in child.Next():
if evalPred(t): emit(t)
Next() |for t in R: Next() |for t in S:
emit(t) emit(t)
A

-
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Control Flow =
o —> for t in child.Next():
emit(projection(t))

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): emit(t,Xt,)

for t in child.Next():
if evalPred(t): emit(t)

for t in R:
emit(t)

for t in S:
emit(t)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
n R.id, S.cdate
t
N R.id=S. id
\
Gvalue>1@@
R §
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Control Flow =——»
v —> for t in child.Next():
emit(proje¢ction(t))
left.Next():

for t. i
byfldHashTable(t,)

fgr t, in right.Next():
if probe(t,): emit(t,Xt,)

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

for t in R:
emit(t)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
n R.id, S.cdate
t
M R.id=S.id
\
Gvalue>1@@
R §
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ITERATOR MODEL

v —> for t in child.Next():
emit(proje¢ction(t))

for t in child.Next():
if evalPred(t): emit(t)

Single Tuplel
for t in R:
emit(t)

for t in S:
emit(t)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
n R.id, S.cdate
t
M R.id=S.id
\
Gvalue>1@@
R §
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ITERATOR MODEL

Control Flow =——»
—
g o for t in child.Next():
emit(proje¢ction(t))

for t, in left.Next():
buildHashTable(t,)
for t, in right.Next():

for t in child.Next():
if evalPrgd(t): emit(t)

for t in R: for t in S:
emit(t) emit(t)

5

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

4

{
n R.id, S.cdate
t
MR.id=S.id
\
Gvalue>1@@
R §
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ITERATOR MODEL &

Data Flow —» o SELECT Rld, S.cdate

for t in child.Next():
emit(proje¢ctionft)) FROM R JOIN S

ON R.id = S.id

for t, in left.Next(): WHERE S.value > 100
buildHashTable(t,)

for t, in right.Next()w=

for t in child.Next():

if evalPrﬁ(t): emit(T) 9
for t in R: for t in
emit(t) emit(t

t
n R.id, S.cdate
t
MR.id=S.id
\
Gvalue>1@@
R §
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Control Flow =——p

Data Flow =—» o for t in chi\ld.Next():

ITERATOR MODEL

| | for t in R: E
emit(t) :

for t, in right.Next()w=

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

for t in child.Next():

if evalPrﬁ(t): emit(T) 9

for t in
emit(t

A
Gvalue>1@@

X
R §

--------------------------

Pipeline #1
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TERATOR MODEL &

Control Flow =——p T ——

SELECT R.id, S.cdate

" [for t in child.Next(): | !
emit(pro;j*ctmntt)) FROM R JOIN S
.................................................................................. \ ............ ON Rld _ Sld
| | WHERE S.value > 100

for t, in left.Next():: ;
. |__buildHashTable(t,) G\
{for t, in right.Next()w= t

if probe(BL: emit(t bt o k. e,

.................................. < 1_2 !’lne#z and Scdate

é for t in child.Next():
HOif evalPr‘d(t): mit(t) |}

:fortinR:E gfortin
emit(t) P emit(t

......................................................................

Ptpelme #1
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ITERATOR MODEL &

The Iterator model is used in almost every DBMS.
— Easy to implement / debug.
— Output control works easily with this approach.

Allows for pipelining where the DBMS tries to
process each tuple through as many operators as
possible before retrieving the next tuple.

WIRED
isled TIGER ’,;,, . SQLBase o TigerBeetl @ valkey = TinyBase

@ UMBRA lpickleDB HBHSE @ SUﬂ'teDB @ﬂeoq APOLLO .I'HEI'HEHEHED m
A Aerospike RavenDB __, oo & cedarng “ Rocksos  [MDB " = CouchDB

J yabyteDB SQLite QMongoDB mangoDB INGR=S = 4%‘ cassandra \v
fauna . i coner MSYBASE @rosoesal ORACLE DuMgsaAL .2, w nuo
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MATERIALIZATION MODEL

Each operator processes its input all at once and then

emits its output all at once.

— The operator "materializes" its output as a single result.

— The DBMS can push down hints (e.g., LIMIT) to avoid
scanning too many tuples.

— Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or subsets

of columns (DSM).

— Originally developed by MonetDB in the 1990s to process
entire columns at a time instead of single tuples.
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MATERIALIZATION MODEL 5

Control Flow =——»
Data Flow =——p out = [ ]
for t in child.Output():
out.add(projection(t))
retu
out = [ 1]
for t, in left.Output():
buildHashTable(t,)
for t, in right.Output():
if probe(t,): out.add(t,t,)
return out
out = [ ]
for t in child.Output():
if evalPred(t): out.add(t)
return out
out = [ ] out = [ ]
for t in R: for t in S:
out.add(t) out.add(t)

return out return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
n R.id, S.cdate
t
N R.id=S.1id
\
Gvalue>1@@
R §
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MATERIALIZATION MODEL 5

Control Flow =——p
Data Flow —» out = [ ]

for t in child.Output():
out.add(projection(t))
retu

out = [ 1]

for t, in left.Output():
/k buildHashTable(t,)

for t, in right.Output():

if probe(t,): out.add(t,t,)
return out

out = [ ]
for t in child.Output():

if evalPred(t): out.add(t)
return out

v

out = [ ] out = [ ]

for t in R: for t in S:
out.add(t) out.add(t)

return out return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
n R.id, S.cdate
t
MR.id=S.id
\
Gvalue>1@@
R §



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MATERIALIZATION MODEL

Control Flow =——p
Data Flow —» out = [ ]

for t in child.Output():
out.add(projection(t))
retu

out = [ ]

for t, in left.Output():
/k buildHashTable(t,

for t, in right.Outgut():

if probe(t,): outfadd(t,t,)
return out

£1E73qﬂes|
v

fgr t in child.Output():
if evalPred(t): out.add(t)
return out

out = [ ] out = [ ]

for t in R: for t in S:
out.add(t) out.add(t)

return out return out

=

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
n R.id, S.cdate
t
MR.id=S.id
\
Gvalue>1@@
R §
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Control Flow =——p
Data Flow =—p

2,

out = [ ]
for t in R:

v

MATERIALIZATION MODEL 5

out = [ ]

for t in child.Output():
out.add(projection(t))

<:Rﬁmw1ms\\

out = [ ]

for t, in left.Output():
buildHashTable(t,)
for t, in right.Output():

if probe(t,): out.add(t,t,)

return ou

out.add(t)

return out

—

out = [ ]

for t in child.Output():
if evalPred(t): out.add(

return out

out = [ ]

for t in S:
out.add(t)

return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

4

{
n R.id, S.cdate
t
MR.id=S.id
\
Gvalue>1@@
R §
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MATERIALIZATION MODEL

Control Flow =——p
Data Flow —» out = [ ]
for t in child.Output():
out.add(projection(t))
retu
out = [ ]

for t, in left.Output():
buildHashTable(t,)

for t, in right.Output():

if probe(t,): out.add(t,t,)

return ou \

out = [ ]
for t in child.Output():
if evalPred(t): out.add(

2,

return
\ 4
out = [ ] out = [ ]
for t in R: for t in S:
out.add(t) out.add(t)
return out return out

=

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

4

{
n R.id, S.cdate
t
M R.id=S.1id
\
Gvalue>1@®

X
R S
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MATERIALIZATION MODEL

Control Flow =——»
Data Flow =——p out = [ ]
for t in child.Output():
out.add(projectfon(t))

retu

out = [ 1]

for t, in left.Output():
buildHashTablegt,)

for t, in right
if probe(t,)
return ou

v
out = [ ] out = [ ]
for t in R: for t in S:
out.add(t) out.add(
return out return out

=

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

4

{
n R.id, S.cdate
t
M R.id=S.1id
\
Gvalue>1@®

X
R S
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MATERIALIZATION MODEL

Control Flow =——»
Data Flow =——p out = [ ]
for t in child.Output():
out.add(projectfon(t))

retu

out = [ 1]

for t, in left.Output():
buildHashTablegt,)

for t, in right
if probe(t,)
return ou

v

out = [ ]
for t in R: for t in S:
out.add(t) out.add(

return out

return out

=

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

{
n R.id, S.cdate
t
M R.id=S.1id
\
Gvalue>1@®

X
R S
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MATERIALIZATION MODEL 5

Control Flow =——»
Data Flow = out = [ ]
for t in child.Output():
out.add(projectfon(t))
retu

out = [ ]
for t, in left.Ou

buildHashTable
for t, in right Output():
if probe(t,)/ out.add(t,><D)
return ou

2,

for t in S:

return out
* [
out = [ ] Operator Fusion
for t in R:
out.add(t)

return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

if evalPred#t): out.add(t)

t
n R.id, S.cdate
t
MR.id=S.id
\
Gvalue>1@@
R §
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MATERIALIZATION MODEL

Better for OLTP workloads because queries only access

a small number of tuples at a time.
— Lower execution / coordination overhead.
— Fewer function calls.

Not ideal for OLAP queries with large intermediate
results because DBMS must allocate buffers.

mone@ =! CrateDB RavenDB
[E)-Store VOLTDB

% \/

VanillaDB
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VECTORIZATION MODEL

Like the Iterator Model where each operator
implements a Next() function, but...

Each operator emits a batch of tuples instead of a single

tuple.

— The operator's internal loop processes multiple tuples at a time.

— The size of the batch can vary based on hardware or query
properties.

— Each batch will contain one or more columns each their own
null bitmaps.
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VECTORIZATION MODEL 5

Control Flow =——p

Data Flow —» out = [ ]

for t in child.Next(): 0
out.add(projection(t))
1 n: emit(out)
out = [ 1]
or t,; in left.Next():

buildHashTable(t,)

for t, in right.Next():
if probe(t,): out.add(t,t,)
if |out|>n: emit(out)

out = [ ]

for t in child.Next():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

out = [ ] out = [ ]
for t in R: for t in S:
out.add(t) out.add(t)

if |out|>n: emit(out) if |out|>n: emit(out)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
n R.id, S.cdate
t
MR.id=S.id
\
Gvalue>1@@
R §
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VECTORIZATION MODEL 5

Control Flow =——p

Data Flow —» out = [ ]

for t in child.Next(): 0
out.add(projection(t))
1 n: emit(out)
out = [ 1]
or t,; in left.Next():

buildHashTableft,)
for t, in right.
if probe(t,):

for t in child.Next():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

out = [ ] TupleBatchl out = [ ]
for t in R: for t in S:
out.add(t) out.add(t)

if |out|>n: emit(out) if |out|>n: emit(out)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
n R.id, S.cdate
t
MR.id=S.id
\
Gvalue>1@@
R §
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VECTORIZATION MODEL

Control Flow =——p

Data Flow —» out = [ ]

for t in child.Next(): o
out.add(projection(t))
1 n: emit(out)

out = [ ]
or t,; in left.Next():
buildHashTableft,)

for t, in right.Next():
if probe(t,): qut.add(t,t,)
if |out|>n: emjt(out)

in child.Next():
if evalPred(t): out.add(t)
for t in S:

~Eemit(out)
out.add(t) E

if |out|>n: emit(out)

2,

=+ |l

out = [ ] Tuple Batchl
for t in R:
out.add(t)

if |out|>n: emit(out)

=

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

{
n R.id, S.cdate
t
M R.id=S.1id
\
Gvalue>1@®
£§;
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VECTORIZATION MODEL

Control Flow =——p

Data Flow —» out = [ ]

for t in child.Next(): o
out.add(projection(t))
1 n: emit(out)

out = [ ]
or t,; in left.Next():
buildHashTableft,)

for t, in right.
if probe(t,):

2,

4

if evalPred(t)?% out.§dd(t)
for t in S:

out.add(t) E

if |out|>n: emit(out)

out = [ ] Tuple Batchl
for t in R:
out.add(t)

if |out|>n: emit(out)

=

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

{
n R.id, S.cdate
t
M R.id=S.1id
\
Gvalue>1@®
£§;
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VECTORIZATION MODEL 5

[deal for OLAP queries because it greatly reduces the
number of invocations per operator.

Allows an out-of-order CPU to efficiently execute

operators over batches of tuples.

— Operators perform work in tight for-loops over arrays, which
compilers know how to optimize / vectorize.

— No data or control dependencies.

— Hot instruction cache.

V..‘ ’
: )#» DORIS ' * QuestDB
Optf:-r.yx Google TERADATA MHE™ Polars FIREBOLT (0-) Duck[g MatrbOne R
A Big Ougry Yellowbrick ¢g’ ‘? in0| S SingleStore . VERTIO\ ADPAI=(\’:I|_I1_EL -g
ZSQLserver . “ P “""‘\\ ") druid |

“* vectorwise @A”OYDB [l ClickHouse @GREENPLUM @VG'OX M CockroachDB

| DATABASE DATA. HYRISE
ORACLE"  s#snowflake . amazon ¢ databricks FUSB@N == - trino
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VECTORIZATION MODEL 5

[deal for OLAP queries because it greatly reduces the
number of invocations per operator.

Allows an out-of-order CPU to efficiently execute

operators over batches of tuples.

— Operators perform work in tight for-loops over arrays, which
compilers know how to optimize / vectorize.

— No data or control dependencies.

— Hot instruction cache.

V..‘ ’
: )#» DORIS ' * QuestDB
Optf:-r.yx Google TERADATA ™ Polars FIREBOLT (0-) Duck[g MatrbOne R
A Big Ougry Yellowbrick ¢g’ ‘? in0| S SingleStore . VERTIO\ ADPAI=(\’:I|_I1_EL -g
ZSQLserver . “ P “""‘\\ ") druid |

“* vectorwise @A”OYDB [l ClickHouse @GREENPLUM @VG'OX M CockroachDB

| DATABASE DATA. HYRISE
ORACLE"  s#snowflake . amazon ¢ databricks FUSB@N == - trino
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OBSERVATION

In the previous examples, the DBMS starts executing a
query by invoking Next () at the root of the query plan
and pulling data up from leaf operators.

This is the how most DBMSs implement their
execution engine.
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)

— Start with the root and "pull" data up from its children.

— Tuples are always passed between operators using function calls
(unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)

— Start with leaf nodes and "push" data to their parents.

— Can "fuse" operators together within a for-loop to
minimize intermediate result staging.
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Approach #1: Top-to-Bottom (Pull)

— Start with the root and "pull" data up from its children.

— Tuples are always passed between operators using function calls
(unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)

— Start with leaf nodes and "push" data to their parents.

— Can "fuse" operators together within a for-loop to
minimize intermediate result staging.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)

— Start with the root and "pull" data up from its children.

— Tuples are always passed between operators using function calls
(unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)

— Start with leaf nodes and "push" data to their parents.

— Can "fuse" operators together within a for-loop to
minimize intermediate result staging.
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PUSH-BASED ITERATOR MODEL 5

Data Flow —» SELECT R.1id , S. cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

e for t, in.S: | | IO
if evalPred(t): <Pipe!1ne #Z n R.id, S. cdate

if probeHashTable(t,):

emit(projection(t,P<t,)) — t L

Operator Fusion Déq\R L6, o

. éGvalue>100

o for t, in R: e eeeeeeeeeeeeeeens , / PR ;
buildHashTable(t,) : R s
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PUSH-BASED ITERATOR MODEL 5

Data Flow —» SELECT R.1id , S. cdate

FROM R JOIN S
Scheduler ON R.id = S.id

WHERE S.value > 100
e for t, in S: t
if evalPred(t): TC 954, Soadhie
if probeHashTable(t,): 1
NR.id=S.id

emit(projection(t,P<t,))
\
. Gvalue>1@@
o for t, in R: X
buildHashTable(t,) R s
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PUSH-BASED ITERATOR MODEL 5

Data Flow —» SELECT R.1id , S. cdate

FROM R JOIN S
Scheduler ON R.id = S.id

WHERE S.value > 100
e for t, in S: t
if evalPred(t): TC 954, Soadhie
if probeHashTable(t,): 1
emit(projection(t,P<t,))
|><|R.id=S.id
\
; Gvalue>10@
_,o for t, in R:
buildHashTable(t,)

X
R S
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PUSH-BASED ITERATOR MODEL 5

Data Flow —» SELECT Rld, S.cdate
Output Buffers FROM R JOIN S

Scheduler . ON R.id = S.id

WHERE S.value > 100

e for t, in S: {
if evalPred(t): TC R.id, S.cdate

if probeHashTable(t,):
emit(projection(t,P<t,))
M R.id=S.1id
G value>100

_,o for t, in R: S
buildHashTable(t, R s
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PUSH-BASED ITERATOR MODEL 5

Data Flow —» SELECT Rld, S.cdate
Output Buffers FROM R JOIN S

Scheduler . ON R.id = S.id
- WHERE S.value > 100

9 for t, in S: {
if evalPred(t): TC R.id, S.cdate

if probeHashTable(t,):
emit(projection(t,P<t,))
N R.id=S.1id
G value>100

_,o for t, in R: S
buildHashTable(t, R s
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PUSH-BASED ITERATOR MODEL

Control Flow =——p
Data Flow =—p

Scheduler
,9 for t, in S:
if evalPred(t):

if probeHashTable(t,)
emit(projection(t,P<t,))

Output Buffers

o for t, in R:
buildHashTable(t,)

=

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
n R.id, S.cdate
t
N R.id=S.1id
\
Gvalue>1@@
R §
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PUSH-BASED ITERATOR MODEL

Control Flow =——p
Data Flow =—p

Scheduler

,9 for t, in S:
if evalPred(t):
if probeHashTable(t,)
emit(projection(t,P<t,))

Output Buffers

for t, in R:
buildHashTable(t,)

=

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

t
n R.id, S.cdate
t
N R.id=S. id
\
Gvalue>1@@
R §
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PUSH-BASED ITERATOR MODEL

Control Flow =——p

Data Flow —» SELECT Rld, S.cdate
p—— Output Buffers FROM R JOIN S
- WHERE S.value > 100
9 for t, in S: t
if evalPred(t): TC % hd . cdlie
if probeHashTable(t,): 1
emit(projection(t,P<t,))
|><|R.id=S id
\
: Gvalue>1@@
o for t, in R: z
buildHashTable(t,) R s
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull) 4@ Most Common

— Easy to control output via LIMIT.

— Parent operator blocks until its child returns with a tuple.

— Additional overhead because operators' Next() functions are
implemented as virtual functions.

— Branching costs on each Next () invocation.

Approach #2: Bottom-to-Top (Push) « Rare-ish

— Allows for tighter control of caches/registers in pipelines.
— May not have exact control of intermediate result sizes.
— Difficult to implement some operators (Sort-Merge Join).

s HyPer (8 UMBRA 3zsnowflcke () DuckDB
- ClickHouse FIREBOLT &) CedarDB
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ACCESS METHODS

SELECT R.id, S.cdate

An access method is the how the FROM R JOIN S
DBMS retrieves data stored in a table. ON R.id = S.id
— There is not a specific operator for this WHERE S.value > 100

defined in relational algebra.

Three basic approaches:
— Sequential Scan.

— Index Scan (many variants).
— Multi-Index Scan.
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SEQUENTIAL SCAM

For each page in the table:

— Retrieve it from the buffer pool.

— [terate over each tuple and check whether
to emit it to the next operator.

The DBMS maintains an internal
cursor that tracks the last page / slot it
examined.

=

for page 1n table.pages:
for t 1n page.tuples:
// Do Something!
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SEQUENTIAL SCAN: OPTIMIZATIONS

Data Encoding / Compression
Prefetching / Scan Sharing / Buffer Bypass
Task Parallelization / Multi-threading
Clustering / Sorting
Late Materialization

Materialized Views / Result Caching

Data Skipping
Data Parallelization / Vectorization

Code Specialization / Compilation
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DATA SKIPPING

Approach #1: Approximate Queries (Lossy)

— Execute queries on a sampled subset of the entire table to
produce approximate results.
— Examples: BlinkDB, Redshift, ComputeDB, XDB, Oracle,

Snowflake, Google BigQuery, DataBricks

Approach #2: Zone Maps (Lossless)

— Pre-compute columnar aggregations per page that allow the
DBMS to check whether queries need to access it.

— Trade-off between page size vs. filter efficacy.

— Examples: Oracle, Vertica, SingleStore, Netezza, Snowflake,
Google BigQuery
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http://blinkdb.org/
https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://tibco-computedb.readthedocs.io/
https://initialdlab.github.io/XDB/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.snowflake.com/en/user-guide/querying-approximate-frequent-values.html
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://docs.databricks.com/sql/language-manual/functions/approx_count_distinct.html
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/

IONE MAPS

Pre-computed aggregates for the attribute values in a
page. DBMS checks the zone map first to decide
whether it wants to access the page.

Original Data Zone Map
val type val
SELECT * FROM table 100 MIN 100
WHERE val > 600 200 » MAX 400
300 AVG 280
400 SUM 1400
% Parquet g,"ﬁvvortex 400 cont | s

‘OI’C ’al LanceDB
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Small Materialized Aggregates:
A Light Weight Index Structure for Data Warehousing

ZONE MA

th
Pre-computed aggregates for | -
page. DBMS checks the zonemg S

Guido Moerkotte
maer@pi.’i.infnrmatik.uni-mannheim‘de

Lehrstuhl fiiy praktische Informaik 11, Universiess Ma.rmheim, Germany

Popular of these Approaches is the Materialized data
h e . Small Materializeq Aggregates (SMAs for cube where for 4 seg of dimensions, for »)) their possi-
0 aC C e S S short) are considered g highly flexiple and vey- ble Erouping combinations, the Aggregates of interesy
Wants tO satile alternative for materialized data cubes are materialized, Then, query brocessing againsy ,
heth er 1t The basic idea 15 to compute many aggregate data cube bojls down to a very efficient lookup. Since
W values for small to medium-sized buckets of ty the complete daty cube is very space consuming (5, 18)
ples. These ABBregates are then ysed to speed strategies have been developed for materializing onjy

up query processing. We present the general thase parts of 4 data cube that Pay off most iy query

idea and present an application of SMAs to processing [10). Apother approach-based on [14]-is 1o

° s l Data the TPC.p benchmark, We show that ex- hierarchically Organize the Aggregates (1), By still

Om g ma ploiting SMAs for TPC'D (yery | results i the storage consumption gay L very high, even for

4 speed up of twg orders of magnitude. Then, simple grouping Possibility, if the number of dimpey.

We investigate the problem of QUETY process- sions and/or their cardinality grows, On the uger side,

ing in the presence of SMAs, Last, we briefly the data cube operator has been DProposed to allow for

discuss some farther tuning possibilities for easier query formulation [8]. But since we deal witl

V a 1 SMAs, performance here, we ij} thronghout the rest of the

Paper use the term dggq ctibe to refer 1o 5 materialized
1 Introductign data cube used 1o speed up query Pprocessing,

) Besides high storage consumption, the biggest dis-
Among the predominant demands put on data ware- advantage of the data cube s jis inflexibility, Eaely

house Tmanagement Systems (DWMSs) is berformance, data cube implies & fixed number of queries that can
be answereq with it. As soop as for

SELECT * FROM table 100

> 600 200
WHERE val 00

400
400

ie., the highly efficient evaluation of complex analyt.
ieal queries, A Very successful meang to speed up
query processing is the exploitation of index strye-
tures. Several index structures have been applied to
data warehoyse management systems {for an overviey
see [2, 17)), Among them are traditional index struc-
tures {1, 3, §), bitmaps [15), ang Retree-like structyres
8

e
Permission 1o CoPy withou! fer aff or part of this Material i
granted provided (g he copies are not made or ntinn‘bu!ed,'ar

€1 07 Lo republish, requires g fen . e st by i
andfor special permission Srom the Endoumens, clent support of complex querjes Against high volumes

i Db ark.
Praceedings of the 2dth VLDE (o, nference of data as exemplified by the TPC-D benchmark.
New York, USA, 1998 The main Pproblem encountered is that some queries

476

% Parquet Y% vortex

Apache

OrC  BY LanceDB
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INDEX SCAN

The DBMS picks an index to find the tuples that the
query needs.

Lecture 415
Which index to use depends on:

— What attributes the index contains

— What attributes the query references

— The attribute's value domains

— Predicate composition
— Whether the index has unique or non-unique keys
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INDEX SCAN 5

Suppose that we have a single table

with 100 tuples and two indexes:
— Index #1: age
— Index #2: dept

Scenario #1

There are 99 people
under the age of 30 but
only 2 people in the CS
department.

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

Scenario #2

There are 99 people in
the CS department but
only 2 people under the
age of 30.
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MULTI-INDEX SCAN

[f there are multiple indexes available for a query, the
DBMS does not have to pick only one:

— Compute sets of Record IDs using each matching index.

— Combine these sets based on the query’s predicates (union vs.
intersect).

— Retrieve the records and apply any remaining predicates.

Examples:
— DB2 Multi-Index Scan

— PostgreSQL Bitmap Scan
— MySQL Index Merge
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https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html

MULTI-INDEX SCAN =

: he follow: SELECT * FROM students
Given the ollowing query on a WHERE age < 30
database with an index #1 on age and AND dept = 'CS'
an index #2 on dept: AND country = 'US'

— We can retrieve the Record IDs satistying
age<30 using index #1.

— Then retrieve the Record IDs satisfying
dept='CS' using index #2.

— Take their intersection.

— Retrieve records and check
country="US".
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MULTI-INDEX SCAN =

: : ¢ hi SELECT * FROM students
Compqte set intersection of matching WHERE age < 30
record ids from multiple indexes using AND dept = 'CS'
bitmaps or hash tables. AND country = 'US'

AN AN
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MULTI-INDEX SCAN =

: : £ hi SELECT * FROM students
Compqte set intersection of matching WHERE age < 30
record ids from multiple indexes using AND dept = 'CS'
bitmaps or hash tables. AND country = 'US'
age<30 dept="'CS'

record ids
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MULTI-INDEX SCAW %

C : : £ hi SELECT * FROM students
ompute set intersection of matching WHERE age < 30
record ids from multiple indexes using AND dept = 'CS'
bitmaps or hash tables. AND country = 'US'

AN AN

age<30 dept='CS’

record ids record ids
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MULTI-INDEX SCAW %

C : : £ hi SELECT * FROM students
ompute set intersection of matching WHERE age < 30
record ids from multiple indexes using AND dept = 'CS'
bitmaps or hash tables. AND country = 'US'

AN AN

age<30 dept='CS’

record ids record ids

Sfetch records country="'US'
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MODIFICATION QUERIES

Operators that modify the database (INSERT, UPDATE,
DELETE) are responsible for modifying the target table

and its indexes.
— Constraint checks can either happen immediately inside of
operator or deferred until later in query/transaction.

The output of these operators can either be Record Ids
or tuple data (i.e., RETURNING).
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MODIFICATION QUERIES

UPDATE/DELETE:

— Child operators pass Record IDs for target tuples.
— Must keep track of previously seen tuples.

INSERT:

— Choice #1: Materialize tuples inside of the operator.
— Choice #2: Operator inserts any tuple passed in from child
operators.
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UPDATE QUERY PROBLEM 5

CREATE INDEX idx_salary
ON people (salary);

Control Flow =——p
Data Flow =—p

for t in child.Next():

removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 100) UPDATE people

insertIntoIndex(idx_salary, t.salary, t) SET salary = salary + 100
WHERE salary < 1100

for t in IndeX,.,e:
if t.salary < 1100: Index(people.salary)

emit(t)
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UPDATE QUERY PROBLEM 5

CREATE INDEX idx_salary
ON people (salary);

Control Flow =——p
Data Flow =—p

for t in child.Next():

removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 100) UPDATE people

insertIntoIndex(idx_salary, t.salary, t) SET salary = salary + 100
WHERE salary < 1100

for t in IndeX,.,e:
if t.salary < 1100: Index(people.salary)

emit(t)

*

(999, Andy)
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Control Flow =——p
Data Flow =—p

UPDATE QUERY PROBLEM

=

for t in child.Next(): (999, Andy)
removeFromIndex(idx_salaN,, t.salary, t)
updateTuple(t.salary = t.sNary + 100)

insertIntoIndex(idx_salary, Y.salary, t)

CREATE INDEX idx_salary
ON people (salary);

/

for t in Index,g,pe:
if t.salary < 112¢"
emit(t)

UPDATE people
SET salary = salary + 100
WHERE salary < 1100

Index(people.salary)

*
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UPDATE QUERY PROBLEM 5

CREATE INDEX idx_salary
ON people (salary);

Control Flow =——p
Data Flow =—p

for t in child.Next(): (999, Andy)
removeFromIndex(idx_salary, t.salary, t)=
updateTuple(t.salary = t.salary + 100) UPDATE people
insertIntoIndex(idx_salary, t.salary, t) SET salary = salary + 100

WHERE salary < 1100

for t in IndeX,.,e:
if t.salary < 1100: Index(people.salary)

emit(t)

*
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UPDATE QUERY PROBLEM 5

CREATE INDEX idx_salary
ON people (salary);

Control Flow =——p
Data Flow =—p

for t in child.Next():

removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 100) UPDATE people

insertIntoIndex(idx_salary, t.salary, t) = SET salary = salary + 100
\| WHERE salary < 1100

for t in Index,.,p.: \\\‘~>Index(peop1e.salary)

if t.salary < 1100:
emit(t)

*
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Control Flow =——p
Data Flow =—p

UPDATE QUERY PROBLEM

=

for t in child.Next():
removeFromIndex(idx_salaN,, t.salary, t)
updateTuple(t.salary = t.sNary + 100)
insertIntoIndex(idx_salary, .salary, t)

CREATE INDEX idx_salary
ON people (salary);

for t in Index,g,pe:
if t.salary < 112¢"
emit(t)

UPDATE people
SET salary = salary + 100
WHERE salary < 1100

Index(people.salary)

*

(1099, Andy)
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Control Flow =——p
Data Flow =—p

UPDATE QUERY PROBLEM

=

for t in child.Next(): (1099, Andy)
removeFromIndex(idx_salaN,, t.salary, t)
updateTuple(t.salary = t.sNary + 100)

insertIntoIndex(idx_salary, Y.salary, t)

CREATE INDEX idx_salary
ON people (salary);

/

for t in Index,g,pe:
if t.salary < 112¢"
emit(t)

UPDATE people
SET salary = salary + 100
WHERE salary < 1100

Index(people.salary)

*
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UPDATE QUERY PROBLEM 5

CREATE INDEX idx_salary
ON people (salary);

for t in child.Next(): (1199, Andy)
removeFromIndex(idx_salaN, t.salary, t)
updateTuple(t.salary:'.‘%ry + 100) UPDATE people

insertIntoIndex(idx_salary, %.salary, t) SET salary = salary + 100

Control Flow =——p
Data Flow =—p

WHERE salary < 1100

fb%ﬁsgizngfﬁ”(/ Index(people.salary)
emit(t)
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HALLOWEEN PROBLEM

Anomaly where an update operation changes the
physical location of a tuple, which causes a scan

operator to visit the tuple multiple times.
— Can occur on clustered tables or index scans.

First discovered by IBM researchers while working on
System R on Halloween day in 1976.

Solution: Track modified record ids per query.
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EXPRESSION EVALUATION

The DBMS represents a WHERE clause
as an expression tree.

The nodes in the tree represent
different expression types:

— Comparisons (=, <, >, 1=)

— Conjunction (AND), Disjunction (OR)
— Arithmetic Operators (+, =, *, /, %)

>

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100;

AND

— Constant Values
— Tuple Attribute References /

S/

\

— Functions Attribute(R. id)

Attribute(S.id)

Attribute(value)

Constant(100)
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EXPRESSION EVALUATION

PREPARE xxx AS
SELECT * FROM S
WHERE |S.val = $1 +9

EXECUTE xxx(991)
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EXPRESSION EVALUATION

SELECT * FROM S Execution Context
WHERE |[S.val = $1 +9

EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»>(int:id, int:val)

»
—

Attribute(S.val)

Parameter($1) Constant(9)
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EXPRESSION EVALUATION

SELECT * FROM S Execution Context
WHERE |[S.val = $1 +9

EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»>(int:id, int:val)

— =

» Attribute(S.val) +

1000 ,/,__,// \\‘_\\\

Parameter($1) Constant(9)
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EXPRESSION EVALUATION

SELECT * FROM S Execution Context
WHERE |[S.val = $1 +9

EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»>(int:id, int:val)

—

Attribute(S.val) +

1000 ,/,__,// \\‘_\\\

Parameter($1) « Constant(9)
991
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EXPRESSION EVALUATION

SELECT * FROM S Execution Context
WHERE |[S.val = $1 +9

Current Tuple Query Parameters Table Schema

(123, 1000) (int:991) S»>(int:id, int:val)

EXECUTE xxx(991)

—

Attribute(S.val) =

1000 ,/,__,// \\__\\\

Parameter($1) Constant(9) «
991 9
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EXPRESSION EVALUATION

SELECT * FROM S Execution Context
WHERE |[S.val = $1 +9

Current Tuple Query Parameters Table Schema

(123, 1000) (int:991) S»>(int:id, int:val)

EXECUTE xxx(991)

— =

Attribute(S.val) + «
1000 ‘/,___,/’1090\\\__\\\
Parameter($1) Constant(9)

991 9
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EXPRESSION EVALUATION

SELECT * FROM S Execution Context
WHERE |[S.val = $1 +9

Current Tuple Query Parameters Table Schema

(123, 1000) (int:991) S»>(int:id, int:val)

EXECUTE xxx(991)

-
’,—————’/ true \\—\\

Attribute(S.val)

1000 ‘/,__,,/’1090\\\__\\\

Parameter($1) Constant(9)
991 9
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EXPRESSION EVALUATION

Evaluating predicates by traversing a

tree is terrible for the CPU.

— The DBMS traverses the tree and for each
node that it visits, it must figure out what
the operator needs to do.

A better approach is to evaluate the
expression directly.

An even better approach is to
vectorize it evaluate a batch of tuples
at the same time...

=

SELECT * WHERE s.val =

S

Attribute(s.val)

Constant(1)

\ 4

}

bool check(val) {
return (val == 1);

gee, Clang, LLVM, .

Q Machine Code
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EXPRESSION EVALUATION: OPTIMIZATIONS ™

WHERE UPPER(col1) = UPPER('wutang');

Constant Folding: _
— Identify redundant / unnecessary PR PR
operations that are wasteful. UPPERO)| UPPER() :
— Compute a sub-expression on a constant A ‘ — :
Attribute(col1) Constant('wutang') | :

value once and reuse result per tuple.
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EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:

— Identify redundant / unnecessary
operations that are wasteful.

— Compute a sub-expression on a constant
value once and reuse result per tuple.

Common Sub-Expr. Elimination:

=

WHERE UPPER(col1) = UPPER('wutang');

UPPER() Constant('WUTANG')
Attribute(col1)

WHERE STRPOS('x', coll) < 2
OR STRPOS('x', coll) > 8

— Identify repeated sub-expressions that can

be shared across expression tree.
— Compute once and then reuse result.

OR

STRPOS()

Constant(2)

\~;ii ........ EE

STRPOS()

Constant(8)

\~_‘ii ........ E

+ | Constant('x")

Attribute(coll) | o¢

Constant('x"')

Attribute(coll) | 3
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WHERE UPPER(col1) = UPPER('wutang');

Constant Folding: _
— Identify redundant / unnecessary — —
operations that are wasteful. UPPER()| | Constant('WUTANG')

o

Attribute(col1)

— Compute a sub-expression on a constant
value once and reuse result per tuple.

WHERE STRPOS('x', coll) < 2
OR STRPOS('x', coll) > 8

Common Sub-Expr. Elimination:

— Identify repeated sub-expressions that can
be shared across expression tree. P

— Compute once and then reuse result. “—

OR

STRPOS() Constant(2) Constant(8)

N

Constant('x") Attribute(coll)
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Constant Folding:

— Identify redundant / unnecessary
operations that are wasteful.

— Compute a sub-expression on a constant
value once and reuse result per tuple.

Common Sub-Expr. Elimination:

WHERE UPPER(col1) = UPPER('wutang');

UPPER() Constant('WUTANG')
Attribute(col1)

WHERE STRPOS('x', coll) < 2
OR STRPOS('x', coll) > 8

— Identify repeated sub-expressions that can

be shared across expression tree.
— Compute once and then reuse result.

0p(>) |

OR

STRPOS()

Constant(2) Constant(8)

v

NN

Constant('x"')

Attribute(coll)
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CONCLUSION

The same query plan can be executed in multiple
different ways.

OLTP DBMSs want to use index scans as much as
possible.

Expression trees are flexible but slow.
JIT compilation can (sometimes) speed them up.
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NEXT CLASS

Parallel Query Execution
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