
DatabaseSystems

15-445/645 FALL 2025

15- 445/645 FALL 2025
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Query Planning – Pt.1
LECTURE #15

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ADMINISTRIVIA

Mid-term Exam grades posted
→ Come to Andy's OH to view your grade and solution.

Homework #4 is due Sunday Nov 2nd @ 11:59pm

Project #3 is due Sunday Nov 16th @ 11:59pm
→ Recitation Tuesday Oct 28th @ 8:00pm (see @195)

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/195

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

UPCOMING DATABASE TALKS

SingleStore (DB Seminar)
→ Monday Oct 27th @ 4:30pm
→ Zoom

Delta Lake (DB Seminar)
→ Monday Nov 3rd @ 4:30pm
→ Zoom

Apache Pinot @ Uber (DB Group)
→ Tuesday Nov 4th @ 12:00pm
→ GHC 8115

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/futuredata-singlestore/
https://db.cs.cmu.edu/events/futuredata-deltalake/
https://db.cs.cmu.edu/events/real-time-analytics-query-architecture-evolution-uber-ankit-sultana/
https://db.cs.cmu.edu/events/real-time-analytics-query-architecture-evolution-uber-ankit-sultana/
https://db.cs.cmu.edu/events/real-time-analytics-query-architecture-evolution-uber-ankit-sultana/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LAST CLASS

We talked about how to design the DBMS's
architecture to execute queries in parallel.

The query plan is comprised of physical operators that
specify the algorithm to invoke at each step of the plan.

But how do we go from SQL to a query plan?

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DBMS OVERVIEW
5

Parser

System
Catalog Cost

Model

Binder Optimizer

SQL Query1

Abstract
Syntax
Tree

2 Logical
Plan

3
Physical
Plan

4

Application

Name→Internal ID Schema Info Estimates

Statistics

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MOTIVATION

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered unclustered

clustered unclustered

SELECT DISTINCT ename
 FROM Emp E JOIN Dept D
 ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

×

σEmp.did = Dept.did

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

1,000,000 reads + 2,000 writes
(FK join, 10k tuples in temp T2)

2,000 reads + 4 writes
(10K/500 = 20 emps per dept)

MOTIVATION

4 reads + 1 write

Total: 2M I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered unclustered

clustered unclustered

SELECT DISTINCT ename
 FROM Emp E JOIN Dept D
 ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

×

σEmp.did = Dept.did

(50 + 50,000) reads
+ 1,000,000 writes

Write temp file T1

5 tuples per page in T1

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MOTIVATION

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename
 FROM Emp E JOIN Dept D
 ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

clustered unclustered unclustered

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

Total: 54k I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename
 FROM Emp E JOIN Dept D
 ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

(50 + 50,000) reads
+ 2,000 writes

Page Nested-Loop Join
Write Temp T1

clustered unclustered unclustered

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

Total: 54k I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename
 FROM Emp E JOIN Dept D
 ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

(50 + 50,000) reads
+ 2,000 writes

Page Nested-Loop Join
Write Temp T1

clustered unclustered unclustered

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

Total: 7,159 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename
 FROM Emp E JOIN Dept D
 ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did
3×(|Emp| + |Dept|) =

3,150 reads + 2,000 writes
Sort-Merge Join (50 Buffers)

Write Temp T1

clustered unclustered unclustered

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

Total: 7,159 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename
 FROM Emp E JOIN Dept D
 ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did
3×(|Emp| + |Dept|) =

3,150 reads + 2,000 writes
Sort-Merge Join (50 Buffers)

Write Temp T1

Materialization Model

clustered unclustered unclustered

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

Total: 7,159 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename
 FROM Emp E JOIN Dept D
 ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did
3×(|Emp| + |Dept|) =

3,150 reads + 2,000 writes
Sort-Merge Join (50 Buffers)

Write Temp T1

Materialization Model

Total: 3,151 I/OsVectorization Model

clustered unclustered unclustered

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MOTIVATION

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename
 FROM Emp E JOIN Dept D
 ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

clustered unclustered unclustered

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MOTIVATION

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename
 FROM Emp E JOIN Dept D
 ON E.did = D.did
 WHERE D.dname = 'Toy'

Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

Emp

clustered unclustered unclustered

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

1 + 3 (idx) + 20 (ptr chase) reads
+ 4 writes

Index Nested-Loop Join

4 reads + 1 writes
Read temp T2

MOTIVATION

Total: 37 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename
 FROM Emp E JOIN Dept D
 ON E.did = D.did
 WHERE D.dname = 'Toy'

Dept

πename

σdname = 'Toy'
3 reads + 1 writes

Access: Index(dname)

⋈Emp.did = Dept.did

Emp

clustered unclustered unclustered

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TODAY'S AGENDA
Background

Transformations

Heuristic / Ruled-based Optimization

Cost-based Optimization

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

QUERY OPTIMIZER

Given a query's logical plan as input, generate a
semantically equivalent physical execution plan.
→ May have to consider a large search space of promising plans
→ Accurately determine whether one potential plan is better than

another.
→ Efficiently search the solution space to find a physical plan with

the lowest cost.

Ideally an optimizer should generate the best plan
regardless of how the query is expressed.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LOGICAL VS. PHYSICAL PLANS

The optimizer applies transformations that map a
logical algebra expression to the optimal equivalent
physical algebra expression.

Physical operators define a specific execution strategy
using an access path.
→ They can depend on the physical format of the data that they

process (i.e., sorting, compression).
→ Not always a 1:1 mapping from logical to physical.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OPTIMIZATION GRANULARITY

Choice #1: Single Query
→ Much smaller search space.
→ DBMS (usually) does not reuse results across queries.
→ To account for resource contention, the cost model must

consider what is currently running.

Choice #2: Multiple Queries
→ More efficient if there are many similar queries.
→ Search space is much larger.
→ Useful for data / intermediate result sharing.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

We now have a high-level understanding of a query
optimizer's role in a DBMS.

The quality of the plans that an optimizer generates is
mostly based on three factors:
→ Transformations / Enumeration
→ Search Algorithm
→ Cost Model

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSFORMATIONS

Enumerate the different choices / forms of a query plan
that are semantically equivalent and logically correct.
→ Need to ensure new query plans produces the same result as the

original no matter the inputs.

The goal of each transformation is to:
→ Lower query execution cost.
→ Unlock additional transformations.

Exploit relational algebra equivalencies via query
and database contents (logical + physical).

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

RELATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions are equivalent if
they generate the same set of tuples.

These equivalences allow the DBMS to manipulate and
transform a query plan into different forms without
effecting the correctness of its output.
→ This is how a heuristic-based optimizer identifies better query

plans without a cost model.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

RELATIONAL ALGEBRA EQUIVALENCES

Selections:
→ Perform filters as early as possible.
→ Breakup a complex predicate into conjunctive clauses and push

down to lowest part of plan as possible.

σp1∧p2∧…pn(R) = σp1(σp2(…σpn(R)))

Simplify complex predicates:
→X=3 AND Y=X → X=3 AND Y=3
→X=1+1 → X=2
→X=YEAR('10/27/2025') → X=2025

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

RELATIONAL ALGEBRA EQUIVALENCES

Joins:
→ Commutative:

R⋈S = S⋈R
→ Associative:

(R⋈S)⋈T = R⋈ (S⋈T)

Number of join orderings for an n-way binary join is (n-
1)! × C(n-1), where C(n-1) is the (n-1)th Catalan number.
→ n! different orders of leaf nodes (original relations)
→ C(n-1) possible shapes of a full binary tree with n leaves

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Catalan_number

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Transformations

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown

19

Source: Thomas Neumann

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SPLIT CONJUNCTIVE PREDICATES

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

20

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Mooshoo Tribute"



APPEARS ALBUM

×

ARTIST.NAMESELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SPLIT CONJUNCTIVE PREDICATES

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

20

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Mooshoo Tribute"



APPEARS ALBUM

×

ARTIST.NAMESELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SPLIT CONJUNCTIVE PREDICATES

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

20

×
ARTIST APPEARS ALBUM

×

ARTIST.NAME
ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.NAME="Mooshoo Tribute"
APPEARS.ALBUM_ID=ALBUM.ID

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PREDICATE PUSHDOWN

Move the predicate to
the lowest point in the
plan after Cartesian
products.

21

ARTIST APPEARS ALBUM

×

ARTIST.NAME

×

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.NAME="Mooshoo Tribute"
APPEARS.ALBUM_ID=ALBUM.ID

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PREDICATE PUSHDOWN

Move the predicate to
the lowest point in the
plan after Cartesian
products.

21

ARTIST APPEARS ALBUM

×

ARTIST.NAME

ARTIST.ID=APPEARS.ARTIST_ID
ALBUM.NAME="Mooshoo Tribute"

APPEARS.ALBUM_ID=ALBUM.ID
×

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

REPLACE CARTESIAN PRODUCTS

Replace all Cartesian
Products with inner
joins using the join
predicates.

22

ARTIST APPEARS ALBUM

ARTIST.NAME

ALBUM.NAME="Mooshoo Tribute"

×
ARTIST.ID=APPEARS.ARTIST_ID

APPEARS.ALBUM_ID=ALBUM.ID
×

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

REPLACE CARTESIAN PRODUCTS

Replace all Cartesian
Products with inner
joins using the join
predicates.

22

ARTIST APPEARS ALBUM

ARTIST.NAME

ALBUM.NAME="Mooshoo Tribute"
ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PROJECTION PUSHDOWN

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.

23

ARTIST APPEARS ALBUM

ARTIST.NAME

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

ALBUM.NAME="Mooshoo Tribute"

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PROJECTION PUSHDOWN

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.

23

ARTIST APPEARS ALBUM

ARTIST.NAME

ALBUM.NAME="Mooshoo Tribute"

IDARTIST.NAME,
APPEARS.ALBUM_ID

ID,NAME ARTIST_ID,
ALBUM_ID

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SEARCH ALGORITHMS

Given a set of transformation rules, the optimizer
searches for a good physical plan for a given query.

At search time, the optimizer will have a query's logical
plan but it may not have all information available.
→ Prepared statements with input variables
→ Missing statistical information.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SEARCH ALGORITHMS

Heuristics / Rules
→ Rewrite the query to remove (guessed) inefficiencies.
→ These techniques may need to examine catalog, but they do not

need to examine data.
→ Examples: always do selections first or push down predicates as

early as possible.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick the

one with the lowest cost.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HEURISTIC-BASED OPTIMIZATION

Define static rules that transform logical operators to a
physical plan without a cost model.
→ Perform most restrictive selection early
→ Perform all selections before joins
→ Predicate/Limit/Projection pushdowns
→ Join ordering based on simple rules or cardinality estimates

Examples: INGRES (until mid-1980s) and Oracle
(until early-1990s), MongoDB, most new DBMSs.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HEURISTIC-BASED OPTIMIZATION

Advantages:
→ Easy to implement and debug.
→ Works reasonably well and is fast for simple queries.

Disadvantages:
→ Relies on magic constants that predict the efficacy of a planning

decision.
→ Nearly impossible to generate good plans when operators have

complex inter-dependencies.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HEURISTIC-BASED OPTIMIZATION

Advantages:
→ Easy to implement and debug.
→ Works reasonably well and is fast for simple queries.

Disadvantages:
→ Relies on magic constants that predict the efficacy of a planning

decision.
→ Nearly impossible to generate good plans when operators have

complex inter-dependencies.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SEARCH ALGORITHMS

Heuristics / Rules
→ Rewrite the query to remove (guessed) inefficiencies.
→ These techniques may need to examine catalog, but they do not

need to examine data.
→ Examples: always do selections first or push down predicates as

early as possible.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick the

one with the lowest cost.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COST-BASED QUERY OPTIMIZATION

Apply transformation rules to enumerate different
variations of a query's plan estimate their costs to guide
the search process.
→ Single relation.
→ Multiple relations.
→ Nested sub-queries.

The optimizer chooses the best plan it has seen for the
query until it reaches a search termination condition.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SEARCH TERMINATION

Approach #1: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower cost than

some threshold.

Approach #3: Exhaustion
→ Stop when there are no more enumerations of the target plan.

Usually done per sub-plan/group.

Approach #4: Transformation Count
→ Stop after a certain number of rules/transformations have been

considered.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ACCESS PATH TRANSFORMATION

The optimizer chooses the access method(s) for those
relations that minimizes the cost of retrieving a query's
requested data from base relations.
→ Can also optimize predicate evaluation ordering.

Cost of access method depends on several factors:
→ Selectivity of predicate
→ Data structures (e.g., B+Tree vs. Hash Table)
→ Sort order of the table / index
→ Data accoutrements (e.g., INCLUDE, zone maps)
→ Compression / encoding

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SINGLE-RELATION QUERY PLANNING

Generate multiple alternatives for retrieving data from
a base relation for a given expression.

Available alternatives depend on query, database logical
schema, and DBMS implementation.
→ Example: A rule determines whether an index qualifies based

on a query's predicates (e.g., partial indexes).

Sequential Scan is always the fallback option.
→ Often worst choice in row stores but it is sometimes the only

choice in column stores.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SINGLE-RELATION QUERY PLANNING

Access path selection for a single
relation query is (relatively)
easy because they are sargable.

Pick the best access method
(sequential scan vs. index) using a
simple cost model.

33

Search
Argument
Able

CREATE TABLE xxx (
 id INT PRIMARY KEY,
 val INT
);
CREATE INDEX ON xxx (val);

xxx

val=123

id





SELECT id
 FROM xxx
 WHERE val >= 123
 AND val <= 456;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MULTI-RELATION QUERY PLANNING

Approach #1: Bottom-Up / Forward Chaining
→ Start with nothing and then iteratively assemble and add

building blocks to generate a query plan.
→ Examples: System R, Starburst

Approach #2: Top-Down / Backward Chaining
→ Start with the outcome that the query wants and then

transform it to equivalent alternative sub-plans to find the
optimal plan that gets to that goal.

→ Examples: Volcano, Cascades

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

FORWARD VS. BACKWARD CHAINING

35

Logical Op

Physical Op

HASH_JOIN(ARTIST,APPEARS)ARTIST⨝APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ARTIST APPEARS

FORWARD VS. BACKWARD CHAINING

Bottom-Up / Forward Chaining:
→ Start from query plan roots, trigger all

rules that match those operators, and adds
their conclusion to the known facts.
Repeats until full query is generated.

→ Breadth-first Search.

35

ARTIST⨝APPEARS

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ARTIST APPEARS

Choice #1 Choice #2 Choice #3

FORWARD VS. BACKWARD CHAINING

Bottom-Up / Forward Chaining:
→ Start from query plan roots, trigger all

rules that match those operators, and adds
their conclusion to the known facts.
Repeats until full query is generated.

→ Breadth-first Search.

35

ARTIST⨝APPEARS

Choice #1 Choice #2 Choice #2Choice #1

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ARTIST APPEARS

ARTIST APPEARS

ARTIST⨝APPEARS

Choice #1 Choice #2 Choice #3

FORWARD VS. BACKWARD CHAINING

Bottom-Up / Forward Chaining:
→ Start from query plan roots, trigger all

rules that match those operators, and adds
their conclusion to the known facts.
Repeats until full query is generated.

→ Breadth-first Search.

Top-Down / Backward Chaining:
→ Start from the query result and works

backward to determine what operators to
add to the query plan to achieve result.

→ Depth-first Search.

35

ARTIST⨝APPEARS

Choice #1 Choice #2 Choice #2Choice #1

Choice #1

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ARTIST APPEARS

ARTIST APPEARS

ARTIST⨝APPEARS

Choice #1 Choice #2 Choice #3

FORWARD VS. BACKWARD CHAINING

Bottom-Up / Forward Chaining:
→ Start from query plan roots, trigger all

rules that match those operators, and adds
their conclusion to the known facts.
Repeats until full query is generated.

→ Breadth-first Search.

Top-Down / Backward Chaining:
→ Start from the query result and works

backward to determine what operators to
add to the query plan to achieve result.

→ Depth-first Search.

35

ARTIST⨝APPEARS

Choice #1 Choice #2 Choice #2Choice #1

Choice #1

Choice #1 Choice #2 Choice #2Choice #1

Logical Op

Physical Op

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

The optimizer can detect whether a query is targeting a
database with a common design pattern and invoke
transformations that push a query plan into an ideal
form.

We saw this before with sargable queries where the
optimizer can immediately select the best index.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

STAR / SNOWFLAKE QUERIES

If a query joins a fact table with
multiple dimension tables, then
transform it to a left/right-deep join
tree and order dimension tables from
most to least selective.

Avoid wasting time exploring
bushy plans or alternative join
orderings for dimension tables.

37

SELECT * FROM fact AS F
 JOIN dim1 ON F.d1 = dim1.id
 JOIN dim2 ON F.d2 = dim2.id
 JOIN dim3 ON F.d3 = dim3.id;

EQOP Book

Source: EQOP Book

dim3

Join

fact

Join

dim1

Join

dim2

dim1

Join

fact

Join

dim2

Join

dim3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BOTTOM-UP OPTIMIZATION

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL, Germans,
DuckDB, Postgres, most open-source DBMSs.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

Break query into blocks and generate
logical operators for each block.

For each logical operator, generate a
set of physical operators that
implement it.
→ All combinations of join algorithms and

access paths

If a block accesses multiple relations,
iteratively construct a join tree that
minimizes the estimated amount of
work to execute the plan.

Left-Deep Tree

BA

C

D

outer inner

Bushy Tree

BA DC

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

Break query into blocks and generate
logical operators for each block.

For each logical operator, generate a
set of physical operators that
implement it.
→ All combinations of join algorithms and

access paths

If a block accesses multiple relations,
iteratively construct a join tree that
minimizes the estimated amount of
work to execute the plan.

Left-Deep Tree

BA

C

D

outer inner

Bushy Tree

BA DC

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

Step #1: Choose the best access paths
to each table

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

Step #1: Choose the best access paths
to each table

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM ⨝ ARTIST
ALBUM ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST ⨝ ALBUM
ARTIST × ALBUM ⨝ APPEARS
ALBUM × ARTIST ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join
orderings for tables

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

Step #1: Choose the best access paths
to each table

Step #3: Determine the join ordering
with the lowest cost

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM ⨝ ARTIST
ALBUM ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST ⨝ ALBUM
ARTIST × ALBUM ⨝ APPEARS
ALBUM × ARTIST ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join
orderings for tables

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) MERGE_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A2,A3) HASH_JOIN(A3,A2) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) MERGE_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) MERGE_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •MERGE_JOIN(A3⨝A2,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

Hack: Keep track of best plans with and
without data in proper physical form,
and then check whether tacking on a sort
operator at the end is better.

The query has ORDER BY on
ARTIST.ID but the logical plans
do not contain sorting properties.`

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION

Start with a logical plan of what we want the query to
be. Perform a branch-and-bound search to traverse the
plan tree by converting logical operators into physical
operators.
→ Keep track of global best plan during search.
→ Treat physical properties of data as first-class entities during

planning.

Examples: MSSQL, Greenplum, CockroachDB

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION

Start with a logical plan of what we want the query to
be. Perform a branch-and-bound search to traverse the
plan tree by converting logical operators into physical
operators.
→ Keep track of global best plan during search.
→ Treat physical properties of data as first-class entities during

planning.

Examples: MSSQL, Greenplum, CockroachDB

42

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

SORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

SORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

SORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION: ENFORCERS

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satisfy its
property requirements.
→ Example: INDEX_SCAN(xxx.b)

44

GET(xxx.a > 10)
ORDER-BY (T.b)

Logical Op

Physical Op

Enforcer

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

INDEX_SCAN(xxx.a)

FILTER(xxx.a>10)

Properties:
None

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

ORDER-BY (xxx.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book

Source: EQOP Book

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION: ENFORCERS

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satisfy its
property requirements.
→ Example: INDEX_SCAN(xxx.b)

44

GET(xxx.a > 10)
ORDER-BY (T.b)

Logical Op

Physical Op

Enforcer

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

QUICKSORT(T.b)

INDEX_SCAN(xxx.a)

FILTER(xxx.a>10)

Properties:
None

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book

Source: EQOP Book

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXPRESSION REWRITING

An optimizer transforms a query’s expressions (e.g.,
WHERE/ON clause predicates) into the minimal set of
expressions.

Implemented using if/then/else clauses or a pattern-
matching rule engine.
→ Search for expressions that match a pattern.
→ When a match is found, rewrite the expression.
→ Halt if there are no more rules that match.

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE 1 = 0;

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE 1 = 0;

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE NOW() IS NULL;

SELECT * FROM A WHERE false;

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE NOW() IS NULL;

SELECT * FROM A WHERE false;

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A
 WHERE val BETWEEN 1 AND 100
 OR val BETWEEN 50 AND 150;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A
 WHERE val BETWEEN 1 AND 150;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

Query optimization is critical for a database system.
→ SQL → Logical Plan → Physical Plan

Transformations change logical operators into either
(1) new logical operators or (2) physical operators.

Two search strategies:
→ Bottom-Up: Start with nothing and then iteratively assemble

query plan.
→ Top-Down: Start with the outcome and then transform it to

equivalent alternatives to achieve that outcome.

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

NEXT CLASS

Query Optimizers Part 2: Cost Models
→ aka "Everybody has a plan until they get punched in the mouth"

Search for "$DBMS bad query plan"

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Query Planning – Pt.1
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: DBMS OVERVIEW
	Slide 6: MOTIVATION
	Slide 7: MOTIVATION
	Slide 8: MOTIVATION
	Slide 9: MOTIVATION
	Slide 10: MOTIVATION
	Slide 11: MOTIVATION
	Slide 12: MOTIVATION
	Slide 13: MOTIVATION
	Slide 14: MOTIVATION
	Slide 15: MOTIVATION
	Slide 16: MOTIVATION
	Slide 17: TODAY'S AGENDA

	Background
	Slide 18: QUERY OPTIMIZER
	Slide 19: LOGICAL VS. PHYSICAL PLANS
	Slide 20: OPTIMIZATION GRANULARITY
	Slide 21: OBSERVATION

	Transformations
	Slide 22: TRANSFORMATIONS
	Slide 23: RELATIONAL ALGEBRA EQUIVALENCES
	Slide 24: RELATIONAL ALGEBRA EQUIVALENCES
	Slide 25: RELATIONAL ALGEBRA EQUIVALENCES
	Slide 26: Transformations
	Slide 27: SPLIT CONJUNCTIVE PREDICATES
	Slide 28: SPLIT CONJUNCTIVE PREDICATES
	Slide 29: SPLIT CONJUNCTIVE PREDICATES
	Slide 30: PREDICATE PUSHDOWN
	Slide 31: PREDICATE PUSHDOWN
	Slide 32: REPLACE CARTESIAN PRODUCTS
	Slide 33: REPLACE CARTESIAN PRODUCTS
	Slide 34: PROJECTION PUSHDOWN
	Slide 35: PROJECTION PUSHDOWN

	Search Algorithms
	Slide 36: SEARCH ALGORITHMS
	Slide 37: SEARCH ALGORITHMS
	Slide 38: HEURISTIC-BASED OPTIMIZATION
	Slide 39: HEURISTIC-BASED OPTIMIZATION
	Slide 40: HEURISTIC-BASED OPTIMIZATION
	Slide 41: SEARCH ALGORITHMS
	Slide 42: COST-BASED QUERY OPTIMIZATION
	Slide 43: SEARCH TERMINATION
	Slide 44: ACCESS PATH TRANSFORMATION
	Slide 45: SINGLE-RELATION QUERY PLANNING
	Slide 46: SINGLE-RELATION QUERY PLANNING
	Slide 47: MULTI-RELATION QUERY PLANNING
	Slide 48: FORWARD VS. BACKWARD CHAINING
	Slide 49: FORWARD VS. BACKWARD CHAINING
	Slide 50: FORWARD VS. BACKWARD CHAINING
	Slide 51: FORWARD VS. BACKWARD CHAINING
	Slide 52: FORWARD VS. BACKWARD CHAINING
	Slide 53: OBSERVATION
	Slide 54: STAR / SNOWFLAKE QUERIES

	Bottom-Up Search
	Slide 55: BOTTOM-UP OPTIMIZATION
	Slide 56: SYSTEM R OPTIMIZER
	Slide 57: SYSTEM R OPTIMIZER
	Slide 58: SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES
	Slide 59: SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES
	Slide 60: SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES
	Slide 61: SYSTEM R OPTIMIZER
	Slide 62: SYSTEM R OPTIMIZER
	Slide 63: SYSTEM R OPTIMIZER
	Slide 64: SYSTEM R OPTIMIZER
	Slide 65: SYSTEM R OPTIMIZER
	Slide 66: SYSTEM R OPTIMIZER

	Top-Down Search
	Slide 67: TOP-DOWN OPTIMIZATION
	Slide 68: TOP-DOWN OPTIMIZATION
	Slide 69: TOP-DOWN OPTIMIZATION
	Slide 70: TOP-DOWN OPTIMIZATION
	Slide 71: TOP-DOWN OPTIMIZATION
	Slide 72: TOP-DOWN OPTIMIZATION
	Slide 73: TOP-DOWN OPTIMIZATION
	Slide 74: TOP-DOWN OPTIMIZATION
	Slide 75: TOP-DOWN OPTIMIZATION
	Slide 76: TOP-DOWN OPTIMIZATION
	Slide 77: TOP-DOWN OPTIMIZATION
	Slide 78: TOP-DOWN OPTIMIZATION
	Slide 79: TOP-DOWN OPTIMIZATION
	Slide 80: TOP-DOWN OPTIMIZATION
	Slide 81: TOP-DOWN OPTIMIZATION
	Slide 82: TOP-DOWN OPTIMIZATION
	Slide 83: TOP-DOWN OPTIMIZATION
	Slide 84: TOP-DOWN OPTIMIZATION: ENFORCERS
	Slide 85: TOP-DOWN OPTIMIZATION: ENFORCERS

	Expression Rewriting
	Slide 86: EXPRESSION REWRITING
	Slide 87: EXPRESSION REWRITING
	Slide 88: EXPRESSION REWRITING
	Slide 89: EXPRESSION REWRITING
	Slide 90: EXPRESSION REWRITING
	Slide 91: EXPRESSION REWRITING
	Slide 92: EXPRESSION REWRITING
	Slide 93: EXPRESSION REWRITING
	Slide 94: EXPRESSION REWRITING

	Conclusion
	Slide 95: CONCLUSION
	Slide 96: NEXT CLASS

