

LECTURE #13 >> 15-445/645 FALL 2025 >> PROF. ANDY PAVLO

ADMINISTRIVIA

Project #2 is due Sunday Oct 26th @ 11:59pm

- \rightarrow See Recitation Video (<u>@158</u>)
- → Office Hours: Saturday Oct 25th @ 3:00-5:00pm in GHC 5207

Mid-term exam grades posted

→ Come to Andy's OH to view your grade and solution.

UPCOMING DATABASE TALKS

Columnar (DB Seminar)

- → Monday Oct 20th @ 4:30pm ET
- \rightarrow Zoom

Astronomer Tech Talk

- → Tuesday Oct 21st @ 12:00pm
- → GHC 8115

SingleStore (DB Seminar)

- → Monday Oct 27th @ 12:00pm
- \rightarrow Zoom

ASTRONOMER

LAST CLASS

We discussed different join operator algorithms.

We now know how to implement basic query operators → Sorting, Aggregations, Joins

The next two weeks are about how put all the pieces together to execute queries...

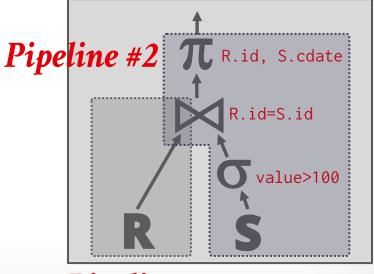
QUERY EXECUTION

A query plan is a DAG of **operators**.

A <u>pipeline</u> is a sequence of operators where tuples continuously flow between them without intermediate storage.

A <u>pipeline breaker</u> is an operator that cannot finish until all its children emit all their tuples.

→ Joins (Build Side), Subqueries, Order By



Pipeline #1

TODAY'S AGENDA

S₆

Processing Models
Access Methods
Modification Queries

Expression Evaluation

PROCESSING MODEL

A DBMS's **processing model** defines how the system executes a query plan and moves data from one operator to the next.

→ Different trade-offs for workloads (OLTP vs. OLAP).

Each processing model is comprised of two types of execution paths:

- → **Control Flow:** How the DBMS invokes an operator.
- \rightarrow **Data Flow:** How an operator sends its results.

The output of an operator can be either whole tuples (NSM) or subsets of columns (DSM).

PROCESSING MODEL

Approach #1: Iterator Model Most Common

Approach #2: Materialization Model Rare

Approach #3: Vectorized / Batch Model — Common

ITERATOR MODEL

Each query plan <u>operator</u> implements a **Next()** function.

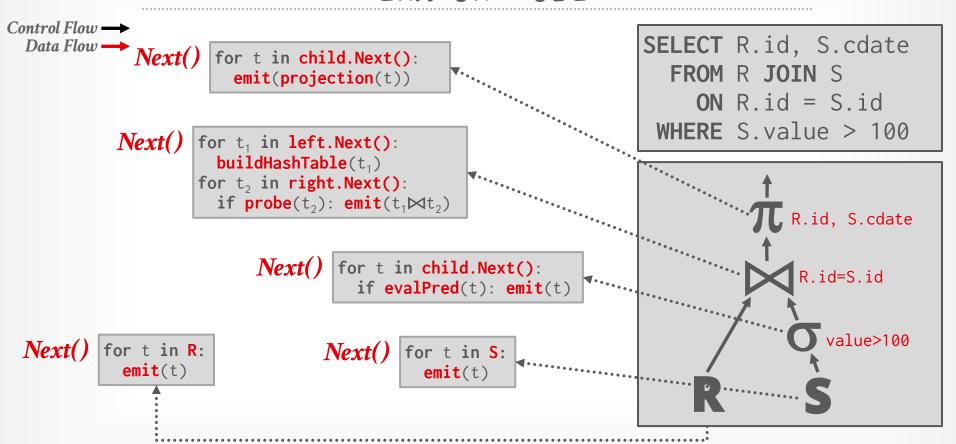
- → On each invocation, the operator returns either a single tuple or a EOF marker if there are no more tuples.
- → The operator implements a loop that calls **Next()** on its children to retrieve their tuples and then process them.

Each operator implementation also has **Open()** and **Close()** functions.

→ Analogous to constructors/destructors, but for operators.

Also called **Volcano** or **Pipeline** Model.

ITERATOR MODEL



ITERATOR MODEL

```
Control Flow →
Data Flow →
```

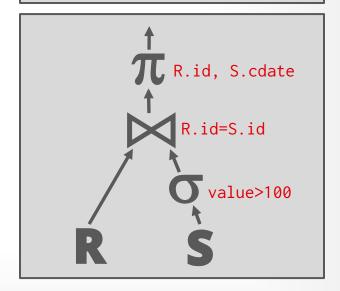
```
for t in child.Next():
    emit(projection(t))

for t₁ in left.Next():
    buildHashTable(t₁)
for t₂ in right.Next():
    if probe(t₂): emit(t₁⋈t₂)
```

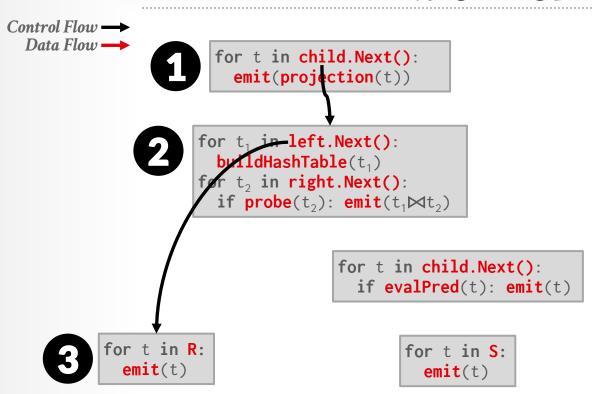
for t in child.Next():
 if evalPred(t): emit(t)

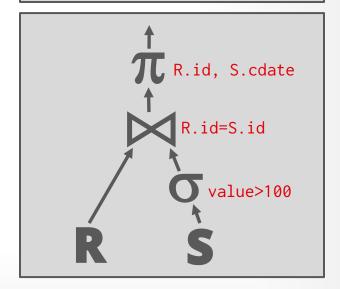
for t in R:
 emit(t)

for t in S:
 emit(t)

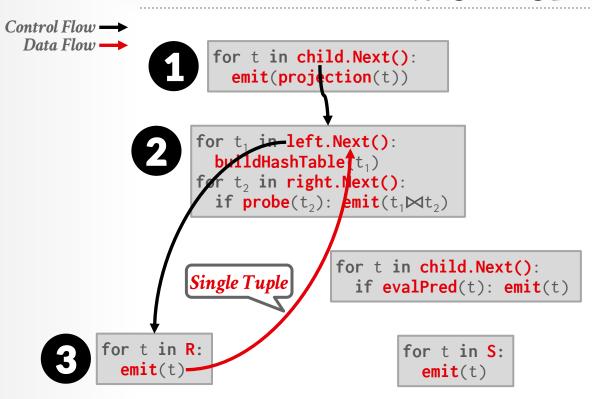


ITERATOR MODEL

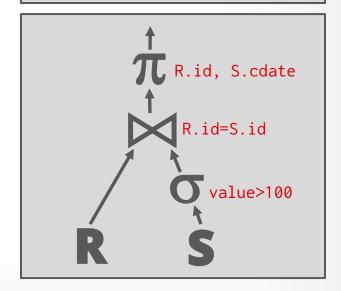




ITERATOR MODEL

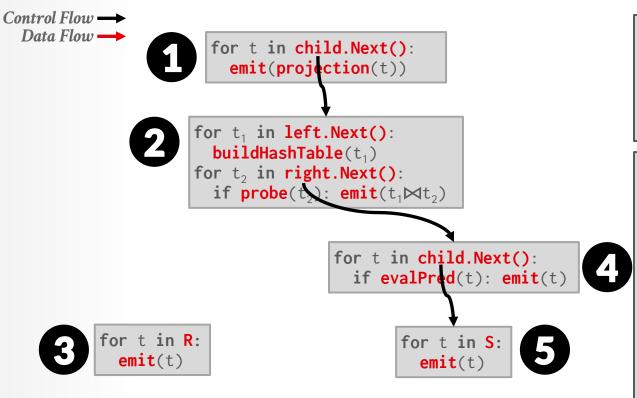


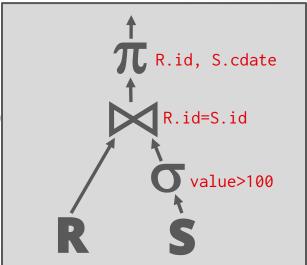
```
SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100
```



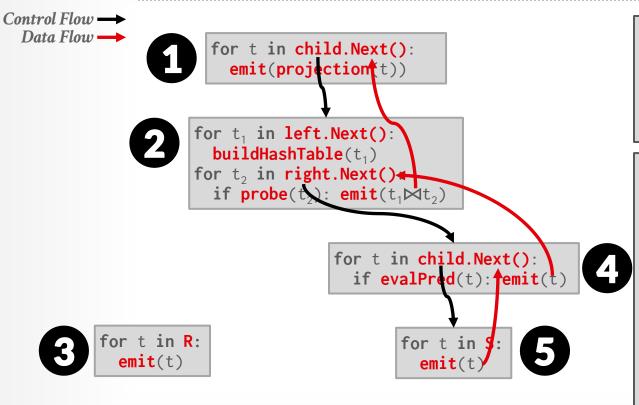
10 Pal

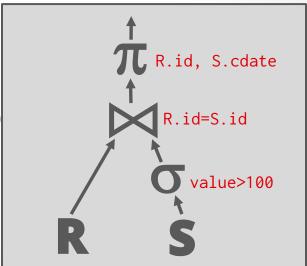
ITERATOR MODEL



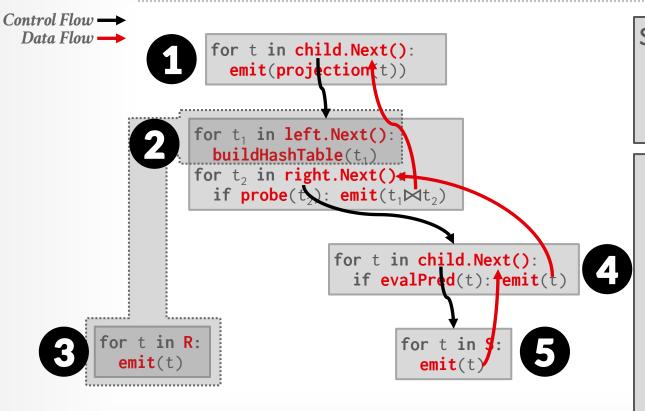


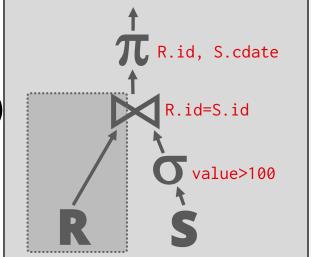
ITERATOR MODEL





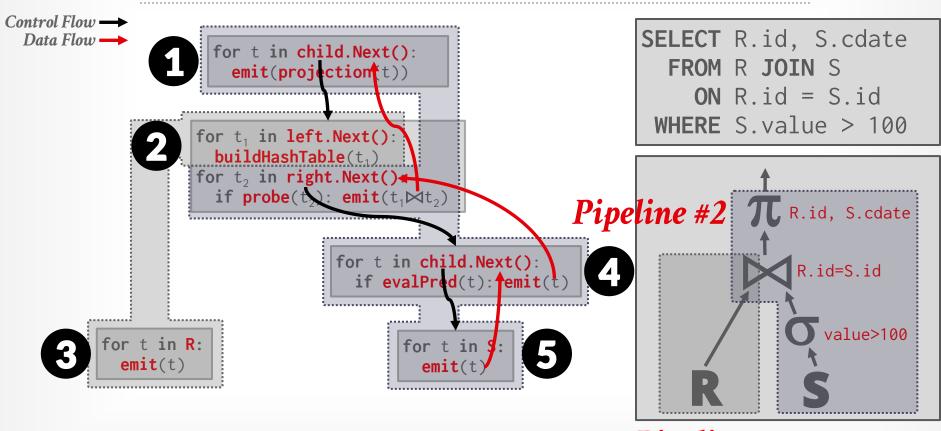
ITERATOR MODEL





Pipeline #1

ITERATOR MODEL



Pipeline #1

ITERATOR MODEL

The Iterator model is used in almost every DBMS.

- \rightarrow Easy to implement / debug.
- → Output control works easily with this approach.

Allows for **pipelining** where the DBMS tries to process each tuple through as many operators as possible before retrieving the next tuple.

MATERIALIZATION MODEL

Each operator processes its input all at once and then emits its output all at once.

- → The operator "materializes" its output as a single result.
- → The DBMS can push down hints (e.g., **LIMIT**) to avoid scanning too many tuples.
- \rightarrow Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or subsets of columns (DSM).

→ Originally developed by MonetDB in the 1990s to process entire columns at a time instead of single tuples.

MATERIALIZATION MODEL

```
Control Flow -- Out = []
```

return out

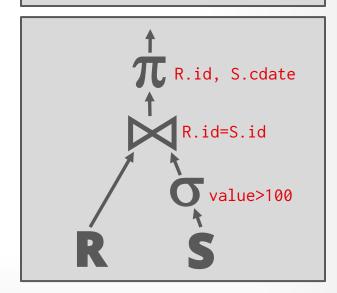
out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t₁ in left.Output():
 buildHashTable(t₁)
for t₂ in right.Output():
 if probe(t₂): out.add(t₁⋈t₂)

```
out = [ ]
for t in child.Output():
   if evalPred(t): out.add(t)
return out
```

```
out = [ ]
for t in R:
   out.add(t)
return out
```

```
out = [ ]
for t in S:
   out.add(t)
return out
```

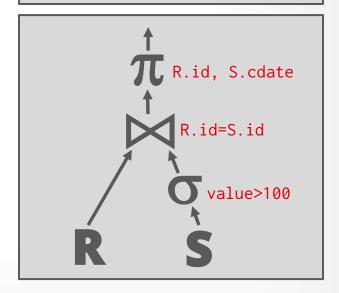


3 **Pal**

MATERIALIZATION MODEL

```
Control Flow -
  Data Flow -
                           out = [ ]
                           for t in child.Output():
                              out.add(projection(t))
                           return out
                         out = \Gamma 1
                        for t<sub>1</sub> in left.Output():
                         buildHashTable(t<sub>1</sub>)
for t<sub>2</sub> in right.Output():
                           if probe(t_2): out.add(t_1 \bowtie t_2)
                         return out
                                           out = [ ]
                                           for t in child.Output():
                                              if evalPred(t): out.add(t)
                                            return out
             out = [ ]
                                                  out = [ ]
            for t in R:
                                                  for t in S:
               out.add(t)
                                                     out.add(t)
                                                  return out
             return out
```

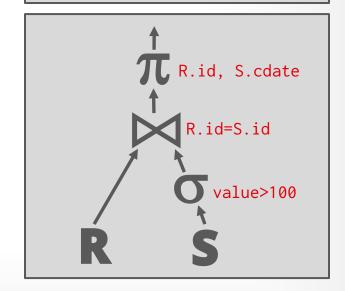
DATABASE SYSTEMS (FALL 2023)



MATERIALIZATION MODEL

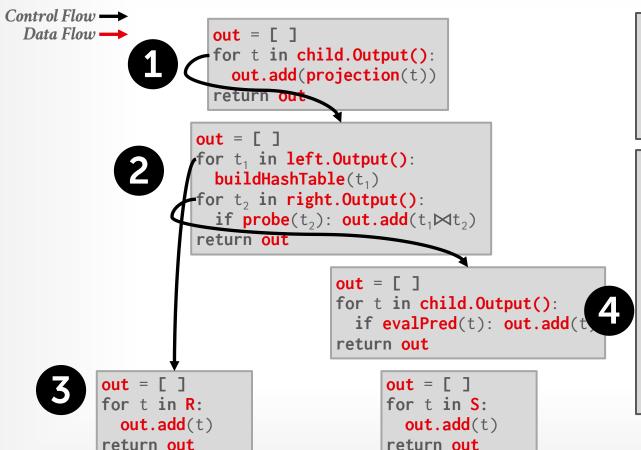
```
Control Flow -
  Data Flow -
                           out = [ ]
                           for t in child.Output():
                              out.add(projection(t))
                           return out
                         out = \Gamma 1
                        for t<sub>1</sub> in left.Output():
                         buildHashTable(t<sub>1</sub>)
for t<sub>2</sub> in right.Output():
                           if probe(t_2): out add(t_1 \bowtie t_2)
                         return out
                                            for t in child.Output():
                                              if evalPred(t): out.add(t)
                            All Tuples
                                           return out
            out = [ ]
                                                  out = [ ]
            for t in R:
                                                  for t in S:
               out.add(t)
                                                     out.add(t)
                                                  return out
             return out
```

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

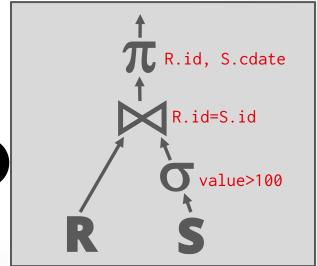


DATABASE SYSTEMS (FALL 2025)

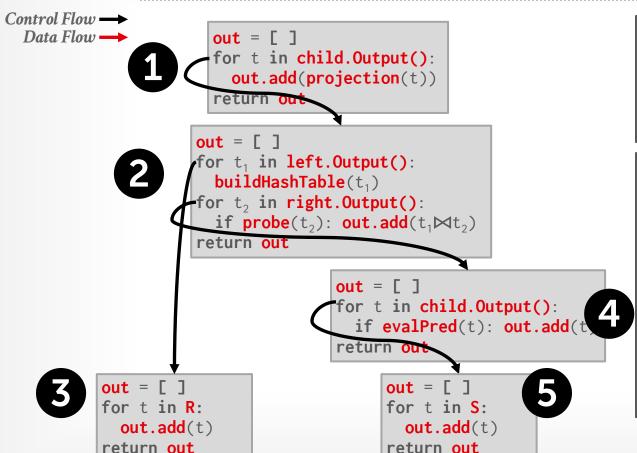
MATERIALIZATION MODEL



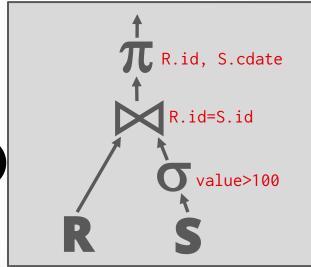
DATABASE SYSTEMS (FALL 2023)



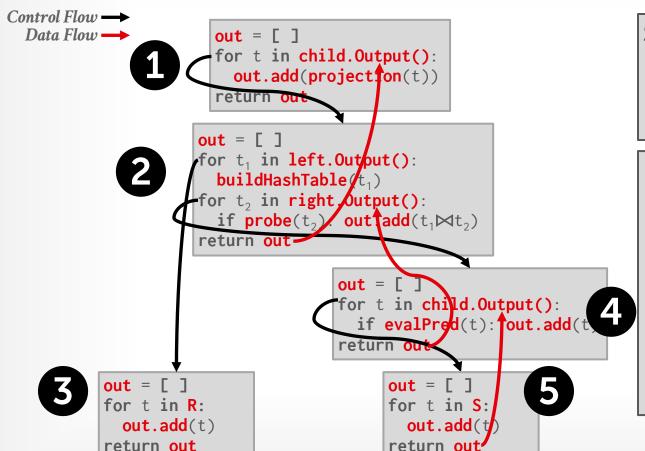
MATERIALIZATION MODEL



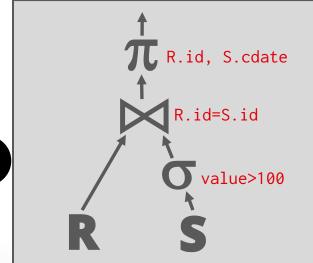
DATABASE SYSTEMS (FALL 2023)



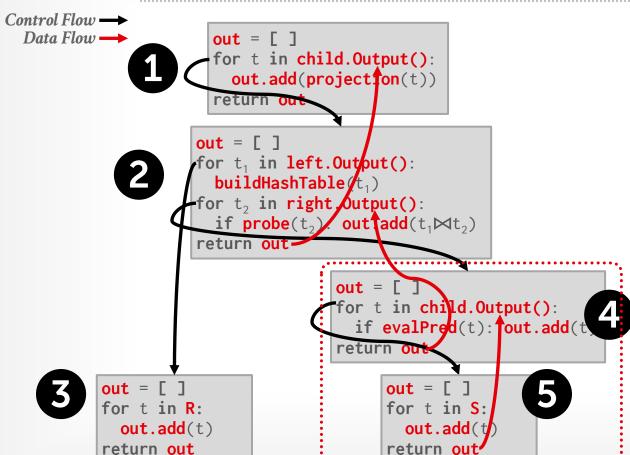
MATERIALIZATION MODEL



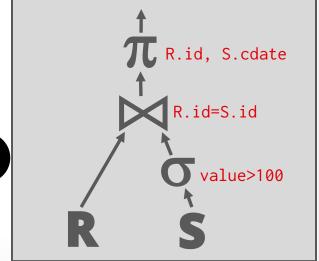
DATABASE SYSTEMS (FALL 2025)



MATERIALIZATION MODEL



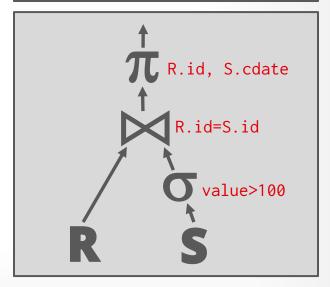
DATABASE SYSTEMS (FALL 2025)



MATERIALIZATION MODEL

```
Control Flow -
  Data Flow -
                         out = [ ]
                          for t in child.Output():
                            out.add(project(on(t)))
                          return out
                       out = [ ]
                       for t<sub>1</sub> in left.Output():
                          buildHashTable (t<sub>1</sub>)
                       for t<sub>2</sub> in right output():
                          if probe(t_2) out.add(t_1 \bowtie t
                        return out-
                                          out = [ ]
                                          for t in S:
                                            if evalPred(t): out.add(t)
                                          return out-
                                             Operator Fusion
            out = [ ]
            for t in R:
              out.add(t)
```

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100



DATABASE SYSTEMS (FALL 2025)

return out

MATERIALIZATION MODEL

Better for OLTP workloads because queries only access a small number of tuples at a time.

- → Lower execution / coordination overhead.
- \rightarrow Fewer function calls.

Not ideal for OLAP queries with large intermediate results because DBMS must allocate buffers.

VECTORIZATION MODEL

Like the Iterator Model where each operator implements a **Next()** function, but...

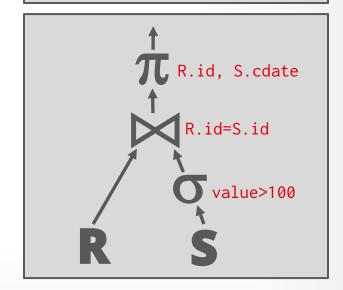
Each operator emits a **batch** of tuples instead of a single tuple.

- \rightarrow The operator's internal loop processes multiple tuples at a time.
- → The size of the batch can vary based on hardware or query properties.
- → Each batch will contain one or more columns each their own null bitmaps.

VECTORIZATION MODEL

```
Control Flow -
  Data Flow -
                           out = \Gamma 1
                           for t in child.Next():
                             out.add(projection(t))
                              if |out|>n: emit(out)
                       for t<sub>1</sub> in left.Next():
                          buildHashTable(t<sub>1</sub>)
                       for t<sub>2</sub> in right.Next():
                          if probe(t_2): out.add(t_1 \bowtie t_2)
                          if |out|>n: emit(out)
                                        out = [ ]
                                        for t in child.Next():
                                           if evalPred(t): out.add(t)
                                           if |out|>n: emit(out)
            out = []
                                              out = \Gamma 1
                                              for t in S:
            for t in R:
              out.add(t)
                                                out.add(t)
              if |out|>n: emit(out)
                                                if |out|>n: emit(out)
```

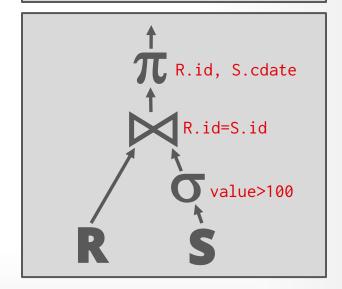
```
SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100
```



VECTORIZATION MODEL

```
Control Flow -
  Data Flow -
                            out = \Gamma 1
                            for t in child.Next():
                              out.add(projection(t))
                               if |out|>n: emit(out)
                        for t<sub>1</sub> in left.Next():
                           buildHashTable t<sub>1</sub>)
                        for t<sub>2</sub> in right. Next():
                           if probe(t_2): \operatorname{dut.add}(t_1 \bowtie t_2)
                           if |out|>n: em!t(out)
                                          for t in child.Next():
                                            if evalPred(t): out.add(t)
                                            if |out|>n: emit(out)
                            Tuple Batch
            out = [ ]
                                               out = \Gamma 1
            for t in R:
                                               for t in S:
               out.add(t)
                                                  out.add(t)
               if |out|>n: emit(out)
                                                  if |out|>n: emit(out)
```

```
SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100
```

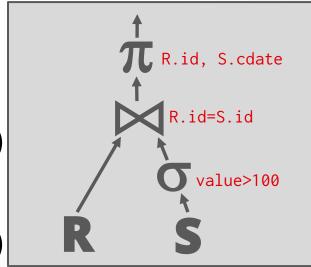


VECTORIZATION MODEL

if |out|>n: emit(out)

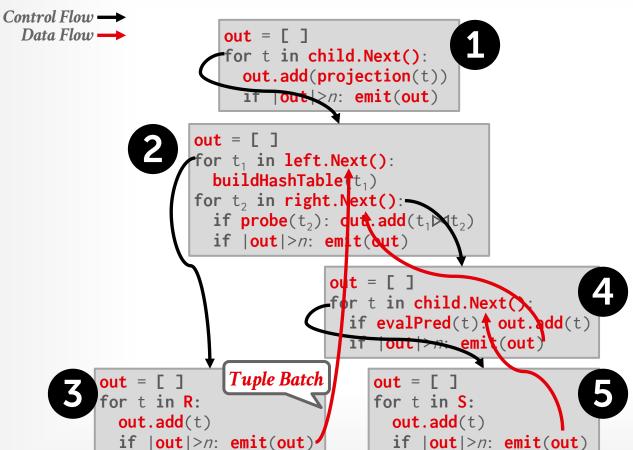
```
Control Flow -
  Data Flow -
                           out = \Gamma 1
                          for t in child.Next():
                             out.add(projection(t))
                             if |out|>n: emit(out)
                       for t<sub>1</sub> in left.Next():
                          buildHashTable t<sub>1</sub>)
                       for t<sub>2</sub> in right.Next():-
                          if probe(t_2): dut.add(t_1)
                          if |out|>n: em!t(out)
                                          r t in child.Next():
                                          if evalPred(t): out.add(t)
                                           if |out|>n: emit(out)
                           Tuple Batch
           out = [ ]
                                             out = \Gamma 1
            for t in R:
                                             for t in S:
              out.add(t)
                                                out.add(t)
```

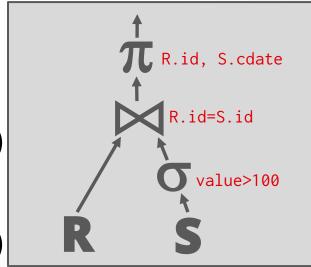
SELECT R.id, S.cdate FROM R JOIN S ON R.id = S.id WHERE S. value > 100



if |out|>n: emit(out)

VECTORIZATION MODEL





VECTORIZATION MODEL

5 17 Fall

Ideal for OLAP queries because it greatly reduces the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute operators over batches of tuples.

- → Operators perform work in tight for-loops over arrays, which compilers know how to optimize / vectorize.
- → No data or control dependencies.
- \rightarrow Hot instruction cache.

VECTORIZATION MODEL

Ideal for OLAP queries because it greatly reduces the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute operators over batches of tuples.

- → Operators perform work in tight for-loops over arrays, which compilers know how to optimize / vectorize.
- \rightarrow No data or control dependencies.
- \rightarrow Hot instruction cache.

OBSERVATION

In the previous examples, the DBMS starts executing a query by invoking **Next()** at the root of the query plan and *pulling* data up from leaf operators.

This is the how most DBMSs implement their execution engine.

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)

- \rightarrow Start with the root and "pull" data up from its children.
- → Tuples are always passed between operators using function calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)

- → Start with leaf nodes and "push" data to their parents.
- → Can "fuse" operators together within a for-loop to minimize intermediate result staging.

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)

- \rightarrow Start with the root and "pull" data up from its children.
- → Tuples are always passed between operators using function calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)

- → Start with leaf nodes and "push" data to their parents.
- → Can "fuse" operators together within a for-loop to minimize intermediate result staging.

PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)

- \rightarrow Start with the root and "pull" data up from its children.
- → Tuples are always passed between operators using function calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)

- → Start with leaf nodes and "push" data to their parents.
- → Can "fuse" operators together within a for-loop to minimize intermediate result staging.

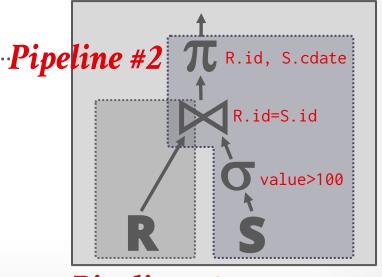
PUSH-BASED ITERATOR MODEL


```
Control Flow -
  Data Flow -
```

SELECT R.id, S.cdate FROM R JOIN S ON R.id = S.id WHERE S. value > 100

for t₂ in S: if evalPred(t): if probeHashTable(t₂): $emit(projection(t_1 \bowtie t_2))$ **Operator Fusion**

for t₁ in R: buildHashTable(t₁)



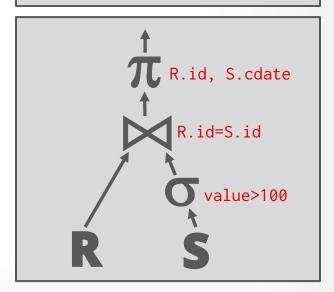
Pipeline #1

PUSH-BASED ITERATOR MODEL

Scheduler

for t₂ in S: if evalPred(t): if probeHashTable(t₂): emit(projection(t₁⋈t₂))

for t_1 in R: buildHashTable(t_1)



S 20

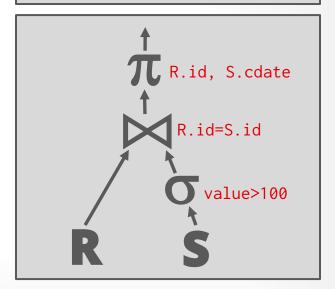
PUSH-BASED ITERATOR MODEL

```
Control Flow →
Data Flow →
```

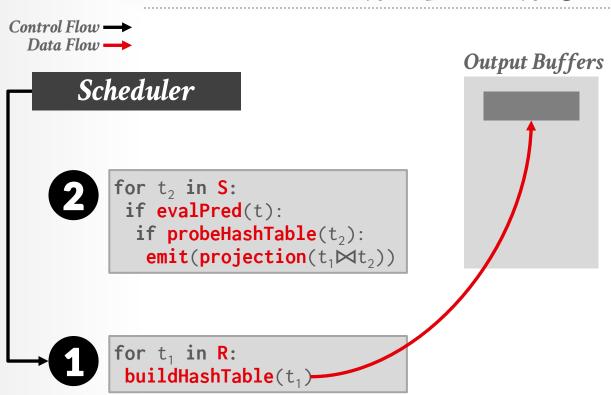
Scheduler

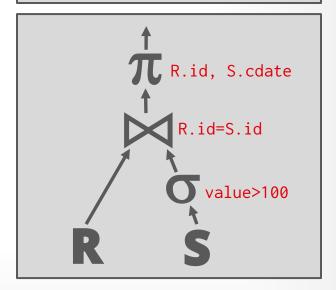
for t₂ in S: if evalPred(t): if probeHashTable(t₂): emit(projection(t₁⋈t₂))

for t₁ in R: buildHashTable(t₁)



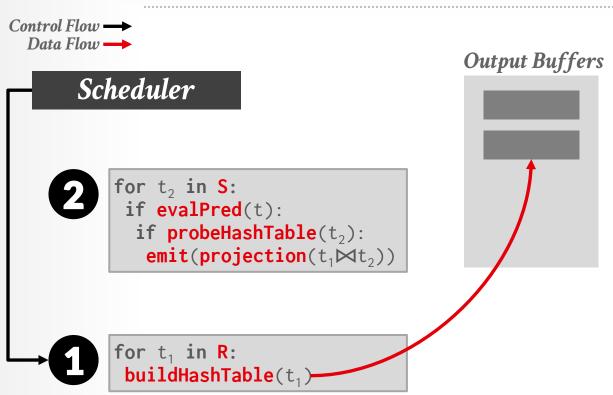
PUSH-BASED ITERATOR MODEL

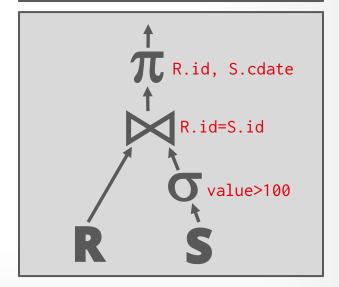




S 20

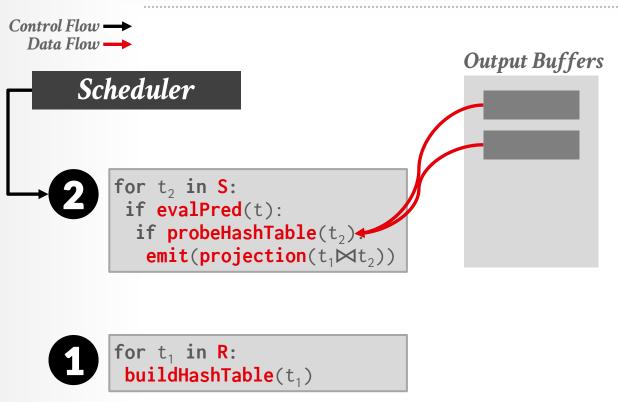
PUSH-BASED ITERATOR MODEL

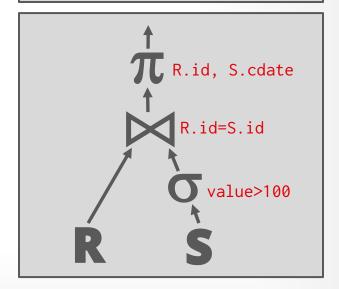




20 Pal

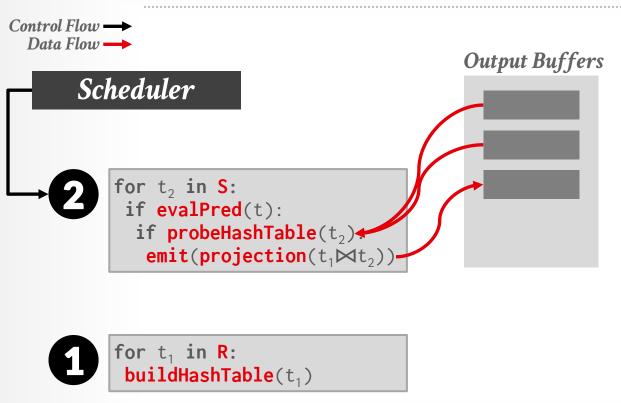
PUSH-BASED ITERATOR MODEL

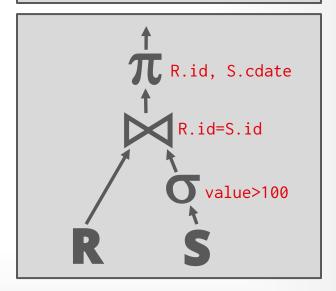




S 20

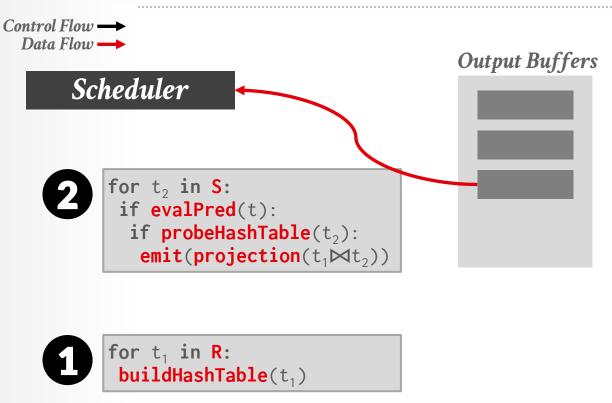
PUSH-BASED ITERATOR MODEL

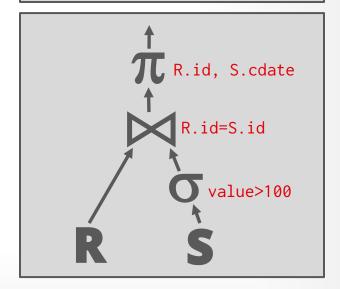




S 20

PUSH-BASED ITERATOR MODEL





PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull) Most Common

- \rightarrow Easy to control output via **LIMIT**.
- → Parent operator blocks until its child returns with a tuple.
- → Additional overhead because operators' **Next()** functions are implemented as virtual functions.
- → Branching costs on each **Next()** invocation.

Approach #2: Bottom-to-Top (Push) Rare-ish

- → Allows for tighter control of caches/registers in pipelines.
- → May not have exact control of intermediate result sizes.
- → Difficult to implement some operators (Sort-Merge Join).

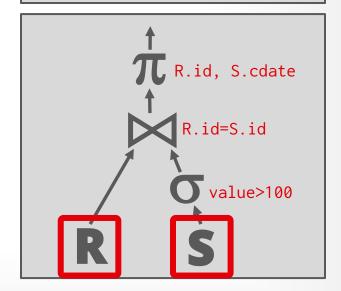
ACCESS METHODS

An <u>access method</u> is the how the DBMS retrieves data stored in a table.

→ There is <u>not</u> a specific operator for this defined in relational algebra.

Three basic approaches:

- → Sequential Scan.
- → Index Scan (many variants).
- → Multi-Index Scan.



S 23

SEQUENTIAL SCAN

For each page in the table:

- → Retrieve it from the buffer pool.
- → Iterate over each tuple and check whether to emit it to the next operator.

The DBMS maintains an internal cursor that tracks the last page / slot it examined.

for page in table.pages:
 for t in page.tuples:
 // Do Something!

S 24

SEQUENTIAL SCAN: OPTIMIZATIONS

- Lecture #05 Data Encoding / Compression
- Lecture #06 Prefetching / Scan Sharing / Buffer Bypass
- Lecture #14 Task Parallelization / Multi-threading
- Lecture #08 Clustering / Sorting
- Lecture #12 Late Materialization
 - Materialized Views / Result Caching
 - Data Skipping
- Lecture #14 Data Parallelization / Vectorization

 Code Specialization / Compilation

25 Pal

DATA SKIPPING

Approach #1: Approximate Queries (Lossy)

- → Execute queries on a sampled subset of the entire table to produce approximate results.
- → **Examples**: <u>BlinkDB</u>, <u>Redshift</u>, <u>ComputeDB</u>, <u>XDB</u>, <u>Oracle</u>, <u>Snowflake</u>, <u>Google BigQuery</u>, <u>DataBricks</u>

Approach #2: Zone Maps (Lossless)

- → Pre-compute columnar aggregations per page that allow the DBMS to check whether queries need to access it.
- → Trade-off between page size vs. filter efficacy.
- → **Examples**: Oracle, Vertica, SingleStore, Netezza, Snowflake, Google BigQuery

ZONE MAPS

Pre-computed aggregates for the attribute values in a page. DBMS checks the zone map first to decide whether it wants to access the page.

Original Data

val	
100	
200	
300	
400	
400	
	1

Zone Map

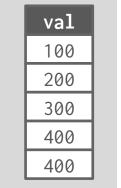
type	val
MIN	100
MAX	400
AVG	280
SUM	1400
COUNT	5

ZONE MAI

Pre-computed aggregates for the page. DBMS checks the zone ma whether it wants to access the p

Original Data

SELECT * **FROM** table WHERE val > 600



Small Materialized Aggregates: A Light Weight Index Structure for Data Warehousing

Guido Moerkotte moer@pi3.informatik.uni-mannheim.de

Lehrstuhl für praktische Informatik III, Universität Mannheim, Germany

Abstract

Small Materialized Aggregates (SMAs for short) are considered a highly flexible and versatile alternative for materialized data cubes. The basic idea is to compute many aggregate values for small to medium-sized buckets of tuples. These aggregates are then used to speed up query processing. We present the general idea and present an application of SMAs to the TPC-D benchmark. We show that exploiting SMAs for TPC-D Query 1 results in a speed up of two orders of magnitude. Then, we investigate the problem of query processing in the presence of SMAs. Last, we briefly discuss some further tuning possibilities for

1 Introduction

Among the predominant demands put on data warehouse management systems (DWMSs) is performance, i.e., the highly efficient evaluation of complex analytical queries. A very successful means to speed up query processing is the exploitation of index structures. Several index structures have been applied to data warehouse management systems (for an overview see [2, 17]). Among them are traditional index structures [1, 3, 6], bitmaps [15], and R-tree-like structures

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference New York, USA, 1998

Since most of the queries against data warehouses incorporate grouping and aggregation, it seems to be a good idea to materialize according views. The most popular of these approaches is the materialized data cube where for a set of dimensions, for all their possible grouping combinations, the aggregates of interest are materialized. Then, query processing against a data cube boils down to a very efficient lookup. Since the complete data cube is very space consuming [5, 18], strategies have been developed for materializing only those parts of a data cube that pay off most in query processing [10]. Another approach–based on [14]-is to hierarchically organize the aggregates [12]. But still the storage consumption can be very high, even for a simple grouping possibility, if the number of dimensions and/or their cardinality grows. On the user side, the data cube operator has been proposed to allow for easier query formulation [8]. But since we deal with performance here, we will throughout the rest of the paper use the term data cube to refer to a materialized data cube used to speed up query processing.

Besides high storage consumption, the biggest disadvantage of the data cube is its inflexibility. Each data cube implies a fixed number of queries that can be answered with it. As soon as for example an additional selection condition occurs in the query, the data cube might not be applicable any more. Furthermore, for queries not foreseen by the data cube designer, the data cube is useless. This argument applies also to alternative structures like the one presented in [12]. This inflexibility—together with the extrordinary space consumption-maybe the reason why, to the knowledge of the author, data cubes have never been applied to the standard data warehouse benchmark TPC-D [19]. (cf. Section 2.4 for space requirements of a data cube applied to TPC-D data) Our goal was to design an index structure that allows for efficient support of complex queries against high volumes of data as exemplified by the TPC-D benchmark.

The main problem encountered is that some queries

476

INDEX SCAN

The DBMS picks an index to find the tuples that the query needs.

Lecture #15

Which index to use depends on:

- → What attributes the index contains
- → What attributes the query references
- → The attribute's value domains
- → Predicate composition
- \rightarrow Whether the index has unique or non-unique keys

INDEX SCAN

Suppose that we have a single table with 100 tuples and two indexes:

- \rightarrow Index #1: age
- \rightarrow Index #2: **dept**

SELECT * FROM students WHERE age < 30 AND dept = 'CS' AND country = 'US'</pre>

Scenario #1

There are 99 people under the age of 30 but only 2 people in the CS department.

Scenario #2

There are 99 people in the CS department but only 2 people under the age of 30.

MULTI-INDEX SCAN

If there are multiple indexes available for a query, the DBMS does <u>not</u> have to pick only one:

- → Compute sets of Record IDs using each matching index.
- → Combine these sets based on the query's predicates (union vs. intersect).
- → Retrieve the records and apply any remaining predicates.

Examples:

- → DB2 Multi-Index Scan
- → <u>PostgreSQL Bitmap Scan</u>
- → MySQL Index Merge

MULTI-INDEX SCAN

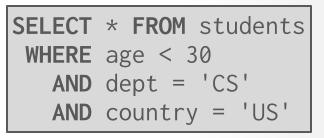
Given the following query on a database with an index #1 on **age** and an index #2 on **dept**:

- → We can retrieve the Record IDs satisfying age<30 using index #1.</p>
- → Then retrieve the Record IDs satisfying dept='CS' using index #2.
- \rightarrow Take their intersection.
- → Retrieve records and check country='US'.

```
SELECT * FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'</pre>
```

MULTI-INDEX SCAN

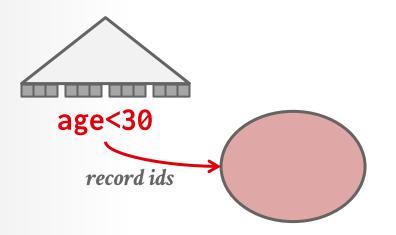
Compute set intersection of matching record ids from multiple indexes using bitmaps or hash tables.



MULTI-INDEX SCAN

Compute set intersection of matching record ids from multiple indexes using bitmaps or hash tables.

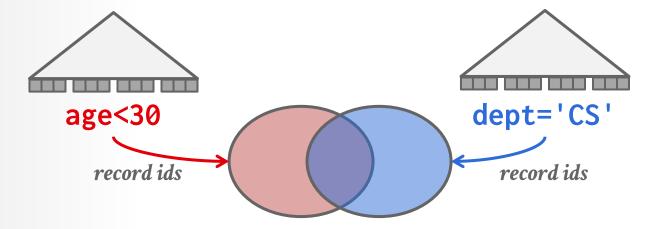
SELECT * FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'</pre>



MULTI-INDEX SCAN

Compute set intersection of matching record ids from multiple indexes using bitmaps or hash tables.

SELECT * FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'</pre>

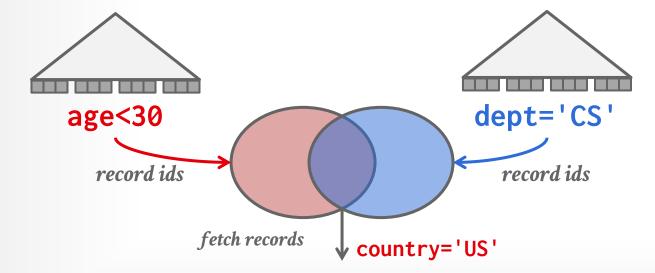


S 31

MULTI-INDEX SCAN

Compute set intersection of matching record ids from multiple indexes using bitmaps or hash tables.

SELECT * FROM students
WHERE age < 30
AND dept = 'CS'
AND country = 'US'</pre>



32 Pal

MODIFICATION QUERIES

Operators that modify the database (INSERT, UPDATE, DELETE) are responsible for modifying the target table and its indexes.

→ Constraint checks can either happen immediately inside of operator or deferred until later in query/transaction.

The output of these operators can either be Record Ids or tuple data (i.e., **RETURNING**).

MODIFICATION QUERIES

UPDATE/DELETE:

- → Child operators pass Record IDs for target tuples.
- → Must keep track of previously seen tuples.

INSERT:

- → **Choice #1**: Materialize tuples inside of the operator.
- → Choice #2: Operator inserts any tuple passed in from child operators.


```
Control Flow →
Data Flow →
```

```
for t in child.Next():
    removeFromIndex(idx_salary, t.salary, t)
    updateTuple(t.salary = t.salary + 100)
    insertIntoIndex(idx_salary, t.salary, t)

    for t in Index_people:
        if t.salary < 1100:
            emit(t)</pre>
```

```
CREATE INDEX idx_salary
ON people (salary);
```

```
UPDATE people
   SET salary = salary + 100
WHERE salary < 1100</pre>
```



```
Control Flow →
Data Flow →
```

```
for t in child.Next():
    removeFromIndex(idx_salary, t.salary, t)
    updateTuple(t.salary = t.salary + 100)
    insertIntoIndex(idx_salary, t.salary, t)

    for t in Index_people:
        if t.salary < 1100:
            emit(t)</pre>
```

```
CREATE INDEX idx_salary
ON people (salary);
```

```
UPDATE people
   SET salary = salary + 100
WHERE salary < 1100</pre>
```



```
Control Flow ---
Data Flow ---
```

```
CREATE INDEX idx_salary
ON people (salary);
```

```
UPDATE people
   SET salary = salary + 100
WHERE salary < 1100</pre>
```



```
Control Flow →
Data Flow →
```

CREATE INDEX idx_salary
ON people (salary);

```
UPDATE people
   SET salary = salary + 100
WHERE salary < 1100</pre>
```



```
Control Flow →
Data Flow →
```

```
for t in child.Next():
    removeFromIndex(idx_salary, t.salary, t)
    updateTuple(t.salary = t.salary + 100)
    insertIntoIndex(idx_salary, t.salary, t)

    for t in Index
        if t.salary < 1100:
        emit(t)</pre>
```

```
CREATE INDEX idx_salary
ON people (salary);
```

```
UPDATE people
   SET salary = salary + 100
WHERE salary < 1100</pre>
```



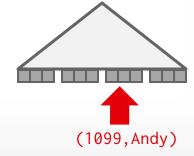
```
Control Flow →
Data Flow →
```

```
for t in child.Next():
    removeFromIndex(idx_salary, t.salary, t)
    updateTuple(t.salary = t.salary + 100)
    insertIntoIndex(idx_salary, t.salary, t)

    for t in Index
        if t.salary < 1100:
        emit(t)</pre>
```

```
CREATE INDEX idx_salary
ON people (salary);
```

```
UPDATE people
   SET salary = salary + 100
WHERE salary < 1100</pre>
```




```
Control Flow ---
Data Flow ---
```

```
CREATE INDEX idx_salary
ON people (salary);
```

```
UPDATE people
   SET salary = salary + 100
WHERE salary < 1100</pre>
```

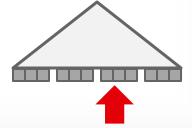


```
Control Flow ---
Data Flow ---
```

```
(1199, Andy)
for t in child.Next():
  removeFromIndex(idx_salary, t.salary, t)
  updateTuple(t.salary = t.salary + 100)
  insertIntoIndex(idx_salary, t.salary, t)
     for t in Index<sub>people</sub>:
        if t.salary < 1108:
          emit(t)
```

```
CREATE INDEX idx_salary
ON people (salary);
```

```
UPDATE people
   SET salary = salary + 100
WHERE salary < 1100</pre>
```



HALLOWEEN PROBLEM

Anomaly where an update operation changes the physical location of a tuple, which causes a scan operator to visit the tuple multiple times.

→ Can occur on clustered tables or index scans.

First <u>discovered</u> by IBM researchers while working on System R on Halloween day in 1976.

Solution: Track modified record ids per query.

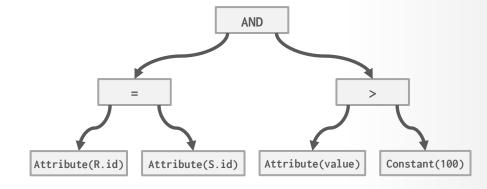
EXPRESSION EVALUATION

The DBMS represents a WHERE clause as an expression tree.

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100;

The nodes in the tree represent different expression types:

- \rightarrow Comparisons (=, <, >, !=)
- → Conjunction (AND), Disjunction (OR)
- → Arithmetic Operators (+, -, *, /, %)
- → Constant Values
- → Tuple Attribute References
- → Functions



```
37
341
```

```
PREPARE xxx AS
SELECT * FROM S
WHERE S.val = $1 + 9

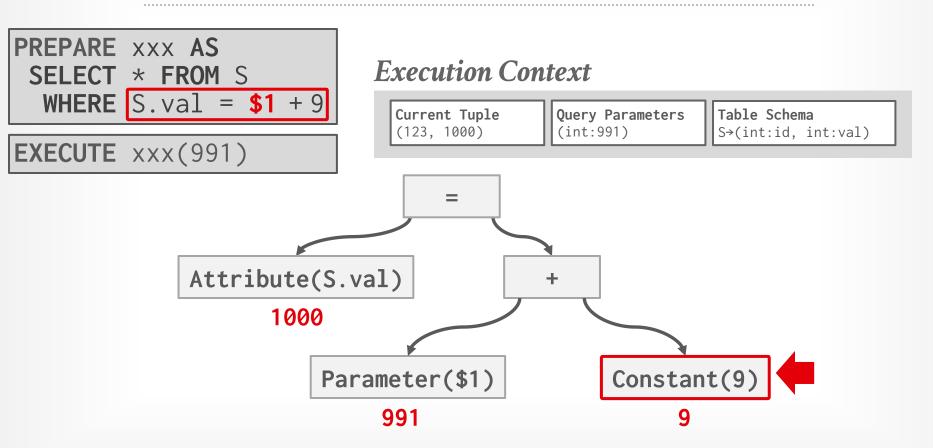
EXECUTE xxx(991)
```



```
PREPARE XXX AS
                                Execution Context
 SELECT * FROM S
  WHERE S.val = $1 + 9
                                  Current Tuple
                                                               Table Schema
                                                Query Parameters
                                  (123, 1000)
                                                 (int:991)
                                                               S→(int:id, int:val)
EXECUTE xxx(991)
               Attribute(S.val)
                                                     Constant(9)
                           Parameter($1)
```

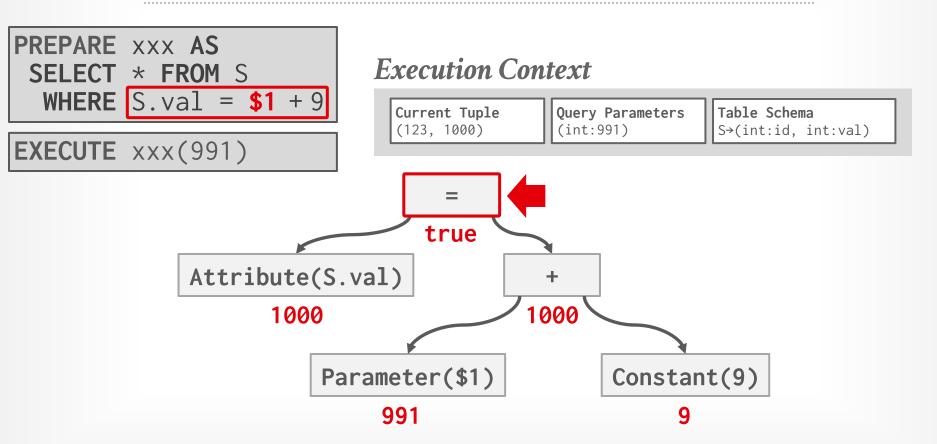
```
PREPARE XXX AS
                                Execution Context
 SELECT * FROM S
  WHERE S.val = $1 + 9
                                  Current Tuple
                                                Query Parameters
                                                              Table Schema
                                  (123, 1000)
                                                (int:991)
                                                               S→(int:id, int:val)
EXECUTE xxx(991)
               Attribute(S.val)
                       1000
                                                     Constant(9)
                           Parameter($1)
```

```
PREPARE XXX AS
                                Execution Context
 SELECT * FROM S
  WHERE S.val = $1 + 9
                                                Query Parameters
                                  Current Tuple
                                                               Table Schema
                                  (123, 1000)
                                                (int:991)
                                                               S→(int:id, int:val)
EXECUTE xxx(991)
               Attribute(S.val)
                       1000
                           Parameter($1)
                                                     Constant(9)
                                 991
```



```
PREPARE XXX AS
                                Execution Context
 SELECT * FROM S
  WHERE S.val = $1 + 9
                                  Current Tuple
                                                               Table Schema
                                                 Query Parameters
                                  (123, 1000)
                                                 (int:991)
                                                               S→(int:id, int:val)
EXECUTE xxx(991)
               Attribute(S.val)
                                              1000
                       1000
                                                     Constant(9)
                           Parameter($1)
                                 991
```

S 37



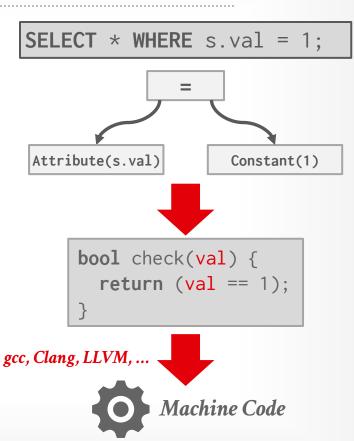
EXPRESSION EVALUATION

Evaluating predicates by traversing a tree is terrible for the CPU.

→ The DBMS traverses the tree and for each node that it visits, it must figure out what the operator needs to do.

A better approach is to evaluate the expression directly.

An even better approach is to **vectorize** it evaluate a batch of tuples at the same time...

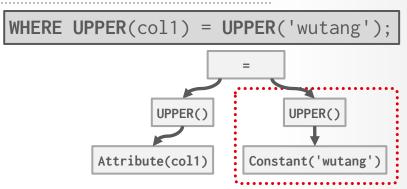


39 Pal

EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:

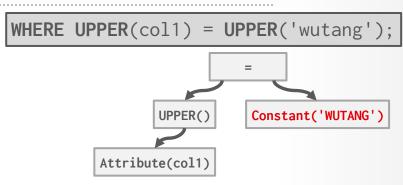
- → Identify redundant / unnecessary operations that are wasteful.
- → Compute a sub-expression on a constant value once and reuse result per tuple.



EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:

- → Identify redundant / unnecessary operations that are wasteful.
- → Compute a sub-expression on a constant value once and reuse result per tuple.



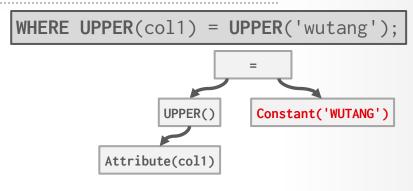
EXPRESSION EVALUATION: OPTIMIZATIONS

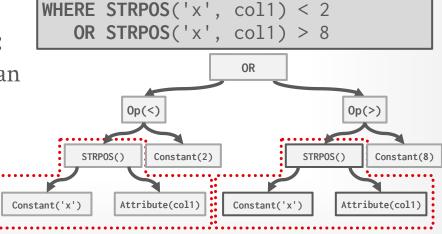
Constant Folding:

- → Identify redundant / unnecessary operations that are wasteful.
- → Compute a sub-expression on a constant value once and reuse result per tuple.

Common Sub-Expr. Elimination:

- → Identify repeated sub-expressions that can be shared across expression tree.
- → Compute once and then reuse result.





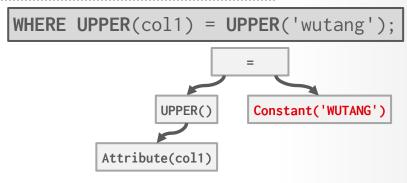
EXPRESSION EVALUATION: OPTIMIZATIONS

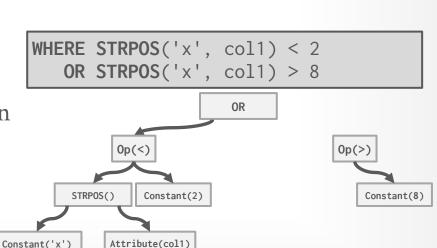
Constant Folding:

- → Identify redundant / unnecessary operations that are wasteful.
- → Compute a sub-expression on a constant value once and reuse result per tuple.

Common Sub-Expr. Elimination:

- → Identify repeated sub-expressions that can be shared across expression tree.
- → Compute once and then reuse result.





39 Paul

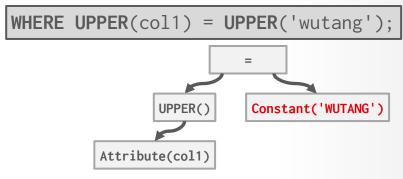
EXPRESSION EVALUATION: OPTIMIZATIONS

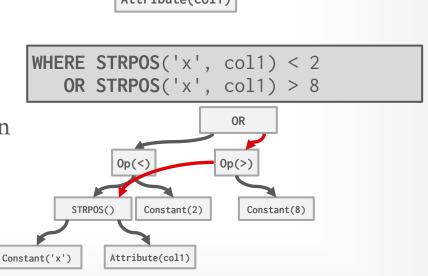
Constant Folding:

- → Identify redundant / unnecessary operations that are wasteful.
- → Compute a sub-expression on a constant value once and reuse result per tuple.

Common Sub-Expr. Elimination:

- → Identify repeated sub-expressions that can be shared across expression tree.
- → Compute once and then reuse result.





CONCLUSION

The same query plan can be executed in multiple different ways.

OLTP DBMSs want to use index scans as much as possible.

Expression trees are flexible but slow.

JIT compilation can (sometimes) speed them up.

NEXT CLASS

Parallel Query Execution