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ADMINISTRIVIA

Mid-term Exam grades posted
— Come to Andy's OH to view your grade and solution.

Homework #4 is due Sunday Nov 2" @ 11:59pm

Project #3 is due Sunday Nov 16" @ 11:59pm
— Recitation Tuesday Oct 28™ @ 8:00pm (see @195)
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UPCOMING DATABASE TALKS

N

SingleStore (DB Seminar) s SingleStore

— Monday Oct 27™ @ 4:30pm
— Zoom

A

Delta Lake (DB Seminar) A DELTA LAKE
— Monday Nov 3 @ 4:30pm

— Zoom

— Tuesday Nov 4" @ 12:00pm
— GHC 8115

Apache Pinot @ Uber (DB Group) ? Pi N ot
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LAST CLASS

We talked about how to design the DBMS's
architecture to execute queries in parallel.

The query plan is comprised of physical operators that
specify the algorithm to invoke at each step of the plan.

But how do we go from SQL to a query plan?
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SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'
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10,000 records
1,000 pages

clustered unclustered

A

Dept(did,dname, floor,mgr)
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SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'

Catalog
clustered  unclustered unclustered
Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

clustered unclustered

A

Dept(did,dname, floor,mgr)

500 records
50 pages

4 reads + 1 write Tc

» ename

2,000 reads + 4 writes O
(10K/500 = 20 emps per dept) ~ f dname = "Toy’

1,000,000 reads + 2,000 writes

(FK join, 10k tuples in temp T,) QE"‘p-did = Dept.did

(50 + 50,000) reads

, X
+ 1,000,000 writes / \
Write temp file T,

5 tuples per pagein T, Emp Dept
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SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'
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clustered  unclustered unclustered
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SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'

Catalog
clustered  unclustered unclustered
Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

clustered unclustered
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MOTIVATION 5

4reads + 4 writes [
ename
Readtemp T, ¢

2,000 reads + 4 writes G
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MOTIVATION %

SELECT DISTINCT ename
FROM Emp E JOIN Dept D

e
WHERE D.dname = 'Toy' Total: 54k I/Os

Catalog 4 reads + 4 writes T[ename
clustered  unclustered unclustered Read temp T2 I
Emp(ssn,ename,addr,sal,did)
10.000 records 2,000 reads + 4 writes G
1,000 pages Read temp T, Write temp T, I dname = "Toy'
clxered uncluAstered |
Dept(did, dname, floor,mgr) (50 + 50;000) l'(?adS N . |
500 records + 2,000 writes Emp.did = Dept.did
50 pages Page Nested-Loop Join
Write Temp T, Emp Dept
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MOTIVATION &

SELECT DISTINCT ename
FROM Emp E JOIN Dept D

ON E.did = D.did ]
WHERE D.dname = 'Toy' Total: 7,159 I/Os

Catalog 4 reads + 4 writes T[ename
clustered  unclustered unclustered Read temp T2 A
Emp(ssn, ename,addr,sal,did)
10.000 records 2,000 reads + 4 writes G
1,000 pages Read temp T,, Write temp T, ¢ dname = "Toy’
cl;ered unduAstered
Dept(did, dname,floor,mgr) 3x([Emp]| + |Dept]) = N

500 records 3,150 reads + 2,000 writes Emp.did = Dept.did
Sort-Merge Join (50 Buffers)

50 pages .
Write Temp T, Emp Dept
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MOTIVATION &

SELECT DISTINCT ename

id = 1 . e
nane - = ng Tow:7191/0s
WHERE D.dname = 'Toy' Materialization Model Total: 7.159 I/Os
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cl;ered uncluAstered

Dept(did,dname,floor,mgr) 3X([Emp| + [Dept|) = N
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50 pages .
Write Temp T, Emp Dept
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MOTIVATION

SELECT DISTINCT ename Vectorization Model » Total: 3,151 1/Os
N £ did - b NoPipelining
-ara = L al » Total: 7,159 1/Os
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Dept(did,dname, floor,mgr) 3><(|Em I + |Dep.t|) - N _ _
3,150 reads + 2300 writes Emp.did = Dept.did
500 records .
20 Sort-Merge Join (50 Buffers)
pages

Write Temp T, Emp Dept
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SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'

Catalog

clustered  unclustered unclustered

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

clustered unclustered

A

Dept(did,dname, floor,mgr)

500 records
50 pages

MOTIVATION

Total: 37 I/O0s

4 reads + 1 writes Tc
Read temp T

ename

1+ 3 (idx) + 20 (ptr chase) reads
+ 4 writes Emp.did = Dept.did
Index Nested-Loop Join / \

3 reads + 1 writes
Access: Index(dname)
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TODAY'S AGENDA

Background

Transformations

Heuristic / Ruled-based Optimization
Cost-based Optimization
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QUERY OPTIMIZER

Given a query's logical plan as input, generate a

semantically equivalent physical execution plan.

— May have to consider a large search space of promising plans

— Accurately determine whether one potential plan is better than
another.

— Efficiently search the solution space to find a physical plan with
the lowest cost.

I[deally an optimizer should generate the best plan
regardless of how the query is expressed.
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LOGICAL V5. PRYSICAL PLANS

The optimizer applies transformations that map a
logical algebra expression to the optimal equivalent
physical algebra expression.

Physical operators define a specific execution strategy

using an access path.

— They can depend on the physical format of the data that they
process (i.e., sorting, compression).

— Not always a 1:1 mapping from logical to physical.
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OPTIMIZATION GRANULARITY

Choice #1: Single Query

— Much smaller search space.

— DBMS (usually) does not reuse results across queries.

— To account for resource contention, the cost model must
consider what is currently running.

Choice #2: Multiple Queries

— More efficient if there are many similar queries.
— Search space is much larger.

— Useful for data / intermediate result sharing.
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OBSERVATION

We now have a high-level understanding of a query
optimizer's role in a DBMS.

The quality of the plans that an optimizer generates is
mostly based on three factors:

— Transformations / Enumeration
— Search Algorithm

— Cost Model
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TRANSFORMATIONS

Enumerate the different choices / forms of a query plan

that are semantically equivalent and logically correct.
— Need to ensure new query plans produces the same result as the
original no matter the inputs.

The goal of each transformation is to:

— Lower query execution cost.
— Unlock additional transformations.

Exploit relational algebra equivalencies via query
and database contents (logical + physical).
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RELATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions are equivalent if
they generate the same set of tuples.

These equivalences allow the DBMS to manipulate and
transform a query plan into different forms without

effecting the correctness of its output.
— This is how a heuristic-based optimizer identifies better query
plans without a cost model.
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RELATIONAL ALGEBRA EQUIVALENCES 5

Selections:

— Perform filters as early as possible.
— Breakup a complex predicate into conjunctive clauses and push
down to lowest part of plan as possible.

c R) = 6,,(0,(...0,,(R)))

P1ApP2A...pn T pn
Simplify complex predicates:

— X=3 AND Y=X > X=3 AND Y=3

— X=1+1 > X=2

— X=YEAR('10/27/2025" ) - X=2025
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RELATIONAL ALGEBRA EQUIVALENCES 5

Joins:
— Commutative;
RS =SSR

— Associative:

(RHS)XT =R™M(SHT)

Number of join orderings for an n-way binary join is (n-
1)! x C(n-1), where C(n-1) is the (n-1)** Catalan number.
— n! different orders of leaf nodes (original relations)

— C(n-1) possible shapes of a full binary tree with n leaves
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TRANSFORMATIONS

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins
Projection Pushdown

Source: Thomas Neumann
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SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

’ l ARTIST.NAME

|

ARTIST.ID=APPEARS.ARTIST_ID AND
G APPEARS . ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Mooshoo Tribute"

I

X
/_/
X
NG

ARTIST APPEARS ALBUM



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

’ l ARTIST.NAME

APPEARS . ALBUM_ID=ALBUM.ID AND

’ GARTIST.ID=APPEARS.ARTIST_ID AND

ALBUM.NAME="Mooshoo Tribute"

|

I

X
I

X
N

ARTIST

APPEARS

ALBUM

=
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SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

’ l ARTIST.NAME

ARTIST.ID=APPEARS.ARTIST_ID

APPEARS . ALBUM_ID=ALBUM. ID

QQQ

ALBUM.NAME="Mooshoo Tribute"

X
/_/
X
NG

ARTIST APPEARS ALBUM
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PREDICATE PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Move the predicate to
the lowest point in the
plan after Cartesian
products.

’ l ARTIST.NAME

Pe G ARTIST.ID=APPEARS.ARTIST_ID
/
1
,’ G APPEARS . ALBUM_ID=ALBUM. ID
I
I
II G ALBUM.NAME="Mooshoo Tribute" =y
\
\ \
\
\
\
\
V/

ARTIST APPEARS ALBUM

-—_——
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PREDICATE PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM TC ARTIST . NAME
WHERE ARTIST.ID=APPEARS.ARTIST_ID t
AND APPEARS.ALBUM_ID=ALBUM.ID G APEARS ALBUN. ThoALBUM 10
AND ALBUM.NAME="Mooshoo Tribute" ' 1 B '
Move the predicate to X
the lowest point in the \
plan after Cartesian GALBUM.NAME="Mooshoo Tribute"
G ARTIST.ID=APPEARS.ARTIST_ID

products.

X
N

ARTIST APPEARS ALBUM


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

REPLACE CARTESIAN PRODUCTS

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Mooshoo Tribute"

Replace all Cartesian
Products with inner
joins using the join
predicates.

’ l ARTIST.NAME

G APPEARS . ALBUM_ID=ALBUM. ID

/ ALBUM.NAME= Mooshoo Tribute"
GARTIST ID= APPEARS ARTIST_ID

X

ARTIST APPEARS ALBUM
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REPLACE CARTESIAN PRODUCTS

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Mooshoo Tribute"

Replace all Cartesian
Products with inner
joins using the join
predicates.

’ l ARTIST.NAME

APPEARS ALBUM_ID=ALBUM.ID

/ ALBUM NAME= Mooshoo Tribute"

ARTIST ID=APPEARS.ARTIST_ID

Py

ARTIST APPEARS ALBUM
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PROJECTION PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.

’ l ARTIST.NAME

APPEARS ALBUM_ID=ALBUM.ID

/ ALBUM NAME= Mooshoo Tribute"

ARTIST ID=APPEARS.ARTIST_ID

Py

ARTIST APPEARS ALBUM
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PROJECTION PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.

’ l ARTIST.NAME

M APPEARS . ALBUM_ID=ALBUM. ID
ARTIST.NAME, D
APPEARS . ALBUM_ID \

ARTIST.ID=
APPEARS. ARTIST_ID ALBUM.NAME="Mooshoo Tribute"

\ ARTIST_ID,
n I?AME n ALBUM_ID

ARTIST APPEARS ALBUM
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SEARCH AL6ORITHMS

Given a set of transformation rules, the optimizer
searches for a good physical plan for a given query.

At search time, the optimizer will have a query's logical

plan but it may not have all information available.
— Prepared statements with input variables
— Missing statistical information.
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SEARCH AL6ORITHMS

Heuristics / Rules

— Rewrite the query to remove (guessed) inefficiencies.

— These techniques may need to examine catalog, but they do not
need to examine data.

— Examples: always do selections first or push down predicates as
early as possible.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick the
one with the lowest cost.
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HEURISTIC-BASED OPTIMIZATION

Define static rules that transform logical operators to a

physical plan without a cost model.

— Perform most restrictive selection early

— Perform all selections before joins

— Predicate/Limit/Projection pushdowns

— Join ordering based on simple rules or cardinality estimates

Examples: INGRES (until mid-1980s) and Oracle
(until early-1990s), MongoDB, most new DBMSs.
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HEURISTIC-BASED OPTIMIZATION 5

Advantages:

— Easy to implement and debug.
— Works reasonably well and is fast for simple queries.

Disadvantages:
— Relies on magic constants that predict the efficacy of a planning
decision.

— Nearly impossible to generate good plans when operators have
complex inter-dependencies.
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Stonebraker gave the story of the query optimizer as an exam-
ple. Relational queries were often highly complex. Let's say you

wanted your database to give you the name, salary, and job title of

everyone in your Chicago office who did the same kind of work as
Advantages:

an employee named Alien. (This example happens to come from Or-

— Easy to implement and debug_ acle's 1981 user guide.) This would require the database to find infor-

f mation in the employee table and the department table, then sort the
1 data. How quickly the database management system did this de-
S W ell and is fast fo quickly gement sy

Orks reasonably w pended on how cleverly the system was constructed. "If you do it
smart, you get the answer a lot quicker than if you do it stupid,
Stonebraker said.

e He continued. "Oracle had a really stupid optimizer. They did
Disadvantages:

the query in the order that you happened to type in the clauses. Basi-
. . cally, they blindly did it from left to right. The Ingres program

- Relles on maglc constants that pred] looked at everything there and tried to ﬁgurge out the best w:y to do
d e Ci Si on it." But Ellison found a way to neutralize this advantage, Stone-

° d braker said. "Oracle was really shrewd. They said they had a syntac-

1 1 tic optimizer, whereas the other guys had a semantic optimizer. The

. N early lmpOSSIble to generate goo truth was, they had no optimizer and the other guys had an opti-
CompleX lnter'dep endenCIGS. mizer. It was very, very, very creative marketing. . . . They were very

good at confusing the market."

"What he's using is semantics himself," Ellison said. Just be-
cause Oracle did things differently, "Stonebraker decided we
didn't have an optimizer. [He seemed to think] the only kind of
optimizer was his optimizer, and our approach to optimization
wasn't really optimization at all. That's an interesting notion, but
I'm not sure I buy that."
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SEARCH AL6ORITHMS

Heuristics / Rules

— Rewrite the query to remove (guessed) inefficiencies.

— These techniques may need to examine catalog, but they do not
need to examine data.

— Examples: always do selections first or push down predicates as
early as possible.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick the
one with the lowest cost.
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COST-BASED QUERY OPTIMIZATION

Apply transformation rules to enumerate different
variations of a query's plan estimate their costs to guide

the search process.

— Single relation.

— Multiple relations.

— Nested sub-queries.

The optimizer chooses the best plan it has seen for the
query until it reaches a search termination condition.
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SEARCH TERMINATION

Approach #1: Wall-clock Time

— Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold

— Stop when the optimizer finds a plan that has a lower cost than
some threshold.

Approach #3: Exhaustion

— Stop when there are no more enumerations of the target plan.
Usually done per sub-plan/group.

Approach #4: Transformation Count

— Stop after a certain number of rules/transformations have been
considered.
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ACCESS PATH TRANSFORMATION

The optimizer chooses the access method(s) for those
relations that minimizes the cost of retrieving a query's

requested data from base relations.
— Can also optimize predicate evaluation ordering.

Cost of access method depends on several factors:
— Selectivity of predicate

— Data structures (e.g., B+ Tree vs. Hash Table)

— Sort order of the table / index

— Data accoutrements (e.g., INCLUDE, zone maps)

— Compression / encoding
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SINGLE-RELATION QUERY PLANNING

Generate multiple alternatives for retrieving data from
a base relation for a given expression.

Available alternatives depend on query, database logical

schema, and DBMS implementation.
— Example: A rule determines whether an index qualifies based
on a query's predicates (e.g., partial indexes).

Sequential Scan is always the fallback option.
— Often worst choice in row stores but it is sometimes the only
choice in column stores.
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SINGLE-RELATION QUERY PLANNING

Search

Access path selection for a single  ~Argument SE:;:S; e
Able o

relation query is (relatively) WHERE val >= 123

easy because they are sargable. AND val <= 456;
Pick the best access method 71.5 ’
(sequential scan vs. index) using a " '

simple cost model.

val INT

CREATE TABLE xxx ( O va1-123
id INT PRIMARY KEY, f
- ’///;"'

);
CREATE INDEX ON xxx (val);
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MULTI-RELATION QUERY PLANNING

Approach #1: Bottom-Up / Forward Chaining
— Start with nothing and then iteratively assemble and add

building blocks to generate a query plan.
— Examples: System R, Starburst

Approach #2: Top-Down / Backward Chaining

— Start with the outcome that the query wants and then
transform it to equivalent alternative sub-plans to find the
optimal plan that gets to that goal.

— Examples: Volcano, Cascades
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FORWARD VS. BACKWARD CHAINING 5
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e FORWARD VS. BACKWARD CHAINING 5

Bottom-Up / Forward Chaining:
— Start from query plan roots, trigger all ARTISTDIAPPEARS

rules that match those operators, and adds / \

their conclu§1on to the k.nown facts. ARTLST APPEARS

Repeats until full query is generated.
— Breadth-first Search.
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m rotc,  FORWARD VS. BACKWARD CHAINING

Bottom-Up / Forward Chaining:

— Start from query plan roots, trigger all
rules that match those operators, and adds
their conclusion to the known facts.
Repeats until full query is generated.

— Breadth-first Search.

ARTISTPAPPEARS

Choice #1 | Choice #2 | Choice #3

Choice #2
ARTIS
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m rotc,  FORWARD VS. BACKWARD CHAINING

ARTISTPAPPEARS

Bottom-Up / Forward Chaining:

— Start from query plan roots, trigger all
rules that match those operators, and adds Choice #2
their conclusion to the known facts. s
Repeats until full query is generated.

— Breadth-first Search.

Choice #1 | Choice #2 | Choice #3

— Start from the query result and works
backward to determine what operators to
add to the query plan to achieve result. ARTIST APPEARS

— Depth-first Search.

Top-Down / Backward Chaining: ARTIST;EPPEARS
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e FORWARD VS. BACKWARD CHAINING 5

ARTISTP<IAPPEARS

Bottom-Up / Forward Chaining:

— Start from query plan roots, trigger all
rules that match those operators, and adds
their conclusion to the known facts.
Repeats until full query is generated.

— Breadth-first Search.

Choice #1 | Choice #2 | Choice #3

Top-Down / Backward Chaining: ARTISTRIAPPEARS

— Start from the query result and works
backward to determine what operators to
add to the query plan to achieve result. Choice #2 J§ Choice #1

— Depth-first Search.

Choice #1

ARTIST APPEARS
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OBSERVATION

The optimizer can detect whether a query is targeting a
database with a common design pattern and invoke
transformations that push a query plan into an ideal
form.

We saw this before with sargable queries where the
optimizer can immediately select the best index.
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STAR / SNOWFLAKE QUERIES

[f a query joins a fact table with
multiple dimension tables, then
transform it to a left/right-deep join
tree and order dimension tables from
most to least selective.

Avoid wasting time exploring

bushy plans or alternative join
orderings for dimension tables.

Source: EQOP Book

=

SELECT * FROM fact AS F
JOIN dim1 ON F.d1
JOIN dim2 ON F.d2
JOIN dim3 ON F.d3

diml.id
dim2.id
dim3.id;

Join

7N

dim2

Join

N

Join

diml

N\

dim3

fact

»

Join

7 N

dim3

Join

£ N

dim2

Join

’ \

dimi

fact
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BOTTOM-UP OPTIMIZATION

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL, Germans,
DuckDB, Postgres, most open-source DBMSs.
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SYSTEM R OPTIMIZER 5

Left-Deep Tree

Break query into blocks and generate /’4\
logical operators for each block. /><1\ D
For each logical operator, generate a /N\ C
set of physical operators that A B
implement it. outer  inner
— All combinations of join algorithms and

access paths Bushy Tree
[f a block accesses multiple relations, N
iteratively construct a join tree that /’4\ /’4\
minimizes the estimated amount of A BS D

work to execute the plan.
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SYSTEM R OPTIMIZER

Left-Deep Tree
Break query into blocks and generate /’4\
logical operators for each block. /><1\ D
For each logical operator, generate a /N\ C
set of physical operators that A B
implement it. outer  inner

— All combinations of join algorithms and
access paths

[f a block accesses multiple relations,
iteratively construct a join tree that
minimizes the estimated amount of
work to execute the plan.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

SELECT ARTIST.NAME .
FROM ARTIST, APPEARS, ALBUM ARTIST: Sequential Scan

WHERE ARTIST.ID=APPEARS.ARTIST_ID APPEARS: Sequential Scan

AND APPEARS.ALBUM_ID=ALBUM. ID. ALBUM: Index Look-up on NAME
AND ALBUM.NAME=“Andy's OG Remix”

ORDER BY ARTIST.ID

Step #1: Choose the best access paths
to each table
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SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Andy's OG Remix”
ORDER BY ARTIST.ID

ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST D4 APPEARS B ALBUM
APPEARS D ALBUM B4 ARTIST
ALBUM  Dd APPEARS B ARTIST
APPEARS D4 ARTIST b ALBUM
orderings for tables ARTIST x ALBUM DI APPEARS
ALBUM  x ARTIST Dd APPEARS

Step #1: Choose the best access paths
to each table

Step #2: Enumerate all possible join
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SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Andy's OG Remix”
ORDER BY ARTIST.ID

Step #1: Choose the best access paths
to each table

Step #2: Enumerate all possible join
orderings for tables

Step #3: Determine the join ordering
with the lowest cost

ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST P APPEARS D> ALBUM
APPEARS D ALBUM D] ARTIST
ALBUM D] APPEARS D ARTIST
APPEARS P ARTIST P ALBUM
ARTIST x ALBUM P APPEARS
ALBUM  x ARTIST P APPEARS
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e SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) MERGE_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A2,A3) HASH_JOIN(A3,A2)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST.ID=APPEARS.ARTIST_ID APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

o SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P ALBUM

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSP<IALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST.ID=APPEARS.ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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e SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

g__———fzi:_—’)‘ ‘&\‘-___

HASH_JOIN(A1<IA3,A2) |[MERGE_JOIN(A11<1A3,A2) |HASH_JOIN(A21<IA3, A1)

MERGE_JOIN(A2P<A3,A1) JHASH_JOIN(A3P<IA2,A1) | MERGE_JOIN(A3P<IA2,A1) I

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST. ID=APPEARS . ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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e SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

4__———"‘)’

HASH_JOIN(CA1P<A3,A2) HASH_JOIN(A2P<IA3,A1)

HASH_JOIN(A3P<A2,A1) oo e

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST. ID=APPEARS . ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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o SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P ALBUM

HASH_JOIN(A2D<IA3,A1)

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST ALBUM APPEARS
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(] Logical Op

SYSTEM R OPTIMIZER &

ARTIST P4 APPEARS P ALBUM

The query has ORDER BY on
HASH_JOIN(A2<IA3,A1) ARTIST.ID but the logical pl(ms
do not contain sorting properties.’

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

Hack: Keep track of best plans with and
without data in proper physical form,
and then check whether tacking on a sort
operator at the end is better.

HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST ALBUM APPEARS
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T0P-DOWN OPTIMIZATION

Start with a logical plan of what we want the query to
be. Perform a branch-and-bound search to traverse the
plan tree by converting logical operators into physical

operators.

— Keep track of global best plan during search.

— Treat physical properties of data as first-class entities during
planning.

Examples: MSSQL, Greenplum, CockroachDB
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TOP-DOWN OPTIMI

Start with a logical plan of what we
be. Perform a branch-and-bound se
plan tree by converting logical oper

operators. .
— Keep track of global best plan during s

— Treat physical properties of data as firs
planning.

Examples: MSSQL, Greenplum, (
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., TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)
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ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTP<APPEARS ALBUMP<APPEARS ARTISTPALBUM

ARTIST ALBUM APPEARS
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ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what » ARTEST b APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes

and traverse tree.

RN Logical—>L0gicaI: MERGE_JOIN(A1P<IA2,A3)
JOIN(CA,B) to JOIN(B,A)

— Logical-Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTP<APPEARS ALBUMP<APPEARS ARTISTPALBUM

ARTIST ALBUM APPEARS
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., TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN(A1DA2,A3)

/

ARTISTPIAPPEARS

ALBUMPIAPPEARS

ARTISTPALBUM

ARTIST

ALBUM

APPEARS
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o TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:

JOIN(CA,B) to JOIN(B,A)

ARTIST P APPEARS P4 ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN(A1DA2,A3)

/

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B) »‘

ARTISTP<IAPPEARS ALBUMPIAPPEARS ARTISTP<IALBUM
ARTIST ALBUM APPEARS
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ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. t :

Invoke rules to create new nodes
and traverse tree.

— Logical—>Logica]: MERGE_JOIN(A1P<A2,A3)
JOIN(A,B) to JOIN(B,A) /

— Logical-Physical:
JOIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMP<APPEARS ARTISTP<IALBUM

» HASH_JOIN(A1,A2)
—

ARTIST ALBUM APPEARS
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o TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN(A1DA2,A3)

/

»‘ ARTISTP<APPEARS ALBUMPIAPPEARS

ARTISTP<ALBUM
HASH_JOIN(A1,A2) 0
—
ARTIST ALBUM APPEARS
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ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. t :

Invoke rules to create new nodes
and traverse tree.

— Logical—>Logicalz MERGE_JOIN(A1P<A2,A3)
JOIN(A,B) to JOIN(B,A) /

— Logical-Physical:
J'OIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMP<APPEARS ARTISTP<IALBUM

HASH_JOIN(A1,A2) : 0

ARTIST ALBUM APPEARS
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ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTIST pd APPEARS bd ALBUM

we want the query to be. ORDER'BY(%RTIST'ID)

Invoke rules to create new nodes

and traverse tree.

L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B, A) /

— Logical-Physical:
JOIN (A : B) to HASH_JOIN(A , B) ARTISTP<IAPPEARS ALBUMP<{JPPEARS ARTISTP<IALBUM

Can create "enforcer" rules T ST —

that require input to have —

certain properties.

ARTIST ALBUM APPEARS
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ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what » ARTIST b< APPEARS b ALBUM

we want the query to be. ORDER'BY(%RTIST'ID)

Invoke rules to create new nodes

and traverse tree.

L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B, A) /

— Logical-Physical:
JOIN (A : B) to HASH_JOIN(A , B) ARTISTP<IAPPEARS ALBUMP<{JPPEARS ARTISTP<IALBUM

Can create "enforcer" rules T ST —

that require input to have —

certain properties.

ARTIST ALBUM APPEARS
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o TOP-DOWN OPTIMIZATION

=

Start with a logical plan of what » ARTEST b APPEARS >t ALY
we want the query to be. t :

Invoke rules to create new nodes
and traverse tree.

HASH_JOIN(A1P<IA2,A3)

N Logical—>L0gicaI: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B,A) /
— Logical-Physical:
J-OIN (A : B) to HASH_JOIN(A , B) ARTISTP<IAPPEARS ALBUMPIAPPEARS ARTISTP<IALBUM
Can create "enforcer" rules LR :
that require input to have —

certain properties.

ARTIST ALBUM

APPEARS
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o TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTIST b< APPEARS b ALBUM
we want the query to be. ORDER'BY(%RTIST'ID)
Invoke rules to create new nodes HASH_JOIN'  ~iA2,A3)
and traverse tree.
L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B, A) /
— Logical-Physical:
JOIN (A : B) to HASH_JOIN(A , B) ARTISTP<IAPPEARS ALBUMP<{JPPEARS ARTISTP<IALBUM
Can create "enforcer" rules T ST —
that require input to have —

certain properties.

ARTIST ALBUM APPEARS
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il TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what » ARTIST bd APPEARS >d ALBUM

ORDER-BY (ARTIST.ID)

we want the query to be. X

Invoke rules to create new nodes HASH_JOIN'  ~dA2,A3)
and traverse tree.

L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)

JOIN(A,B) to JOIN(B,A) t
— Logical-Physical:
JOIN (A ! B) to HASH_JOI N (A , B) ARTISTP<IAPPEARS ¢BUMN+PPEARS ARTISTP<IALBUM

Can create "enforcer" rules S SR
that require input to have
certain properties.

MERGE_JOIN(A1,A2)

ARTIST ALBUM APPEARS
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il TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. :

|

Invoke rules to create new nodes T HASH_JOIN'  1A2,A3)

and traverse tree.
MERGE_JOIN(A1P<IA2,A3)

N Loglcal%Loglcalz HASH_JOIN(A1p<IA2,A3)
JOIN(A,B) to JOIN(B,A) t

— Logical-Physical:
JOIN A’ B) to HASH JOINCA , B ARTISTP<IAPPEARS ALBUMN{PPEARS ARTISTP<IALBUM
(A,B) _JOIN(A,B) -
" 1"
Can create "enforcer" rules T S ————

that require input to have
certain properties.

ARTIST ALBUM APPEARS
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il TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. :

|

Invoke rules to create new nodes T HASH_JOIN'  1A2,A3)

and traverse tree.
MERGE_JOIN(A1P<IA2,A3)

— Logical—Logical:

HASH_JOIM 1p<A2,A3)
JOIN(CA,B) to JOIN(B,A) t
— Logical-Physical:
J-OIN A B to HASH JOIN A B ARTISTP<APPEARS ALBUMN{PPEARS ARTISTP<ALBUM
(A,B) _JOIN(A,B) L
Can create "enforcer" rules P T T

that require input to have
certain properties.

ARTIST ALBUM APPEARS
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m o, TOP-DOWN OPTIMIZATION: ENFORCERS 5

B Enforcer

. SELECT * FROM xxx
Enforcers are physical operators that WHERE xxx.a > 10 ORDER BY xxx.b;

ensure the properties of the output of
. GET(xxx.a > 10)
a sub-plan / expression. ORDER-BY (T.b)

Properties:
ORDER-BY (T.b)

Volcano's rule engine has additional | g

Properties:
ORDER-BY (T.b)

ORDER-BY (xxx.b)

logical to avoid considering operators
below it in the plan that satisfy its BTl | crooxae)

............................................................

property requirements. i
— Example: INDEX_SCAN(xxx.b) I .-

FILTER(XxxX.a>10)

INDEX_SCAN(XxXxX.a)

Source: EQOP Book
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(] Logical Op
B Physical Op

B Enforcer

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satistfy its

property requirements.
— Example: INDEX_SCAN(xxx.b)

Source: EQOP Book

TOP-DOWN OPTIMIZATION: ENFORCERS

SELECT * FROM xxx
WHERE xxx.a > 10 ORDER BY xxx.b;

GET(xxx.a > 10)
ORDER-BY (T.b)

Properties:
ORDER-BY (T.b)

QUICKSORT(T.b)

I

GET(xxx.a>10)

.............................................................

Properties:
ORDER-BY (T.b)

FILTER(xxx.a>10)

] INDEX_SCAN(xxx.b)

Properties:
None

FILTER(XxxX.a>10)

INDEX_SCAN(XxXxX.a)
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EXPRESSION REWRITING

An optimizer transforms a query’s expressions (e.g.,
WHERE/ON clause predicates) into the minimal set of
expressions.

Implemented using if/then/else clauses or a pattern-

matching rule engine.

— Search for expressions that match a pattern.

— When a match is found, rewrite the expression.
— Halt if there are no more rules that match.
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE 1 = 0;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE |1 = 0
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT *» FROM A WHERE false;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE NOW() IS NULL;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT *» FROM A WHERE false;

SELECT * FROM A WHERE [NOW() IS NULL;]
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT *» FROM A WHERE false;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT *» FROM A WHERE false;

SELECT *» FROM A WHERE false;

Merging Predicates

SELECT * FROM A
WHERE val BETWEEN 1 AND 100
OR val BETWEEN 50 AND 150;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT *» FROM A WHERE false;

SELECT *» FROM A WHERE false;

Merging Predicates

SELECT * FROM A
WHERE val BETWEEN 1 AND 150;
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CONCLUSION

Query optimization is critical for a database system.
— SQL - Logical Plan - Physical Plan

Transformations change logical operators into either
(1) new logical operators or (2) physical operators.

Two search strategies:
— Bottom-Up: Start with nothing and then iteratively assemble

query plan.
— Top-Down: Start with the outcome and then transform it to

equivalent alternatives to achieve that outcome.
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NEXT CLASS

Query Optimizers Part 2: Cost Models
— aka "Everybody has a plan until they get punched in the mouth"

Search for "$DBMS bad query plan”
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