Carnegie Mellon University

DATABASE
SYSTEMS

LECTURE #14)) 15-445/645 FALL 2025)) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #2 is due Sunday Oct 26" @ 11:59pm
— See Recitation Video (@158)
— Office Hours: Saturday Oct 25% @ 3:00-5:00pm in GHC 5207

Mid-term Exam grades posted
— Come to Andy's OH to view your grade and solution.

Homework #4 is due Sunday Nov 2nd @ 11:59pm

Project #3 is due Sunday Nov 16" @ 11:59pm

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/158

LAST CLASS

We discussed composing operators
into a plan to execute a query.

We assumed that queries execute with
a single worker (e.g., a thread).

W e will now discuss how to execute
queries in parallel using multiple
workers.

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARALLEL QUERY EXECUTION

The database is spread across multiple resources to

— Deal with large data sets that don’t fit on a single machine/node
— Higher performance

— Redundancy/Fault-tolerance

Appears as a single logical database instance to the

application, regardless of physical organization.
— SQL query for a single-resource DBMS should generate the
same result on a parallel or distributed DBMS.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARALLEL V5. DISTRIBUTED

Parallel DBMSs

— Resources are physically close to each other.
— Resources communicate over high-speed interconnect.
— Communication is assumed to be cheap and reliable.

Distributed DBMSs

— Resources can be far from each other.
— Resources communicate using slow(er) interconnect.
— Communication costs and problems cannot be ignored.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TODAY’S AGENDA

Process Models

Execution Parallelism

[/O Parallelism

DB Flash Talk: SpiralDB / Vortex

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://spiraldb.com/
https://vortex.dev/

PROCESS MODEL

A DBMS’s process model defines how the system is
architected to support concurrent requests / queries.

A worker is the DBMS component responsible for
executing tasks on behalf of the client and returning the
results.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROCESS MODEL 5

Approach #1: Process per DBMS Worker
Approach #2: Thread per DBMS Worker « Most Common

Approach #3: Embedded DBMS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROCESS PER WORKER

Each worker is a separate OS process.
— Relies on the OS dispatcher.
— Use shared-memory for global data structures.

— A process crash does not take down the entire system.

— Examples: IBM DB2, Postgres, Oracle

s a S 2B
R o0 0

Application Dispatcher W orker Processes

ORACLE

PostgreSQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROCESS PER WORKER

Each worker is a separate OS process.
— Relies on the OS dispatcher.
— Use shared-memory for global data structures.

— A process crash does not take down the entire system. ORrRACLE
— Examples: IBM DB2, Postgres, Oracle

PostgreSQL

SQL Commands

i)~

Application Dispatcher W orker Processes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

THREAD PER WORKER %

Single process with multiple worker threads. %%Qi_ Server
— DBMS (mostly) manages its own scheduling.
— May or may not use a dispatcher thread. N\MysaL.

— Thread crash (may) kill the entire system.
— Examples: MSSQL, MySQL, DB2, Oracle (2014)

= =

Connect > -:.—

» = =
=S =

Application Dispatcher ' Worker Threads

ORACLE

(g0 (e

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://docs.oracle.com/database/121/CNCPT/process.htm#CNCPT901

THREAD PER WORKER

Single process with multiple worker threads.
— DBMS (mostly) manages its own scheduling.
— May or may not use a dispatcher thread.

— Thread crash (may) kill the entire system.
— Examples: MSSQL, MySQL, DB2, Oracle (2014)

SQL Commands

=
=\
=
=\

Application Dispatcher ' Worker Threads

i)~

Microso ft

ZZSQL Server

“MysaL.

ORACLE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://docs.oracle.com/database/121/CNCPT/process.htm#CNCPT901

EMBEDDED DBMS 5

DBMS runs inside the same address space as the ?‘SQLite
application. Application is (primarily) responsible for oracLe

threads and scheduling. BERKELEY DB

The application may support outside connections. - RoceE

— Examples: BerkeleyDB, SQLite, RocksDB, LevelDB Q puckos

YettaPe
WIREDTIGER

@'SPLINTER’DB

bitcask

(00 s (s

Application

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCHEDULING

For each query plan, the DBMS decides where, when,

and how to execute it.

— How many tasks should it use?

— How many CPU cores should it use?

— What CPU core should the tasks execute on?
— Where should a task store its output?

The DBMS nearly always knows more than the OS.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROCESS MODELS

Advantages of a multi-threaded architecture:
— Less overhead per context switch.
— Do not have to manage shared memory.

The thread per worker model does not mean that the
DBMS supports intra-query parallelism.

Every DBMS from the last 25 years uses native OS
threads unless they are Redis or Postgres forks.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARALLEL EXECUTION

The DBMS executes multiple tasks simultaneously to

improve hardware utilization.

— Active tasks do not need to belong to the same query.

— High-level approaches do not vary on whether the DBMS is
multi-threaded, multi-process, or multi-node.

Approach #1: Inter-Query Parallelism
Approach #2: Intra-Query Parallelism

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple

queries to execute simultaneously.
— Most DBMSs use a simple first-come, first-served policy.

[f queries are read-only, then this requires almost no

explicit coordination between the queries.
— Buffer pool can handle most of the sharing if necessary.

Lecture 417

[f multiple queries are updating the database at the same
time, then this is tricky to do correctly...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTRA-QUERY PARALLELISM 5

Improve the performance of a single query by executing

its operators in parallel.
— Think of the organization of operators in terms of a
producer/consumer paradigm.

Approach #1: Intra-Operator (Horizontal)
Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.

There are parallel versions of every operator.
— Can either have multiple threads access centralized data
structures or use partitioning to divide work up.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARALLEL GRACE HASH JOIN 5

Use a separate worker to perform the join for each level
of buckets for R and S after partitioning.

R(id,name) HT : S(id,value,cdate)

max

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARALLEL GRACE HASH JOIN 5

Use a separate worker to perform the join for each level
of buckets for R and S after partitioning.

Te HT

R(id, name) : H : S(id,value,cdate)
["]=_|

max

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTRA-QUERY PARALLELISM 5

Approach #1: Intra-Operator (Horizontal) « Most Common
Approach #2: Inter-Operator (Vertical) 4@ Less Common

Approach #3: Bushy « Higher-end Systems

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)

— Operators are decomposed into independent instances that
perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the
query plan to coalesce/split results from multiple

children/parent operators.

— PostgreSQL calls these Gather operators.

— Can combine intermediate results in arbitrary order or merge
them according to a sorting key.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.postgresql.org/docs/current/how-parallel-query-works.html

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

t

>

Z N
O O
o N

[A] B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTRA-OPERATOR PARALLELISM 5

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

7 N
O| O
A N

A B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

7 N
O| O
A N

A B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

/' A—
O |0
” ™~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

| BuildHT & BuildHT [BudeHT Probe HT | Probe HT | Probe HT

O O
A N

A B

Exchange

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value
Exchange FROM A J OIN B
ON A.id = B.id

T 70 TT WHERE A.value < 99
1 AND B.value > 100

1 T

O O
A N

A B

Exchange

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTRA-OPERATOR PARALLELISM

SELECT A.id, B.value

Exchange I FROM A JOIN B

HE B L ON A.id = B.id

WHERE A.value < 99
AND B.value > 100

T

Exchange

O O

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXCHANGE OPERATOR

Exchange Type #1 — Gather
— Combine the results from multiple workers
into a single output stream.

Exchange Type #2 — Distribute

— Split a single input stream into multiple
output streams.

Exchange Type #3 — Repartition

— Shuffle multiple input streams across
multiple output streams.

— Some DBMSs always perform this step after
every pipeline (e.g., Google BigQuery).

Source: Craig Freedman

Operator @ Operator | Operator

Operator

Distribute

Operator Operator

Repartition

Operator | Operator @ Operator

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://cloud.google.com/blog/products/bigquery/in-memory-query-execution-in-google-bigquery
https://cloud.google.com/blog/products/bigquery/in-memory-query-execution-in-google-bigquery
https://blogs.msdn.microsoft.com/craigfr/2006/10/25/the-parallelism-operator-aka-exchange/

INTER-OPERATOR PARALLELISM 5

Approach #2: Inter-Operator (Vertical) Lol
— Operations are overlapped to pipeline data from one stage to

the next without materialization. §8 kafka
— Workers execute multiple operators from different segments of

a query plan at the same time. a]
— Still need exchange operators to combine intermediate results Fligk

from segments. D e
Also called pipelined parallelism. @ HERON

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTER-OPERATOR PARALLELISM 5

SELECT SLOW_UDF(B.value)
FROM A JOIN B
ON A.id = B.id
WHERE A.value < 99
AND B.value > 100

T

for r, € outer: ’

a M for r, € inner: G G

emit(r r,) P L

A B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTER-OPERATOR PARALLELISM 5
t i,

a for r € incoming: AND B.value > 100
n emit(m(r))

for r, € outer:

a M for r, € inner: G G

emit(r r,) P L

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUSHY PARALLELISM

Approach #3: Bushy Parallelism

— Hybrid of intra- and inter-operator parallelism where workers
execute multiple operators from different segments of a query
plan at the same time.

— Still need exchange operators to combine intermediate results
from segments.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUSHY PARALLELISM

SELECT =*
FROM A
JOIN B
JOIN C
JOIN D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUSHY PARALLELISM

SELECT =*
FROM A
JOIN B
JOIN C
JOIN D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUSHY PARALLELISM

SELECT =*
FROM A
JOIN B
JOIN C
JOIN D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUSHY PARALLELISM

SELECT =*
FROM A
JOIN B
JOIN C
JOIN D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

Using multiple workers for parallel query execution will
not improve the DBMS's performance if the disk is
always the bottleneck.

[t can sometimes make the DBMS's performance worse
if a worker is accessing different segments of the disk at
the same time.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

/0 PARALLELISM

Split the DBMS across multiple storage devices to
improve disk bandwidth latency.

Many different options that have trade-offs:
— Multiple Disks per Database

— One Database per Disk

— One Relation per Disk

— Split Relation across Multiple Disks

Some DBMSs support this natively (e.g., PostgreSQL
Tablespace).
Others require admin to configure outside of DBMS.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.postgresql.org/docs/current/manage-ag-tablespaces.html
https://www.postgresql.org/docs/current/manage-ag-tablespaces.html

MULTI-DISK PARALLELISM

Store data across multiple disks to

) " File of 6 pages (logical view):
improve performance + durability.

page || page || page || page || page || page
1 2 3 4 5 6

Physical layout of pages across disks

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MULTI-DISK PARALLELISM

Store data across multiple disks to

) " File of 6 pages (logical view):
improve performance + durability.

page || page || page || page || page || page
1 2 3 4 5 6

Striping (RAID 0)

Physical layout of pages across disks

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MULTI-DISK PARALLELISM

Store data across multiple disks to

) " File of 6 pages (logical view):
improve performance + durability.

page || page | page || page || page || page
1 2 3 4 5 6

Mirroring (RAID 1)

Physical layout of pages across disks

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MULTI-DISK PARALLELISM

Store data across multiple disks to

) " File of 6 pages (logical view):
improve performance + durability.

page || page | page || page || page | page
1 2 3 4 5 6

Hardware-based: I/O controller Mirroring (RAID 1)
makes multiple physical devices

appear as single logical device.
— Transparent to DBMS (e.g., RAID).

S
— Faster and more flexible.

— s erasure codes at the file/object level. Physical layout of pages across disks

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Performance

Hardware-based: I/O controller
makes multiple physical devices

appear as single logical device.
— Transparent to DBMS (e.g., RAID).

S
— Faster and more flexible.

— s erasure codes at the file/object level.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE PARTITIONING

Some DBMSs allow you to specify the disk location of

each individual database.
— The buffer pool manager maps a page to a disk location.

This is also easy to do at the filesystem level if the

DBMS stores each database in a separate directory.
— The DBMS recovery log file might still be shared if transactions
can update multiple databases.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARTITIONING

Split a single logical table into disjoint physical
segments that are stored/managed separately.

Partitioning should (ideally) be transparent to the

application.
— The application should only access logical tables and not have
to worry about how things are physically stored.

W e will cover this further when we talk about distributed
databases.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCLUSION

Parallel execution is important, which is why (almost)
every major DBMS supports it.

However, it is hard to get right.
— Coordination Overhead

— Scheduling

— Concurrency Issues

— Resource Contention

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NEXT CLASS

Query Optimization
— Logical vs Physical Plans
— Search Space of Plans

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Query Execution – Pt.2
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS
	Slide 4: PARALLEL QUERY EXECUTION
	Slide 5: PARALLEL VS. DISTRIBUTED
	Slide 6: TODAY’S AGENDA

	Process Models
	Slide 7: PROCESS MODEL
	Slide 8: PROCESS MODEL
	Slide 9: PROCESS PER WORKER
	Slide 10: PROCESS PER WORKER
	Slide 11: THREAD PER WORKER
	Slide 12: THREAD PER WORKER
	Slide 13: EMBEDDED DBMS
	Slide 14: SCHEDULING
	Slide 15: PROCESS MODELS

	Query Execution
	Slide 16: PARALLEL EXECUTION
	Slide 17: INTER-QUERY PARALLELISM
	Slide 18: INTRA-QUERY PARALLELISM
	Slide 19: PARALLEL GRACE HASH JOIN
	Slide 20: PARALLEL GRACE HASH JOIN
	Slide 21: INTRA-QUERY PARALLELISM
	Slide 22: INTRA-OPERATOR PARALLELISM
	Slide 23: INTRA-OPERATOR PARALLELISM
	Slide 24: INTRA-OPERATOR PARALLELISM
	Slide 25: INTRA-OPERATOR PARALLELISM
	Slide 26: INTRA-OPERATOR PARALLELISM
	Slide 27: INTRA-OPERATOR PARALLELISM
	Slide 28: INTRA-OPERATOR PARALLELISM
	Slide 29: INTRA-OPERATOR PARALLELISM
	Slide 30: INTRA-OPERATOR PARALLELISM
	Slide 31: INTRA-OPERATOR PARALLELISM
	Slide 32: EXCHANGE OPERATOR
	Slide 33: INTER-OPERATOR PARALLELISM
	Slide 34: INTER-OPERATOR PARALLELISM
	Slide 35: INTER-OPERATOR PARALLELISM
	Slide 36: BUSHY PARALLELISM
	Slide 37: BUSHY PARALLELISM
	Slide 38: BUSHY PARALLELISM
	Slide 39: BUSHY PARALLELISM
	Slide 40: BUSHY PARALLELISM

	I/O Parallelism
	Slide 41: OBSERVATION
	Slide 42: I/O PARALLELISM
	Slide 43: MULTI-DISK PARALLELISM
	Slide 44: MULTI-DISK PARALLELISM
	Slide 45: MULTI-DISK PARALLELISM
	Slide 46: MULTI-DISK PARALLELISM
	Slide 47: MULTI-DISK PARALLELISM
	Slide 48: DATABASE PARTITIONING
	Slide 49: PARTITIONING

	Conclusion
	Slide 50: CONCLUSION
	Slide 51: NEXT CLASS

