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ADMINISTRIVIA

Mid-term Exam grades posted
→ Come to Andy's OH to view your grade and solution.

Homework #4 is due Sunday Nov 2nd @ 11:59pm

Project #3 is due Sunday Nov 16th @ 11:59pm
→ Recitation Tuesday Oct 28th @ 8:00pm (see @195)
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UPCOMING DATABASE TALKS

SingleStore (DB Seminar)
→ Monday Oct 27th @ 4:30pm
→ Zoom

Delta Lake (DB Seminar)
→ Monday Nov 3rd @ 4:30pm
→ Zoom

Apache Pinot @ Uber (DB Group)
→ Tuesday Nov 4th @ 12:00pm
→ GHC 8115
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LAST CLASS

We talked about how to design the DBMS's 
architecture to execute queries in parallel.

The query plan is comprised of physical operators that 
specify the algorithm to invoke at each step of the plan.

But how do we go from SQL to a query plan?
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DBMS OVERVIEW
5
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MOTIVATION

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered unclustered

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

×

σEmp.did = Dept.did
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1,000,000 reads + 2,000 writes
(FK join, 10k tuples in temp T2)

2,000 reads + 4 writes
(10K/500 = 20 emps per dept)

MOTIVATION

4 reads + 1 write

Total: 2M I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered unclustered

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

×

σEmp.did = Dept.did

(50 + 50,000) reads
+  1,000,000 writes 

Write temp file T1

5 tuples per page in T1
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MOTIVATION

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

clustered unclustered unclustered
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2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

Total: 54k I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

(50 + 50,000) reads
+  2,000 writes 

Page Nested-Loop Join
Write Temp T1

clustered unclustered unclustered
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2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

Total: 7,159 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did
3×(|Emp| + |Dept|) =

3,150 reads + 2,000 writes 
Sort-Merge Join (50 Buffers)

Write Temp T1

clustered unclustered unclustered
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2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

Total: 7,159 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did
3×(|Emp| + |Dept|) =

3,150 reads + 2,000 writes 
Sort-Merge Join (50 Buffers)

Write Temp T1

Materialization Model

clustered unclustered unclustered
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2,000 reads + 4 writes
Read temp T1, Write temp T2

4 reads + 4 writes
Read temp T2

MOTIVATION

Total: 7,159 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did
3×(|Emp| + |Dept|) =

3,150 reads + 2,000 writes 
Sort-Merge Join (50 Buffers)

Write Temp T1

Materialization Model

Total: 3,151 I/OsVectorization Model

clustered unclustered unclustered
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MOTIVATION

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Emp Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

clustered unclustered unclustered
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MOTIVATION

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Dept

πename

σdname = 'Toy'

⋈Emp.did = Dept.did

Emp

clustered unclustered unclustered
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1 + 3 (idx) + 20 (ptr chase) reads
+ 4 writes

Index Nested-Loop Join

4 reads + 1 writes
Read temp T2

MOTIVATION

Total: 37 I/Os

Catalog

Emp(ssn,ename,addr,sal,did)

10,000 records
1,000 pages

Dept(did,dname,floor,mgr)

500 records
50 pages

clustered unclustered

SELECT DISTINCT ename 
  FROM Emp E JOIN Dept D
    ON E.did = D.did
 WHERE D.dname = 'Toy'

Dept

πename

σdname = 'Toy'
3 reads + 1 writes 

Access: Index(dname)

⋈Emp.did = Dept.did

Emp

clustered unclustered unclustered
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TODAY'S AGENDA
Background

Transformations

Heuristic / Ruled-based Optimization

Cost-based Optimization

10
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QUERY OPTIMIZER

Given a query's logical plan as input, generate a 
semantically equivalent physical execution plan.
→ May have to consider a large search space of promising plans
→ Accurately determine whether one potential plan is better than 

another.
→ Efficiently search the solution space to find a physical plan with 

the lowest cost.

Ideally an optimizer should generate the best plan 
regardless of how the query is expressed.

11
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LOGICAL VS. PHYSICAL PLANS

The optimizer applies transformations that map a 
logical algebra expression to the optimal equivalent 
physical algebra expression.

Physical operators define a specific execution strategy 
using an access path.
→ They can depend on the physical format of the data that they 

process (i.e., sorting, compression).
→ Not always a 1:1 mapping from logical to physical.

12
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OPTIMIZATION GRANULARITY

Choice #1: Single Query
→ Much smaller search space.
→ DBMS (usually) does not reuse results across queries.
→ To account for resource contention, the cost model must 

consider what is currently running.

Choice #2: Multiple Queries
→ More efficient if there are many similar queries.
→ Search space is much larger.
→ Useful for data / intermediate result sharing.

13
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OBSERVATION

We now have a high-level understanding of a query 
optimizer's role in a DBMS.

The quality of the plans that an optimizer generates is 
mostly based on three factors:
→ Transformations / Enumeration
→ Search Algorithm
→ Cost Model

14
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TRANSFORMATIONS

Enumerate the different choices / forms of a query plan 
that are semantically equivalent and logically correct.
→ Need to ensure new query plans produces the same result as the 

original no matter the inputs.

The goal of each transformation is to:
→ Lower query execution cost.
→ Unlock additional transformations.

Exploit relational algebra equivalencies via query 
and database contents (logical + physical).

15
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RELATIONAL ALGEBRA EQUIVALENCES

Two relational algebra expressions are equivalent if 
they generate the same set of tuples.

These equivalences allow the DBMS to manipulate and 
transform a query plan into different forms without 
effecting the correctness of its output.
→ This is how a heuristic-based optimizer identifies better query 

plans without a cost model.

16
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RELATIONAL ALGEBRA EQUIVALENCES

Selections:
→ Perform filters as early as possible.
→ Breakup a complex predicate into conjunctive clauses and push 

down to lowest part of plan as possible.

σp1∧p2∧…pn(R) = σp1(σp2(…σpn(R)))

Simplify complex predicates: 
→X=3 AND Y=X → X=3 AND Y=3
→X=1+1 → X=2
→X=YEAR('10/27/2025') → X=2025

17
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RELATIONAL ALGEBRA EQUIVALENCES

Joins:
→ Commutative:

R⋈S = S⋈R
→ Associative:

( R⋈S )⋈T = R⋈ ( S⋈T )

Number of join orderings for an n-way binary join is (n-
1)! × C(n-1), where C(n-1) is the (n-1)th Catalan number.
→ n! different orders of leaf nodes (original relations) 
→ C(n-1) possible shapes of a full binary tree with n leaves

18
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Transformations

Split Conjunctive Predicates

Predicate Pushdown

Replace Cartesian Products with Joins

Projection Pushdown

19

Source: Thomas Neumann
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SPLIT CONJUNCTIVE PREDICATES

Decompose predicates 
into their simplest forms 
to make it easier for the 
optimizer to move them 
around.

20

×
ARTIST

ARTIST.ID=APPEARS.ARTIST_ID AND
APPEARS.ALBUM_ID=ALBUM.ID AND
ALBUM.NAME="Mooshoo Tribute"



APPEARS ALBUM

×

ARTIST.NAMESELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Mooshoo Tribute"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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SPLIT CONJUNCTIVE PREDICATES

Decompose predicates 
into their simplest forms 
to make it easier for the 
optimizer to move them 
around.

20

×
ARTIST APPEARS ALBUM

×

ARTIST.NAME
ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.NAME="Mooshoo Tribute"
APPEARS.ALBUM_ID=ALBUM.ID

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Mooshoo Tribute"
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PREDICATE PUSHDOWN

Move the predicate to 
the lowest point in the 
plan after Cartesian 
products.

21

ARTIST APPEARS ALBUM

×

ARTIST.NAME

×

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.NAME="Mooshoo Tribute"
APPEARS.ALBUM_ID=ALBUM.ID

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Mooshoo Tribute"
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PREDICATE PUSHDOWN

Move the predicate to 
the lowest point in the 
plan after Cartesian 
products.

21
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×

ARTIST.NAME

ARTIST.ID=APPEARS.ARTIST_ID
ALBUM.NAME="Mooshoo Tribute"

APPEARS.ALBUM_ID=ALBUM.ID
×

SELECT ARTIST.NAME
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REPLACE CARTESIAN PRODUCTS

Replace all Cartesian 
Products with inner 
joins using the join 
predicates.

22

ARTIST APPEARS ALBUM

ARTIST.NAME

ALBUM.NAME="Mooshoo Tribute"

×
ARTIST.ID=APPEARS.ARTIST_ID

APPEARS.ALBUM_ID=ALBUM.ID
×

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Mooshoo Tribute"
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REPLACE CARTESIAN PRODUCTS

Replace all Cartesian 
Products with inner 
joins using the join 
predicates.

22

ARTIST APPEARS ALBUM

ARTIST.NAME

ALBUM.NAME="Mooshoo Tribute"
ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Mooshoo Tribute"
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PROJECTION PUSHDOWN

Eliminate redundant 
attributes before pipeline 
breakers to reduce 
materialization cost.

23

ARTIST APPEARS ALBUM

ARTIST.NAME

ARTIST.ID=APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

ALBUM.NAME="Mooshoo Tribute"

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Mooshoo Tribute"
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attributes before pipeline 
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ARTIST APPEARS ALBUM

ARTIST.NAME

ALBUM.NAME="Mooshoo Tribute"

IDARTIST.NAME,
APPEARS.ALBUM_ID

ID,NAME ARTIST_ID,
ALBUM_ID

ARTIST.ID=
APPEARS.ARTIST_ID⨝

APPEARS.ALBUM_ID=ALBUM.ID⨝

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME="Mooshoo Tribute"
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SEARCH ALGORITHMS

Given a set of transformation rules, the optimizer 
searches for a good physical plan for a given query.

At search time, the optimizer will have a query's logical 
plan but it may not have all information available.
→ Prepared statements with input variables
→ Missing statistical information.

24
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SEARCH ALGORITHMS

Heuristics / Rules
→ Rewrite the query to remove (guessed) inefficiencies.
→ These techniques may need to examine catalog, but they do not 

need to examine data.
→ Examples: always do selections first or push down predicates as 

early as possible.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick the 

one with the lowest cost.

25
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HEURISTIC-BASED OPTIMIZATION

Define static rules that transform logical operators to a 
physical plan without a cost model.
→ Perform most restrictive selection early
→ Perform all selections before joins
→ Predicate/Limit/Projection pushdowns
→ Join ordering based on simple rules or cardinality estimates

Examples: INGRES (until mid-1980s) and Oracle 
(until early-1990s), MongoDB, most new DBMSs.

26
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HEURISTIC-BASED OPTIMIZATION

Advantages:
→ Easy to implement and debug.
→ Works reasonably well and is fast for simple queries.

Disadvantages:
→ Relies on magic constants that predict the efficacy of a planning 

decision.
→ Nearly impossible to generate good plans when operators have 

complex inter-dependencies.

27
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SEARCH ALGORITHMS

Heuristics / Rules
→ Rewrite the query to remove (guessed) inefficiencies.
→ These techniques may need to examine catalog, but they do not 

need to examine data.
→ Examples: always do selections first or push down predicates as 

early as possible.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick the 

one with the lowest cost.

28
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COST-BASED QUERY OPTIMIZATION

Apply transformation rules to enumerate different 
variations of a query's plan estimate their costs to guide 
the search process.
→ Single relation.
→ Multiple relations.
→ Nested sub-queries.

The optimizer chooses the best plan it has seen for the 
query until it reaches a search termination condition.

29
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SEARCH TERMINATION

Approach #1: Wall-clock Time
→ Stop after the optimizer runs for some length of time.

Approach #2: Cost Threshold
→ Stop when the optimizer finds a plan that has a lower cost than 

some threshold.

Approach #3: Exhaustion
→ Stop when there are no more enumerations of the target plan. 

Usually done per sub-plan/group.

Approach #4: Transformation Count
→ Stop after a certain number of rules/transformations have been 

considered.

30
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ACCESS PATH TRANSFORMATION

The optimizer chooses the access method(s) for those 
relations that minimizes the cost of retrieving a query's 
requested data from base relations.
→ Can also optimize predicate evaluation ordering.

Cost of access method depends on several factors:
→ Selectivity of predicate
→ Data structures (e.g., B+Tree vs. Hash Table)
→ Sort order of the table / index
→ Data accoutrements (e.g., INCLUDE, zone maps)
→ Compression / encoding

31
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SINGLE-RELATION QUERY PLANNING

Generate multiple alternatives for retrieving data from 
a base relation for a given expression.

Available alternatives depend on query, database logical 
schema, and DBMS implementation.
→ Example: A rule determines whether an index qualifies based 

on a query's predicates (e.g., partial indexes). 

Sequential Scan is always the fallback option.
→ Often worst choice in row stores but it is sometimes the only 

choice in column stores.

32
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SINGLE-RELATION QUERY PLANNING

Access path selection for a single 
relation query is (relatively)
easy because they are sargable.

Pick the best access method 
(sequential scan vs. index) using a 
simple cost model.

33

Search
Argument
Able

CREATE TABLE xxx (
  id INT PRIMARY KEY,
  val INT
);
CREATE INDEX ON xxx (val);

xxx

val=123

id





SELECT id 
  FROM xxx
 WHERE val >= 123
   AND val <= 456;
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MULTI-RELATION QUERY PLANNING

Approach #1: Bottom-Up / Forward Chaining
→ Start with nothing and then iteratively assemble and add 

building blocks to generate a query plan. 
→ Examples: System R, Starburst

Approach #2: Top-Down / Backward Chaining
→ Start with the outcome that the query wants and then 

transform it to equivalent alternative sub-plans to find the 
optimal plan that gets to that goal.

→ Examples: Volcano, Cascades

34
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FORWARD VS. BACKWARD CHAINING
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Physical Op
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ARTIST APPEARS

FORWARD VS. BACKWARD CHAINING

Bottom-Up / Forward Chaining:
→ Start from query plan roots, trigger all 

rules that match those operators, and adds 
their conclusion to the known facts. 
Repeats until full query is generated.

→ Breadth-first Search.
                      

                              
                                       

                                        
                                        

                    

35

ARTIST⨝APPEARS

Logical Op

Physical Op
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ARTIST APPEARS

Choice #1 Choice #2 Choice #3
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ARTIST⨝APPEARS

Choice #1 Choice #2 Choice #3

FORWARD VS. BACKWARD CHAINING

Bottom-Up / Forward Chaining:
→ Start from query plan roots, trigger all 

rules that match those operators, and adds 
their conclusion to the known facts. 
Repeats until full query is generated.

→ Breadth-first Search.
                      

Top-Down / Backward Chaining:
→ Start from the query result and works 

backward to determine what operators to 
add to the query plan to achieve result.

→ Depth-first Search.         
                                       

                                        
                                        

                    

35

ARTIST⨝APPEARS

Choice #1 Choice #2 Choice #2Choice #1

Choice #1

Logical Op

Physical Op
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→ Start from query plan roots, trigger all 

rules that match those operators, and adds 
their conclusion to the known facts. 
Repeats until full query is generated.

→ Breadth-first Search.
                      

Top-Down / Backward Chaining:
→ Start from the query result and works 

backward to determine what operators to 
add to the query plan to achieve result.

→ Depth-first Search.                                      
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Choice #1 Choice #2 Choice #2Choice #1
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OBSERVATION

The optimizer can detect whether a query is targeting a 
database with a common design pattern and invoke 
transformations that push a query plan into an ideal 
form.

We saw this before with sargable queries where the 
optimizer can immediately select the best index.

36
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STAR / SNOWFLAKE QUERIES

If a query joins a fact table with 
multiple dimension tables, then 
transform it to a left/right-deep join 
tree and order dimension tables from 
most to least selective.

Avoid wasting time exploring
bushy plans or alternative join 
orderings for dimension tables.

37

SELECT * FROM fact AS F
  JOIN dim1 ON F.d1 = dim1.id
  JOIN dim2 ON F.d2 = dim2.id
  JOIN dim3 ON F.d3 = dim3.id;

EQOP Book

Source: EQOP Book

dim3

Join

fact

Join

dim1

Join

dim2

dim1

Join

fact

Join

dim2

Join

dim3
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BOTTOM-UP OPTIMIZATION

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL, Germans, 
DuckDB, Postgres, most open-source DBMSs.
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SYSTEM R OPTIMIZER

Break query into blocks and generate 
logical operators for each block.

For each logical operator, generate a 
set of physical operators that 
implement it.
→ All combinations of join algorithms and 

access paths

If a block accesses multiple relations, 
iteratively construct a join tree that 
minimizes the estimated amount of 
work to execute the plan.

Left-Deep Tree

BA

C

D

outer inner

Bushy Tree

BA DC

39
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SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

Step #1: Choose the best access paths 
to each table 

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

40
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SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES
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⋮           ⋮          ⋮
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SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

Step #1: Choose the best access paths 
to each table 

Step #3: Determine the join ordering 
with the lowest cost

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST  ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM   ⨝ ARTIST
ALBUM   ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST  ⨝ ALBUM
ARTIST  ×  ALBUM   ⨝ APPEARS
ALBUM   × ARTIST  ⨝ APPEARS
⋮           ⋮          ⋮

Step #2: Enumerate all possible join 
orderings for tables
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SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) MERGE_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A2,A3) HASH_JOIN(A3,A2) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

41
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SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) MERGE_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) MERGE_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •MERGE_JOIN(A3⨝A2,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ALBUM_ID=ALBUM.ID
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Logical Op

Physical Op
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SYSTEM R OPTIMIZER
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ALBUM⨝APPEARS
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ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID
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SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op
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SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID 

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

Hack: Keep track of best plans with and 
without data in proper physical form, 
and then check whether tacking on a sort 
operator at the end is better.

The query has ORDER BY on 
ARTIST.ID but the logical plans 
do not contain sorting properties.`

41
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TOP-DOWN OPTIMIZATION

Start with a logical plan of what we want the query to 
be. Perform a branch-and-bound search to traverse the 
plan tree by converting logical operators into physical 
operators.
→ Keep track of global best plan during search.
→ Treat physical properties of data as first-class entities during 

planning.

Examples: MSSQL, Greenplum, CockroachDB

42
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TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op

43
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Invoke rules to create new nodes 
and traverse tree.
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ARTIST ALBUM APPEARS
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ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what 
we want the query to be.
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Physical Op
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TOP-DOWN OPTIMIZATION
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ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
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JOIN(A,B) to JOIN(B,A)
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TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes 
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what 
we want the query to be.

Logical Op

Physical Op
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TOP-DOWN OPTIMIZATION: ENFORCERS

Enforcers are physical operators that 
ensure the properties of the output of 
a sub-plan / expression.

Volcano's rule engine has additional 
logical to avoid considering operators 
below it in the plan that satisfy its 
property requirements.
→ Example: INDEX_SCAN(xxx.b)

44

GET(xxx.a > 10)
ORDER-BY (T.b)

Logical Op

Physical Op

Enforcer

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

INDEX_SCAN(xxx.a)

FILTER(xxx.a>10)

Properties:
None

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

ORDER-BY (xxx.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book

Source: EQOP Book
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Enforcers are physical operators that 
ensure the properties of the output of 
a sub-plan / expression.

Volcano's rule engine has additional 
logical to avoid considering operators 
below it in the plan that satisfy its 
property requirements.
→ Example: INDEX_SCAN(xxx.b)
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GET(xxx.a > 10)
ORDER-BY (T.b)

Logical Op

Physical Op

Enforcer

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

QUICKSORT(T.b)

INDEX_SCAN(xxx.a)

FILTER(xxx.a>10)

Properties:
None

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book

Source: EQOP Book
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EXPRESSION REWRITING

An optimizer transforms a query’s expressions (e.g., 
WHERE/ON clause predicates) into the minimal set of 
expressions.

Implemented using if/then/else clauses or a pattern-
matching rule engine.
→ Search for expressions that match a pattern.
→ When a match is found, rewrite the expression.
→ Halt if there are no more rules that match.
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates

                   

SELECT * FROM A WHERE 1 = 0;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates

                   

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates

                   

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE NOW() IS NULL;

SELECT * FROM A WHERE false;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates

                   

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A
 WHERE val BETWEEN 1 AND 100
    OR val BETWEEN 50 AND 150;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;
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CONCLUSION

Query optimization is critical for a database system. 
→ SQL → Logical Plan → Physical Plan

Transformations change logical operators into either 
(1) new logical operators or (2) physical operators.

Two search strategies:
→ Bottom-Up: Start with nothing and then iteratively assemble 

query plan. 
→ Top-Down: Start with the outcome and then transform it to 

equivalent alternatives to achieve that outcome.
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NEXT CLASS

Query Optimizers Part 2: Cost Models
→ aka "Everybody has a plan until they get punched in the mouth"

Search for "$DBMS bad query plan"
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