Carnegie Mellon University

DATABASE
GYSTEMS

Query Planning - PLI

LECTURE #15)) 15-445/645 FALL 2025)) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Mid-term Exam grades posted
— Come to Andy's OH to view your grade and solution.

Homework #4 is due Sunday Nov 2" @ 11:59pm

Project #3 is due Sunday Nov 16" @ 11:59pm
— Recitation Tuesday Oct 28™ @ 8:00pm (see @195)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/195

UPCOMING DATABASE TALKS

N

SingleStore (DB Seminar) s SingleStore

— Monday Oct 27™ @ 4:30pm
— Zoom

A

Delta Lake (DB Seminar) A DELTA LAKE
— Monday Nov 3 @ 4:30pm

— Zoom

— Tuesday Nov 4" @ 12:00pm
— GHC 8115

Apache Pinot @ Uber (DB Group) ? Pi N ot

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/futuredata-singlestore/
https://db.cs.cmu.edu/events/futuredata-deltalake/
https://db.cs.cmu.edu/events/real-time-analytics-query-architecture-evolution-uber-ankit-sultana/
https://db.cs.cmu.edu/events/real-time-analytics-query-architecture-evolution-uber-ankit-sultana/
https://db.cs.cmu.edu/events/real-time-analytics-query-architecture-evolution-uber-ankit-sultana/

LAST CLASS

We talked about how to design the DBMS's
architecture to execute queries in parallel.

The query plan is comprised of physical operators that
specify the algorithm to invoke at each step of the plan.

But how do we go from SQL to a query plan?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DBMS OVERVIEW 5

A (| == -
I System 8 g Statistics
Application Catalog & | ——- > Cost
PP ZZ ¢Ql=——= Model
ZZa Q¢l——"
o SQL Query l Name—Internal ID Schema Info IEstimates
Parser Binder e
eglbstract @ Logical
yntax Plan c
Tree ePhyswal

Plan

o

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'

Catalog
clustered unclustered unclustered
Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

clustered unclustered

A

Dept(did,dname, floor,mgr)

500 records
50 pages

MOTIVATION

7T

» ename

dname = 'Toy'

O
O

Emp.did = Dept.did

X

-~

Emp Dept

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'

Catalog
clustered unclustered unclustered
Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

clustered unclustered

A

Dept(did,dname, floor,mgr)

500 records
50 pages

4 reads + 1 write Tc

» ename

2,000 reads + 4 writes O
(10K/500 = 20 emps per dept) ~ f dname = "Toy’

1,000,000 reads + 2,000 writes

(FK join, 10k tuples in temp T,) QE"‘p-did = Dept.did

(50 + 50,000) reads

, X
+ 1,000,000 writes / \
Write temp file T,

5 tuples per pagein T, Emp Dept

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'

Catalog
clustered unclustered unclustered
Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

clustered unclustered

A

Dept(did,dname, floor,mgr)

500 records
50 pages

MOTIVATION

7T

ename
A

O

A

/ g.did = Dept.did

Emp Dept

dname = 'Toy'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'

Catalog
clustered unclustered unclustered
Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

clustered unclustered

A

Dept(did,dname, floor,mgr)

500 records
50 pages

MOTIVATION 5

4reads + 4 writes [
ename
Readtemp T, ¢

2,000 reads + 4 writes G
Read temp T,, Write temp T, ¢ dname = "Toy’

(50 + 50,000) reads

+ 2,000 writes /Dq@-did = Dept.did
Page Nested-Loop Join

Write Temp T, Emp Dept

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION %

SELECT DISTINCT ename
FROM Emp E JOIN Dept D

e
WHERE D.dname = 'Toy' Total: 54k I/Os

Catalog 4 reads + 4 writes T[ename
clustered unclustered unclustered Read temp T2 I
Emp(ssn,ename,addr,sal,did)
10.000 records 2,000 reads + 4 writes G
1,000 pages Read temp T, Write temp T, I dname = "Toy'
clxered uncluAstered |
Dept(did, dname, floor,mgr) (50 + 50;000) l'(?adS N . |
500 records + 2,000 writes Emp.did = Dept.did
50 pages Page Nested-Loop Join
Write Temp T, Emp Dept

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION &

SELECT DISTINCT ename
FROM Emp E JOIN Dept D

ON E.did = D.did]
WHERE D.dname = 'Toy' Total: 7,159 I/Os

Catalog 4 reads + 4 writes T[ename
clustered unclustered unclustered Read temp T2 A
Emp(ssn, ename,addr,sal,did)
10.000 records 2,000 reads + 4 writes G
1,000 pages Read temp T,, Write temp T, ¢ dname = "Toy’
cl;ered unduAstered
Dept(did, dname,floor,mgr) 3x([Emp]| + |Dept]) = N

500 records 3,150 reads + 2,000 writes Emp.did = Dept.did
Sort-Merge Join (50 Buffers)

50 pages .
Write Temp T, Emp Dept

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION &

SELECT DISTINCT ename

id = 1 . e
nane - = ng Tow:7191/0s
WHERE D.dname = 'Toy' Materialization Model Total: 7.159 I/Os
Catalog 4 reads + 4 writes T[ename
clustered unclustered unclustered Read temp T2 A

Emp(ssn,ename,addr,sal,did)

10.000 records 2,000 reads + 4 writes G

1,000 pages Read temp T, Writetemp T, 7§ dname = 'Toy'
cl;ered uncluAstered

Dept(did,dname,floor,mgr) 3X([Emp| + [Dept|) = N

500 records 3,150 reads + 2,000 writes Emp.did = Dept.did
Sort-Merge Join (50 Buffers)

50 pages .
Write Temp T, Emp Dept

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION

SELECT DISTINCT ename Vectorization Model » Total: 3,151 1/Os
N £ did - b NoPipelining
-ara = L al » Total: 7,159 1/Os

L. Materializati Model
WHERE D.dname = 'Toy' aterialization ode

Catalog Xeads + 4 writes T[ename
clustered unclustered unclustered Read temp T2 1
Emp(ssn,ename,addr,sal,did)
10,000 records Zxo reads fx"“tes G ' '
1,000 pages Read temp T,, Write temp T, ¢ dname = "Toy
clxered unduAstered
Dept(did,dname, floor,mgr) 3><(|Em I + |Dep.t|) - N _ _
3,150 reads + 2300 writes Emp.did = Dept.did
500 records .
20 Sort-Merge Join (50 Buffers)
pages

Write Temp T, Emp Dept

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SELECT DISTINCT ename

FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'

Catalog

clustered unclustered unclustered

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages
clustered unclustered
A
Dept(did,dname, floor,mgr)
500 records
50 pages

MOTIVATION

ename

T
|

‘ Y dname = 'Toy' }

/[I Emp.did = Dept

‘Emp === Dept |<—

\

\
1
1
1
1
I

d

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'

Catalog
clustered unclustered unclustered
Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

clustered unclustered

A

Dept(did,dname, floor,mgr)

500 records
50 pages

MOTIVATION

T
|

‘ Y dname = 'Toy ‘

X

/ g.did = Dept.did

Dept Emp

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SELECT DISTINCT ename
FROM Emp E JOIN Dept D
ON E.did = D.did
WHERE D.dname = 'Toy'

Catalog

clustered unclustered unclustered

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

clustered unclustered

A

Dept(did,dname, floor,mgr)

500 records
50 pages

MOTIVATION

Total: 37 I/O0s

4 reads + 1 writes Tc
Read temp T

ename

1+ 3 (idx) + 20 (ptr chase) reads
+ 4 writes Emp.did = Dept.did
Index Nested-Loop Join / \

3 reads + 1 writes
Access: Index(dname)

Emp
I dname = 'Toy'

Dept

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TODAY'S AGENDA

Background

Transformations

Heuristic / Ruled-based Optimization
Cost-based Optimization

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

QUERY OPTIMIZER

Given a query's logical plan as input, generate a

semantically equivalent physical execution plan.

— May have to consider a large search space of promising plans

— Accurately determine whether one potential plan is better than
another.

— Efficiently search the solution space to find a physical plan with
the lowest cost.

I[deally an optimizer should generate the best plan
regardless of how the query is expressed.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LOGICAL V5. PRYSICAL PLANS

The optimizer applies transformations that map a
logical algebra expression to the optimal equivalent
physical algebra expression.

Physical operators define a specific execution strategy

using an access path.

— They can depend on the physical format of the data that they
process (i.e., sorting, compression).

— Not always a 1:1 mapping from logical to physical.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OPTIMIZATION GRANULARITY

Choice #1: Single Query

— Much smaller search space.

— DBMS (usually) does not reuse results across queries.

— To account for resource contention, the cost model must
consider what is currently running.

Choice #2: Multiple Queries

— More efficient if there are many similar queries.
— Search space is much larger.

— Useful for data / intermediate result sharing.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

We now have a high-level understanding of a query
optimizer's role in a DBMS.

The quality of the plans that an optimizer generates is
mostly based on three factors:

— Transformations / Enumeration
— Search Algorithm

— Cost Model

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSFORMATIONS

Enumerate the different choices / forms of a query plan

that are semantically equivalent and logically correct.
— Need to ensure new query plans produces the same result as the
original no matter the inputs.

The goal of each transformation is to:

— Lower query execution cost.
— Unlock additional transformations.

Exploit relational algebra equivalencies via query
and database contents (logical + physical).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

RELATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions are equivalent if
they generate the same set of tuples.

These equivalences allow the DBMS to manipulate and
transform a query plan into different forms without

effecting the correctness of its output.
— This is how a heuristic-based optimizer identifies better query
plans without a cost model.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

RELATIONAL ALGEBRA EQUIVALENCES 5

Selections:

— Perform filters as early as possible.
— Breakup a complex predicate into conjunctive clauses and push
down to lowest part of plan as possible.

c R) = 6,,(0,(...0,,(R)))

P1ApP2A...pn T pn
Simplify complex predicates:

— X=3 AND Y=X > X=3 AND Y=3

— X=1+1 > X=2

— X=YEAR('10/27/2025") - X=2025

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

RELATIONAL ALGEBRA EQUIVALENCES 5

Joins:
— Commutative;
RS =SSR

— Associative:

(RHS)XT =R™M(SHT)

Number of join orderings for an n-way binary join is (n-
1)! x C(n-1), where C(n-1) is the (n-1)** Catalan number.
— n! different orders of leaf nodes (original relations)

— C(n-1) possible shapes of a full binary tree with n leaves

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Catalan_number

TRANSFORMATIONS

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins
Projection Pushdown

Source: Thomas Neumann

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.in.tum.de/teaching/ws1819/queryopt/?lang=en

SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

’ l ARTIST.NAME

|

ARTIST.ID=APPEARS.ARTIST_ID AND
G APPEARS . ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Mooshoo Tribute"

I

X
/_/
X
NG

ARTIST APPEARS ALBUM

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

’ l ARTIST.NAME

APPEARS . ALBUM_ID=ALBUM.ID AND

’ GARTIST.ID=APPEARS.ARTIST_ID AND

ALBUM.NAME="Mooshoo Tribute"

|

I

X
I

X
N

ARTIST

APPEARS

ALBUM

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SPLIT CONJUNCTIVE PREDICATES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Decompose predicates
into their simplest forms
to make it easier for the
optimizer to move them
around.

’ l ARTIST.NAME

ARTIST.ID=APPEARS.ARTIST_ID

APPEARS . ALBUM_ID=ALBUM. ID

QQQ

ALBUM.NAME="Mooshoo Tribute"

X
/_/
X
NG

ARTIST APPEARS ALBUM

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PREDICATE PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Move the predicate to
the lowest point in the
plan after Cartesian
products.

’ l ARTIST.NAME

Pe G ARTIST.ID=APPEARS.ARTIST_ID
/
1
,’ G APPEARS . ALBUM_ID=ALBUM. ID
I
I
II G ALBUM.NAME="Mooshoo Tribute" =y
\
\ \
\
\
\
\
V/

ARTIST APPEARS ALBUM

-—_——

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PREDICATE PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM TC ARTIST . NAME
WHERE ARTIST.ID=APPEARS.ARTIST_ID t
AND APPEARS.ALBUM_ID=ALBUM.ID G APEARS ALBUN. ThoALBUM 10
AND ALBUM.NAME="Mooshoo Tribute" ' 1 B '
Move the predicate to X
the lowest point in the \
plan after Cartesian GALBUM.NAME="Mooshoo Tribute"
G ARTIST.ID=APPEARS.ARTIST_ID

products.

X
N

ARTIST APPEARS ALBUM

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

REPLACE CARTESIAN PRODUCTS

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Mooshoo Tribute"

Replace all Cartesian
Products with inner
joins using the join
predicates.

’ l ARTIST.NAME

G APPEARS . ALBUM_ID=ALBUM. ID

/ ALBUM.NAME= Mooshoo Tribute"
GARTIST ID= APPEARS ARTIST_ID

X

ARTIST APPEARS ALBUM

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

REPLACE CARTESIAN PRODUCTS

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Mooshoo Tribute"

Replace all Cartesian
Products with inner
joins using the join
predicates.

’ l ARTIST.NAME

APPEARS ALBUM_ID=ALBUM.ID

/ ALBUM NAME= Mooshoo Tribute"

ARTIST ID=APPEARS.ARTIST_ID

Py

ARTIST APPEARS ALBUM

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROJECTION PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.

’ l ARTIST.NAME

APPEARS ALBUM_ID=ALBUM.ID

/ ALBUM NAME= Mooshoo Tribute"

ARTIST ID=APPEARS.ARTIST_ID

Py

ARTIST APPEARS ALBUM

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROJECTION PUSHDOWN

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Mooshoo Tribute"

Eliminate redundant
attributes before pipeline
breakers to reduce
materialization cost.

’ l ARTIST.NAME

M APPEARS . ALBUM_ID=ALBUM. ID
ARTIST.NAME, D
APPEARS . ALBUM_ID \

ARTIST.ID=
APPEARS. ARTIST_ID ALBUM.NAME="Mooshoo Tribute"

\ ARTIST_ID,
n I?AME n ALBUM_ID

ARTIST APPEARS ALBUM

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SEARCH AL6ORITHMS

Given a set of transformation rules, the optimizer
searches for a good physical plan for a given query.

At search time, the optimizer will have a query's logical

plan but it may not have all information available.
— Prepared statements with input variables
— Missing statistical information.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SEARCH AL6ORITHMS

Heuristics / Rules

— Rewrite the query to remove (guessed) inefficiencies.

— These techniques may need to examine catalog, but they do not
need to examine data.

— Examples: always do selections first or push down predicates as
early as possible.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick the
one with the lowest cost.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HEURISTIC-BASED OPTIMIZATION

Define static rules that transform logical operators to a

physical plan without a cost model.

— Perform most restrictive selection early

— Perform all selections before joins

— Predicate/Limit/Projection pushdowns

— Join ordering based on simple rules or cardinality estimates

Examples: INGRES (until mid-1980s) and Oracle
(until early-1990s), MongoDB, most new DBMSs.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HEURISTIC-BASED OPTIMIZATION 5

Advantages:

— Easy to implement and debug.
— Works reasonably well and is fast for simple queries.

Disadvantages:
— Relies on magic constants that predict the efficacy of a planning
decision.

— Nearly impossible to generate good plans when operators have
complex inter-dependencies.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Stonebraker gave the story of the query optimizer as an exam-
ple. Relational queries were often highly complex. Let's say you

wanted your database to give you the name, salary, and job title of

everyone in your Chicago office who did the same kind of work as
Advantages:

an employee named Alien. (This example happens to come from Or-

— Easy to implement and debug_ acle's 1981 user guide.) This would require the database to find infor-

f mation in the employee table and the department table, then sort the
1 data. How quickly the database management system did this de-
S W ell and is fast fo quickly gement sy

Orks reasonably w pended on how cleverly the system was constructed. "If you do it
smart, you get the answer a lot quicker than if you do it stupid,
Stonebraker said.

e He continued. "Oracle had a really stupid optimizer. They did
Disadvantages:

the query in the order that you happened to type in the clauses. Basi-
. . cally, they blindly did it from left to right. The Ingres program

- Relles on maglc constants that pred] looked at everything there and tried to ﬁgurge out the best w:y to do
d e Ci Si on it." But Ellison found a way to neutralize this advantage, Stone-

° d braker said. "Oracle was really shrewd. They said they had a syntac-

1 1 tic optimizer, whereas the other guys had a semantic optimizer. The

. N early lmpOSSIble to generate goo truth was, they had no optimizer and the other guys had an opti-
CompleX lnter'dep endenCIGS. mizer. It was very, very, very creative marketing. . . . They were very

good at confusing the market."

"What he's using is semantics himself," Ellison said. Just be-
cause Oracle did things differently, "Stonebraker decided we
didn't have an optimizer. [He seemed to think] the only kind of
optimizer was his optimizer, and our approach to optimization
wasn't really optimization at all. That's an interesting notion, but
I'm not sure I buy that."

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SEARCH AL6ORITHMS

Heuristics / Rules

— Rewrite the query to remove (guessed) inefficiencies.

— These techniques may need to examine catalog, but they do not
need to examine data.

— Examples: always do selections first or push down predicates as
early as possible.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick the
one with the lowest cost.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

COST-BASED QUERY OPTIMIZATION

Apply transformation rules to enumerate different
variations of a query's plan estimate their costs to guide

the search process.

— Single relation.

— Multiple relations.

— Nested sub-queries.

The optimizer chooses the best plan it has seen for the
query until it reaches a search termination condition.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SEARCH TERMINATION

Approach #1: Wall-clock Time

— Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold

— Stop when the optimizer finds a plan that has a lower cost than
some threshold.

Approach #3: Exhaustion

— Stop when there are no more enumerations of the target plan.
Usually done per sub-plan/group.

Approach #4: Transformation Count

— Stop after a certain number of rules/transformations have been
considered.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ACCESS PATH TRANSFORMATION

The optimizer chooses the access method(s) for those
relations that minimizes the cost of retrieving a query's

requested data from base relations.
— Can also optimize predicate evaluation ordering.

Cost of access method depends on several factors:
— Selectivity of predicate

— Data structures (e.g., B+ Tree vs. Hash Table)

— Sort order of the table / index

— Data accoutrements (e.g., INCLUDE, zone maps)

— Compression / encoding

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SINGLE-RELATION QUERY PLANNING

Generate multiple alternatives for retrieving data from
a base relation for a given expression.

Available alternatives depend on query, database logical

schema, and DBMS implementation.
— Example: A rule determines whether an index qualifies based
on a query's predicates (e.g., partial indexes).

Sequential Scan is always the fallback option.
— Often worst choice in row stores but it is sometimes the only
choice in column stores.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SINGLE-RELATION QUERY PLANNING

Search

Access path selection for a single ~Argument SE:;:S; e
Able o

relation query is (relatively) WHERE val >= 123

easy because they are sargable. AND val <= 456;
Pick the best access method 71.5 ’
(sequential scan vs. index) using a " '

simple cost model.

val INT

CREATE TABLE xxx (O va1-123
id INT PRIMARY KEY, f
- ’///;"'

);
CREATE INDEX ON xxx (val);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MULTI-RELATION QUERY PLANNING

Approach #1: Bottom-Up / Forward Chaining
— Start with nothing and then iteratively assemble and add

building blocks to generate a query plan.
— Examples: System R, Starburst

Approach #2: Top-Down / Backward Chaining

— Start with the outcome that the query wants and then
transform it to equivalent alternative sub-plans to find the
optimal plan that gets to that goal.

— Examples: Volcano, Cascades

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FORWARD VS. BACKWARD CHAINING 5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

e FORWARD VS. BACKWARD CHAINING 5

Bottom-Up / Forward Chaining:
— Start from query plan roots, trigger all ARTISTDIAPPEARS

rules that match those operators, and adds / \

their conclu§1on to the k.nown facts. ARTLST APPEARS

Repeats until full query is generated.
— Breadth-first Search.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

m rotc, FORWARD VS. BACKWARD CHAINING

Bottom-Up / Forward Chaining:

— Start from query plan roots, trigger all
rules that match those operators, and adds
their conclusion to the known facts.
Repeats until full query is generated.

— Breadth-first Search.

ARTISTPAPPEARS

Choice #1 | Choice #2 | Choice #3

Choice #2
ARTIS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

m rotc, FORWARD VS. BACKWARD CHAINING

ARTISTPAPPEARS

Bottom-Up / Forward Chaining:

— Start from query plan roots, trigger all
rules that match those operators, and adds Choice #2
their conclusion to the known facts. s
Repeats until full query is generated.

— Breadth-first Search.

Choice #1 | Choice #2 | Choice #3

— Start from the query result and works
backward to determine what operators to
add to the query plan to achieve result. ARTIST APPEARS

— Depth-first Search.

Top-Down / Backward Chaining: ARTIST;EPPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

e FORWARD VS. BACKWARD CHAINING 5

ARTISTP<IAPPEARS

Bottom-Up / Forward Chaining:

— Start from query plan roots, trigger all
rules that match those operators, and adds
their conclusion to the known facts.
Repeats until full query is generated.

— Breadth-first Search.

Choice #1 | Choice #2 | Choice #3

Top-Down / Backward Chaining: ARTISTRIAPPEARS

— Start from the query result and works
backward to determine what operators to
add to the query plan to achieve result. Choice #2 J§ Choice #1

— Depth-first Search.

Choice #1

ARTIST APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

The optimizer can detect whether a query is targeting a
database with a common design pattern and invoke
transformations that push a query plan into an ideal
form.

We saw this before with sargable queries where the
optimizer can immediately select the best index.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

STAR / SNOWFLAKE QUERIES

[f a query joins a fact table with
multiple dimension tables, then
transform it to a left/right-deep join
tree and order dimension tables from
most to least selective.

Avoid wasting time exploring

bushy plans or alternative join
orderings for dimension tables.

Source: EQOP Book

=

SELECT * FROM fact AS F
JOIN dim1 ON F.d1
JOIN dim2 ON F.d2
JOIN dim3 ON F.d3

diml.id
dim2.id
dim3.id;

Join

7N

dim2

Join

N

Join

diml

N\

dim3

fact

»

Join

7 N

dim3

Join

£ N

dim2

Join

’ \

dimi

fact

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

BOTTOM-UP OPTIMIZATION

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL, Germans,
DuckDB, Postgres, most open-source DBMSs.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SYSTEM R OPTIMIZER 5

Left-Deep Tree

Break query into blocks and generate /’4\
logical operators for each block. /><1\ D
For each logical operator, generate a /N\ C
set of physical operators that A B
implement it. outer inner
— All combinations of join algorithms and

access paths Bushy Tree
[f a block accesses multiple relations, N
iteratively construct a join tree that /’4\ /’4\
minimizes the estimated amount of A BS D

work to execute the plan.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SYSTEM R OPTIMIZER

Left-Deep Tree
Break query into blocks and generate /’4\
logical operators for each block. /><1\ D
For each logical operator, generate a /N\ C
set of physical operators that A B
implement it. outer inner

— All combinations of join algorithms and
access paths

[f a block accesses multiple relations,
iteratively construct a join tree that
minimizes the estimated amount of
work to execute the plan.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

SELECT ARTIST.NAME .
FROM ARTIST, APPEARS, ALBUM ARTIST: Sequential Scan

WHERE ARTIST.ID=APPEARS.ARTIST_ID APPEARS: Sequential Scan

AND APPEARS.ALBUM_ID=ALBUM. ID. ALBUM: Index Look-up on NAME
AND ALBUM.NAME=“Andy's OG Remix”

ORDER BY ARTIST.ID

Step #1: Choose the best access paths
to each table

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Andy's OG Remix”
ORDER BY ARTIST.ID

ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST D4 APPEARS B ALBUM
APPEARS D ALBUM B4 ARTIST
ALBUM Dd APPEARS B ARTIST
APPEARS D4 ARTIST b ALBUM
orderings for tables ARTIST x ALBUM DI APPEARS
ALBUM x ARTIST Dd APPEARS

Step #1: Choose the best access paths
to each table

Step #2: Enumerate all possible join

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Andy's OG Remix”
ORDER BY ARTIST.ID

Step #1: Choose the best access paths
to each table

Step #2: Enumerate all possible join
orderings for tables

Step #3: Determine the join ordering
with the lowest cost

ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST P APPEARS D> ALBUM
APPEARS D ALBUM D] ARTIST
ALBUM D] APPEARS D ARTIST
APPEARS P ARTIST P ALBUM
ARTIST x ALBUM P APPEARS
ALBUM x ARTIST P APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

e SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) MERGE_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A2,A3) HASH_JOIN(A3,A2)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST.ID=APPEARS.ARTIST_ID APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

o SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P ALBUM

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSP<IALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST.ID=APPEARS.ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

e SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

g__———fzi:_—’)‘ ‘&\‘-___

HASH_JOIN(A1<IA3,A2) |[MERGE_JOIN(A11<1A3,A2) |HASH_JOIN(A21<IA3, A1)

MERGE_JOIN(A2P<A3,A1) JHASH_JOIN(A3P<IA2,A1) | MERGE_JOIN(A3P<IA2,A1) I

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST. ID=APPEARS . ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

e SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

4__———"‘)’

HASH_JOIN(CA1P<A3,A2) HASH_JOIN(A2P<IA3,A1)

HASH_JOIN(A3P<A2,A1) oo e

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST. ID=APPEARS . ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

o SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P ALBUM

HASH_JOIN(A2D<IA3,A1)

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

(] Logical Op

SYSTEM R OPTIMIZER &

ARTIST P4 APPEARS P ALBUM

The query has ORDER BY on
HASH_JOIN(A2<IA3,A1) ARTIST.ID but the logical pl(ms
do not contain sorting properties.’

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

Hack: Keep track of best plans with and
without data in proper physical form,
and then check whether tacking on a sort
operator at the end is better.

HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

T0P-DOWN OPTIMIZATION

Start with a logical plan of what we want the query to
be. Perform a branch-and-bound search to traverse the
plan tree by converting logical operators into physical

operators.

— Keep track of global best plan during search.

— Treat physical properties of data as first-class entities during
planning.

Examples: MSSQL, Greenplum, CockroachDB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TOP-DOWN OPTIMI

Start with a logical plan of what we
be. Perform a branch-and-bound se
plan tree by converting logical oper

operators. .
— Keep track of global best plan during s

— Treat physical properties of data as firs
planning.

Examples: MSSQL, Greenplum, (

Foundations and Trends® in Databases
Extensible Query Optimizers in
Practice

Suggested Citation: Baily Ding, Vivek Narasayya and Surajit Chaudhuri (2024), “Ex-
tensible Query Optimizers in Practice”, Foundations and Trends” in Databases: Vol. 14,
No. 3-4, pp 186-402. Dot 10.1561,/1900000077.

Bailu Ding
Microsoft Corporation
badin@microsoft.com

Vivek Narasayya
Microsoft Corporation
viveknar@microsoft.com

Surajit Chaudhuri
Microsoft Corporation
surajitc@microsoft.com

new

the essence of knouwledge
Boston — Delft,

™

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

., TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTP<APPEARS ALBUMP<APPEARS ARTISTPALBUM

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what » ARTEST b APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes

and traverse tree.

RN Logical—>L0gicaI: MERGE_JOIN(A1P<IA2,A3)
JOIN(CA,B) to JOIN(B,A)

— Logical-Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTP<APPEARS ALBUMP<APPEARS ARTISTPALBUM

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

., TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN(A1DA2,A3)

/

ARTISTPIAPPEARS

ALBUMPIAPPEARS

ARTISTPALBUM

ARTIST

ALBUM

APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

o TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:

JOIN(CA,B) to JOIN(B,A)

ARTIST P APPEARS P4 ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN(A1DA2,A3)

/

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B) »‘

ARTISTP<IAPPEARS ALBUMPIAPPEARS ARTISTP<IALBUM
ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. t :

Invoke rules to create new nodes
and traverse tree.

— Logical—>Logica]: MERGE_JOIN(A1P<A2,A3)
JOIN(A,B) to JOIN(B,A) /

— Logical-Physical:
JOIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMP<APPEARS ARTISTP<IALBUM

» HASH_JOIN(A1,A2)
—

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

o TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN(A1DA2,A3)

/

»‘ ARTISTP<APPEARS ALBUMPIAPPEARS

ARTISTP<ALBUM
HASH_JOIN(A1,A2) 0
—
ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. t :

Invoke rules to create new nodes
and traverse tree.

— Logical—>Logicalz MERGE_JOIN(A1P<A2,A3)
JOIN(A,B) to JOIN(B,A) /

— Logical-Physical:
J'OIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMP<APPEARS ARTISTP<IALBUM

HASH_JOIN(A1,A2) : 0

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTIST pd APPEARS bd ALBUM

we want the query to be. ORDER'BY(%RTIST'ID)

Invoke rules to create new nodes

and traverse tree.

L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B, A) /

— Logical-Physical:
JOIN (A : B) to HASH_JOIN(A , B) ARTISTP<IAPPEARS ALBUMP<{JPPEARS ARTISTP<IALBUM

Can create "enforcer" rules T ST —

that require input to have —

certain properties.

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what » ARTIST b< APPEARS b ALBUM

we want the query to be. ORDER'BY(%RTIST'ID)

Invoke rules to create new nodes

and traverse tree.

L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B, A) /

— Logical-Physical:
JOIN (A : B) to HASH_JOIN(A , B) ARTISTP<IAPPEARS ALBUMP<{JPPEARS ARTISTP<IALBUM

Can create "enforcer" rules T ST —

that require input to have —

certain properties.

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

o TOP-DOWN OPTIMIZATION

=

Start with a logical plan of what » ARTEST b APPEARS >t ALY
we want the query to be. t :

Invoke rules to create new nodes
and traverse tree.

HASH_JOIN(A1P<IA2,A3)

N Logical—>L0gicaI: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B,A) /
— Logical-Physical:
J-OIN (A : B) to HASH_JOIN(A , B) ARTISTP<IAPPEARS ALBUMPIAPPEARS ARTISTP<IALBUM
Can create "enforcer" rules LR :
that require input to have —

certain properties.

ARTIST ALBUM

APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

o TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTIST b< APPEARS b ALBUM
we want the query to be. ORDER'BY(%RTIST'ID)
Invoke rules to create new nodes HASH_JOIN' ~iA2,A3)
and traverse tree.
L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B, A) /
— Logical-Physical:
JOIN (A : B) to HASH_JOIN(A , B) ARTISTP<IAPPEARS ALBUMP<{JPPEARS ARTISTP<IALBUM
Can create "enforcer" rules T ST —
that require input to have —

certain properties.

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

il TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what » ARTIST bd APPEARS >d ALBUM

ORDER-BY (ARTIST.ID)

we want the query to be. X

Invoke rules to create new nodes HASH_JOIN' ~dA2,A3)
and traverse tree.

L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)

JOIN(A,B) to JOIN(B,A) t
— Logical-Physical:
JOIN (A ! B) to HASH_JOI N (A , B) ARTISTP<IAPPEARS ¢BUMN+PPEARS ARTISTP<IALBUM

Can create "enforcer" rules S SR
that require input to have
certain properties.

MERGE_JOIN(A1,A2)

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

il TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. :

|

Invoke rules to create new nodes T HASH_JOIN' 1A2,A3)

and traverse tree.
MERGE_JOIN(A1P<IA2,A3)

N Loglcal%Loglcalz HASH_JOIN(A1p<IA2,A3)
JOIN(A,B) to JOIN(B,A) t

— Logical-Physical:
JOIN A’ B) to HASH JOINCA , B ARTISTP<IAPPEARS ALBUMN{PPEARS ARTISTP<IALBUM
(A,B) _JOIN(A,B) -
" 1"
Can create "enforcer" rules T S ————

that require input to have
certain properties.

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

il TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. :

|

Invoke rules to create new nodes T HASH_JOIN' 1A2,A3)

and traverse tree.
MERGE_JOIN(A1P<IA2,A3)

— Logical—Logical:

HASH_JOIM 1p<A2,A3)
JOIN(CA,B) to JOIN(B,A) t
— Logical-Physical:
J-OIN A B to HASH JOIN A B ARTISTP<APPEARS ALBUMN{PPEARS ARTISTP<ALBUM
(A,B) _JOIN(A,B) L
Can create "enforcer" rules P T T

that require input to have
certain properties.

ARTIST ALBUM APPEARS

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

m o, TOP-DOWN OPTIMIZATION: ENFORCERS 5

B Enforcer

. SELECT * FROM xxx
Enforcers are physical operators that WHERE xxx.a > 10 ORDER BY xxx.b;

ensure the properties of the output of
. GET(xxx.a > 10)
a sub-plan / expression. ORDER-BY (T.b)

Properties:
ORDER-BY (T.b)

Volcano's rule engine has additional | g

Properties:
ORDER-BY (T.b)

ORDER-BY (xxx.b)

logical to avoid considering operators
below it in the plan that satisfy its BTl | crooxae)

..

property requirements. i
— Example: INDEX_SCAN(xxx.b) I .-

FILTER(XxxX.a>10)

INDEX_SCAN(XxXxX.a)

Source: EQOP Book

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

(] Logical Op
B Physical Op

B Enforcer

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satistfy its

property requirements.
— Example: INDEX_SCAN(xxx.b)

Source: EQOP Book

TOP-DOWN OPTIMIZATION: ENFORCERS

SELECT * FROM xxx
WHERE xxx.a > 10 ORDER BY xxx.b;

GET(xxx.a > 10)
ORDER-BY (T.b)

Properties:
ORDER-BY (T.b)

QUICKSORT(T.b)

I

GET(xxx.a>10)

...

Properties:
ORDER-BY (T.b)

FILTER(xxx.a>10)

] INDEX_SCAN(xxx.b)

Properties:
None

FILTER(XxxX.a>10)

INDEX_SCAN(XxXxX.a)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

EXPRESSION REWRITING

An optimizer transforms a query’s expressions (e.g.,
WHERE/ON clause predicates) into the minimal set of
expressions.

Implemented using if/then/else clauses or a pattern-

matching rule engine.

— Search for expressions that match a pattern.

— When a match is found, rewrite the expression.
— Halt if there are no more rules that match.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE 1 = 0;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE |1 = 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT *» FROM A WHERE false;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE NOW() IS NULL;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT *» FROM A WHERE false;

SELECT * FROM A WHERE [NOW() IS NULL;]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT *» FROM A WHERE false;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT *» FROM A WHERE false;

SELECT *» FROM A WHERE false;

Merging Predicates

SELECT * FROM A
WHERE val BETWEEN 1 AND 100
OR val BETWEEN 50 AND 150;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT *» FROM A WHERE false;

SELECT *» FROM A WHERE false;

Merging Predicates

SELECT * FROM A
WHERE val BETWEEN 1 AND 150;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCLUSION

Query optimization is critical for a database system.
— SQL - Logical Plan - Physical Plan

Transformations change logical operators into either
(1) new logical operators or (2) physical operators.

Two search strategies:
— Bottom-Up: Start with nothing and then iteratively assemble

query plan.
— Top-Down: Start with the outcome and then transform it to

equivalent alternatives to achieve that outcome.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NEXT CLASS

Query Optimizers Part 2: Cost Models
— aka "Everybody has a plan until they get punched in the mouth"

Search for "$DBMS bad query plan”

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Query Planning – Pt.1
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: DBMS OVERVIEW
	Slide 6: MOTIVATION
	Slide 7: MOTIVATION
	Slide 8: MOTIVATION
	Slide 9: MOTIVATION
	Slide 10: MOTIVATION
	Slide 11: MOTIVATION
	Slide 12: MOTIVATION
	Slide 13: MOTIVATION
	Slide 14: MOTIVATION
	Slide 15: MOTIVATION
	Slide 16: MOTIVATION
	Slide 17: TODAY'S AGENDA

	Background
	Slide 18: QUERY OPTIMIZER
	Slide 19: LOGICAL VS. PHYSICAL PLANS
	Slide 20: OPTIMIZATION GRANULARITY
	Slide 21: OBSERVATION

	Transformations
	Slide 22: TRANSFORMATIONS
	Slide 23: RELATIONAL ALGEBRA EQUIVALENCES
	Slide 24: RELATIONAL ALGEBRA EQUIVALENCES
	Slide 25: RELATIONAL ALGEBRA EQUIVALENCES
	Slide 26: Transformations
	Slide 27: SPLIT CONJUNCTIVE PREDICATES
	Slide 28: SPLIT CONJUNCTIVE PREDICATES
	Slide 29: SPLIT CONJUNCTIVE PREDICATES
	Slide 30: PREDICATE PUSHDOWN
	Slide 31: PREDICATE PUSHDOWN
	Slide 32: REPLACE CARTESIAN PRODUCTS
	Slide 33: REPLACE CARTESIAN PRODUCTS
	Slide 34: PROJECTION PUSHDOWN
	Slide 35: PROJECTION PUSHDOWN

	Search Algorithms
	Slide 36: SEARCH ALGORITHMS
	Slide 37: SEARCH ALGORITHMS
	Slide 38: HEURISTIC-BASED OPTIMIZATION
	Slide 39: HEURISTIC-BASED OPTIMIZATION
	Slide 40: HEURISTIC-BASED OPTIMIZATION
	Slide 41: SEARCH ALGORITHMS
	Slide 42: COST-BASED QUERY OPTIMIZATION
	Slide 43: SEARCH TERMINATION
	Slide 44: ACCESS PATH TRANSFORMATION
	Slide 45: SINGLE-RELATION QUERY PLANNING
	Slide 46: SINGLE-RELATION QUERY PLANNING
	Slide 47: MULTI-RELATION QUERY PLANNING
	Slide 48: FORWARD VS. BACKWARD CHAINING
	Slide 49: FORWARD VS. BACKWARD CHAINING
	Slide 50: FORWARD VS. BACKWARD CHAINING
	Slide 51: FORWARD VS. BACKWARD CHAINING
	Slide 52: FORWARD VS. BACKWARD CHAINING
	Slide 53: OBSERVATION
	Slide 54: STAR / SNOWFLAKE QUERIES

	Bottom-Up Search
	Slide 55: BOTTOM-UP OPTIMIZATION
	Slide 56: SYSTEM R OPTIMIZER
	Slide 57: SYSTEM R OPTIMIZER
	Slide 58: SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES
	Slide 59: SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES
	Slide 60: SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES
	Slide 61: SYSTEM R OPTIMIZER
	Slide 62: SYSTEM R OPTIMIZER
	Slide 63: SYSTEM R OPTIMIZER
	Slide 64: SYSTEM R OPTIMIZER
	Slide 65: SYSTEM R OPTIMIZER
	Slide 66: SYSTEM R OPTIMIZER

	Top-Down Search
	Slide 67: TOP-DOWN OPTIMIZATION
	Slide 68: TOP-DOWN OPTIMIZATION
	Slide 69: TOP-DOWN OPTIMIZATION
	Slide 70: TOP-DOWN OPTIMIZATION
	Slide 71: TOP-DOWN OPTIMIZATION
	Slide 72: TOP-DOWN OPTIMIZATION
	Slide 73: TOP-DOWN OPTIMIZATION
	Slide 74: TOP-DOWN OPTIMIZATION
	Slide 75: TOP-DOWN OPTIMIZATION
	Slide 76: TOP-DOWN OPTIMIZATION
	Slide 77: TOP-DOWN OPTIMIZATION
	Slide 78: TOP-DOWN OPTIMIZATION
	Slide 79: TOP-DOWN OPTIMIZATION
	Slide 80: TOP-DOWN OPTIMIZATION
	Slide 81: TOP-DOWN OPTIMIZATION
	Slide 82: TOP-DOWN OPTIMIZATION
	Slide 83: TOP-DOWN OPTIMIZATION
	Slide 84: TOP-DOWN OPTIMIZATION: ENFORCERS
	Slide 85: TOP-DOWN OPTIMIZATION: ENFORCERS

	Expression Rewriting
	Slide 86: EXPRESSION REWRITING
	Slide 87: EXPRESSION REWRITING
	Slide 88: EXPRESSION REWRITING
	Slide 89: EXPRESSION REWRITING
	Slide 90: EXPRESSION REWRITING
	Slide 91: EXPRESSION REWRITING
	Slide 92: EXPRESSION REWRITING
	Slide 93: EXPRESSION REWRITING
	Slide 94: EXPRESSION REWRITING

	Conclusion
	Slide 95: CONCLUSION
	Slide 96: NEXT CLASS

