
DatabaseSystems

15-445/645 FALL 2025

15- 445/645 FALL 2025
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Query Planning – Pt.2
LECTURE #16

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ADMINISTRIVIA

Mid-term Exam grades posted
→ Come to Andy's OH to view your grade and solution.

Homework #4 is due Sunday Nov 2nd @ 11:59pm

Project #3 is due Sunday Nov 16th @ 11:59pm
→ Recitation Tuesday Oct 28th @ 8:00pm (see @195)

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/195

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LAST CLASS

A DBMS's query optimizer takes logical query plan as
input and generates a physical execution plan that has
the lowest "cost".

The quality of the plans that an optimizer generates is
mostly based on three factors:
→ Transformations / Enumeration
→ Search Algorithm
→ Cost Model

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TODAY'S AGENDA
Search Algorithms

Data Statistics

Cost Models

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SEARCH ALGORITHM

Approach #1: Bottom-Up / Forward Chaining
→ Start with nothing and then iteratively assemble and add

building blocks to generate a query plan.
→ Examples: System R, Starburst

Approach #2: Top-Down / Backward Chaining
→ Start with the outcome that the query wants and then

transform it to equivalent alternative sub-plans to find the
optimal plan that gets to that goal.

→ Examples: Volcano, Cascades

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BOTTOM-UP OPTIMIZATION

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL, Germans,
DuckDB, Postgres, most open-source DBMSs.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

Step #1: Choose the best access paths
to each table

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

Step #1: Choose the best access paths
to each table

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM ⨝ ARTIST
ALBUM ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST ⨝ ALBUM
ARTIST × ALBUM ⨝ APPEARS
ALBUM × ARTIST ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join
orderings for tables

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

Step #1: Choose the best access paths
to each table

Step #3: Determine the join ordering
with the lowest cost

ARTIST: Sequential Scan

APPEARS: Sequential Scan

ALBUM: Index Look-up on NAME

ARTIST ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM ⨝ ARTIST
ALBUM ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST ⨝ ALBUM
ARTIST × ALBUM ⨝ APPEARS
ALBUM × ARTIST ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join
orderings for tables

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ARTIST ⨝ APPEARS ⨝ ALBUM

Logical Op

Physical Op

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) MERGE_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A2,A3) HASH_JOIN(A3,A2) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

Logical Op

Physical Op

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) MERGE_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) MERGE_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •MERGE_JOIN(A3⨝A2,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID APPEARS.ARTIST_ID=ARTIST.IDAPPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEM R OPTIMIZER

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

Logical Op

Physical Op

Hack: Keep track of best plans with and
without data in proper physical form,
and then check whether tacking on a sort
operator at the end is better.

The query has ORDER BY on
ARTIST.ID but the logical plans
do not contain sorting properties.`

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION

Start with a logical plan of what we want the query to
be. Perform a branch-and-bound search to traverse the
plan tree by converting logical operators into physical
operators.
→ Keep track of global best plan during search.
→ Treat physical properties of data as first-class entities during

planning.

Examples: MSSQL, Greenplum, CockroachDB

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION

Start with a logical plan of what we want the query to
be. Perform a branch-and-bound search to traverse the
plan tree by converting logical operators into physical
operators.
→ Keep track of global best plan during search.
→ Treat physical properties of data as first-class entities during

planning.

Examples: MSSQL, Greenplum, CockroachDB

9

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

SORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

SORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

SORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)

Invoke rules to create new nodes
and traverse tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create "enforcer" rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

SORT(A1.ID)

MERGE_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

MERGE_JOIN(A1,A2)

Start with a logical plan of what
we want the query to be.

Logical Op

Physical Op

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION: ENFORCERS

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satisfy its
property requirements.
→ Example: INDEX_SCAN(xxx.b)

11Logical Op

Physical Op

Enforcer

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book

Source: EQOP Book

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION: ENFORCERS

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satisfy its
property requirements.
→ Example: INDEX_SCAN(xxx.b)

11

GET(xxx.a > 10)
ORDER-BY (T.b)

Logical Op

Physical Op

Enforcer

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

ORDER-BY (xxx.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book

Source: EQOP Book

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION: ENFORCERS

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satisfy its
property requirements.
→ Example: INDEX_SCAN(xxx.b)

11

GET(xxx.a > 10)
ORDER-BY (T.b)

Logical Op

Physical Op

Enforcer

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

INDEX_SCAN(xxx.a)

FILTER(xxx.a>10)

Properties:
None

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

ORDER-BY (xxx.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book

Source: EQOP Book

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOP-DOWN OPTIMIZATION: ENFORCERS

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satisfy its
property requirements.
→ Example: INDEX_SCAN(xxx.b)

11

GET(xxx.a > 10)
ORDER-BY (T.b)

Logical Op

Physical Op

Enforcer

INDEX_SCAN(xxx.b)

FILTER(xxx.a>10)

Properties:
ORDER-BY (T.b)

QUICKSORT(T.b)

INDEX_SCAN(xxx.a)

FILTER(xxx.a>10)

Properties:
None

GET(xxx.a>10)

Properties:
ORDER-BY (T.b)

SELECT * FROM xxx
 WHERE xxx.a > 10 ORDER BY xxx.b;

EQOP Book

Source: EQOP Book

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

We have formulas for the operator
algorithms (e.g., the cost formulas for
hash join, sort-merge join), but we
also need to estimate the size of the
output that an operator produces.

This is hard because the output of
each operators depends on its input.

Dept

Emp

πename

⋈Emp.did = Dept.did

σename,did

???

???

???

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COST ESTIMATION

The DBMS uses a cost model to predict the behavior of
a query plan given a database state.
→ This is an internal cost that allows the DBMS to compare one

plan with another.

It is too expensive to run every possible plan to
determine this information, so the DBMS need a way to
derive this information.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COST MODEL COMPONENTS

Choice #1: Physical Costs
→ Predict CPU cycles, I/O, cache misses, RAM consumption,

network messages…
→ Depends heavily on hardware.

Choice #2: Logical Costs
→ Estimate output size per operator.
→ Independent of the operator algorithm.
→ Need estimations for operator result sizes.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading a

tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident
database without a lot of memory:
→ Processing a tuple in memory is 400x faster than reading a

tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.postgresql.org/docs/current/static/runtime-config-query.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

STATISTICAL SUMMARIES

Auxiliary data structures that the DBMS populates from
scanning the database to allow the optimizer to
approximate data contents for different scenarios.

Trade-offs to consider:
→ Accuracy
→ Efficiency
→ Memory Consumption
→ Coverage / Applicability
→ Creation + Maintenance Costs

16

Source: EQOP Book

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

STATISTICS STORAGE

Most DBMSs store a database's statistics in its internal
catalog.

The DBMS will periodically update statistics according
to one or more triggering mechanisms:
→ Periodic Background Tasks (e.g., Postgres Autovacuum)
→ Maintenance Schedules (e.g., Oracle)
→ Modification Thresholds
→ Manual Invocation (e.g., ANALYZE, UPDATE STATISTICS)

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://docs.oracle.com/en/database/oracle/oracle-database/23/admin/managing-automated-database-maintenance-tasks.html
https://www.postgresql.org/docs/current/sql-analyze.html
https://learn.microsoft.com/en-us/sql/t-sql/statements/update-statistics-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/statements/update-statistics-transact-sql?view=sql-server-ver16

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COLUMN STATISTICS

Most DBMSs create single-column statistics for each
column in a table.

The DBMS can also track statistics for groups of
attributes together rather than just treating them all as
independent variables.
→ Some systems automatically build multi-column statistics if

they are already used in an index together (MSSQL).
→ Otherwise, a human manually specifies target columns.
→ Also called Column Group Statistics (Db2) or Extended

Statistics (Oracle).

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://learn.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver16#query-predicate-contains-multiple-correlated-columns
https://www.ibm.com/docs/en/db2/11.5?topic=plans-column-group-statistics
https://blogs.oracle.com/optimizer/post/extended-statistics
https://blogs.oracle.com/optimizer/post/extended-statistics

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SUMMARIZATION APPROACHES

Choice #1: Histograms
→ Maintain an occurrence count per value (or range of

values) in a column.

Choice #2: Sketches
→ Probabilistic data structure that gives an approximate

count for a given value.

Choice #3: Sampling
→ DBMS maintains a small subset of each table that it then

uses to evaluate expressions to compute selectivity.

Choice #4: ML Model
→ Train an ML model that learns the selectivity of predicates

and correlations between multiple tables.

Most Common

Rare

Increasing Usage

Experimental / Very Rare

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

HISTOGRAMS

Approximate the distribution of values in a column for
cardinality estimation.
→ Maintain an occurrence count per value (or range of values) in

a column.

20

of occurrences

15 keys × 32-bits =

60 bytes
Distinct values of attribute

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EQUI-WIDTH HISTOGRAM

Maintain counts for a group of values instead of each
unique key. All buckets have the same width (i.e., same
of value).

21

Bucket #1
Count=8

Bucket #2
Count=4

Bucket #3
Count=15

Bucket #4
Count=3

Bucket #5
Count=14

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

Bucket Ranges

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EQUI-WIDTH HISTOGRAM

Maintain counts for a group of values instead of each
unique key. All buckets have the same width (i.e., same
of value).

21

Bucket #1
Count=8

Bucket #2
Count=4

Bucket #3
Count=15

Bucket #4
Count=3

Bucket #5
Count=14

9

4
3

14

0

5

10

15

[1,3] [4,6[[7,9] [10,12] [13,15]

Equi-Width Histogram

Bucket Ranges

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number of
occurrences for each bucket is roughly the same.
→ Equi-depth histograms are shown to have better worst-case and

average error than equi-width histograms.

22

Bucket #1
Count=12

Bucket #2
Count=12

Bucket #3
Count=9

Bucket #4
Count=12

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number of
occurrences for each bucket is roughly the same.
→ Equi-depth histograms are shown to have better worst-case and

average error than equi-width histograms.

22

12 12

9

12

0

5

10

15

[1,5] [6,8] [9,13] [14,15]

Histogram (Quantiles)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

END-BIASED HISTOGRAMS

Use N-1 buckets to store the exact count for the most
frequent keys. The last bucket (R) stores the average
frequency of all remaining values.

23

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

END-BIASED HISTOGRAMS

Use N-1 buckets to store the exact count for the most
frequent keys. The last bucket (R) stores the average
frequency of all remaining values.

23

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

Count=8 Count=4 Count=8Count=4Count=4

Most Frequent Keys

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

END-BIASED HISTOGRAMS

Use N-1 buckets to store the exact count for the most
frequent keys. The last bucket (R) stores the average
frequency of all remaining values.

23

8 8

4 4 4

1.7

0

5

10

8 15 3 9 14 R

End-Biased Histogram (N=6)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SKETCHES

Maintaining exact statistics about the database is
expensive and slow.

Use probabilistic data structures called sketches to
generate error-bounded estimates.
→ Frequent Items (Count-min Sketch)
→ Count Distinct (HyperLogLog)
→ Quantiles (t-digest)

Open-source implementations are available (Apache
DataSketches, Google ZetaSketch)

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://en.wikipedia.org/wiki/HyperLogLog
https://github.com/tdunning/t-digest
https://github.com/tdunning/t-digest
https://github.com/tdunning/t-digest
https://datasketches.apache.org/
https://datasketches.apache.org/
https://github.com/google/zetasketch
https://github.com/google/zetasketch

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

25

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

hash1

hash2

hash3

hash4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

25

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

hash1('ODB') = 9022 % 8 = 6

hash2('ODB') = 1412 % 8 = 4

hash3('ODB') = 4211 % 8 = 3

hash4('ODB') = 5000 % 8 = 0

INSERT 'ODB'

hash1

hash2

hash3

hash4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

25

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

hash1('ODB') = 9022 % 8 = 6

hash2('ODB') = 1412 % 8 = 4

hash3('ODB') = 4211 % 8 = 3

hash4('ODB') = 5000 % 8 = 0

+1

INSERT 'ODB'

hash1

hash2

hash3

hash4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

25

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

hash1('ODB') = 9022 % 8 = 6

hash2('ODB') = 1412 % 8 = 4

hash3('ODB') = 4211 % 8 = 3

hash4('ODB') = 5000 % 8 = 0

+1

+1

+1

+1

INSERT 'ODB'

hash1

hash2

hash3

hash4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

25

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

+1

+1

+1

+1

hash1

hash2

hash3

hash4 +5+4

+8+3

+3

+10 +2 +2

+1

+2 +1

+6 +1

+2

+6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

25

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

hash1('ODB') = 9022 % 8 = 6

hash2('ODB') = 1412 % 8 = 4

hash3('ODB') = 4211 % 8 = 3

hash4('ODB') = 5000 % 8 = 0

+1

+1

+1

+1

hash1

hash2

hash3

hash4 +5+4

+8+3

+3

+10 +2 +2

+1

+2 +1

+6 +1

+2

+6

GET 'ODB'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

25

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

hash1('ODB') = 9022 % 8 = 6

hash2('ODB') = 1412 % 8 = 4

hash3('ODB') = 4211 % 8 = 3

hash4('ODB') = 5000 % 8 = 0

+1

+1

+1

+1

hash1

hash2

hash3

hash4 +5+4

+8+3

+3

+10 +2 +2

+1

+2 +1

+6 +1

+2

+6

GET 'ODB'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COUNT-MIN SKETCH

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

25

Count-Min Sketch

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

+1

+1

+1

+1

hash1

hash2

hash3

hash4 +5+4

+8+3

+3

+10 +2 +2

+1

+2 +1

+6 +1

+2

+6

GET 'ODB' Min(2,3,6,3) = 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

26

HyperLogLog

0

0

0

0

0

1

2

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Harmonic_mean

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

26

HyperLogLog

0

0

0

0

0

1

2

3

hash('ODB') = 9022

INSERT 'ODB'

0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Harmonic_mean

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

26

HyperLogLog

0

0

0

0

0

1

2

3

hash('ODB') = 9022

INSERT 'ODB'

0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Harmonic_mean

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

26

HyperLogLog

0

0

0

0

0

1

2

3

hash('ODB') = 9022

INSERT 'ODB'

0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0

Max(0, 3)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Harmonic_mean

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

26

HyperLogLog

0

0

0

0

0

1

2

3

hash('ODB') = 9022

INSERT 'ODB'

0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0

Max(0, 3)3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Harmonic_mean

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HYPERLOGLOG

Harmonic mean

Probabilistic data structure to
approximate cardinality of a multiset.
→ Store m fixed-size array of counters.

Update:
→ The first b bits of the hash determine

which counter to update.
→ Calculate the position of the leftmost 1-bit

in remaining bits.

Estimate:
→ Compute the Harmonic mean across

counters and correct with a corrective
fudge factor.

26

HyperLogLog

0

0

0

0

0

1

2

3

35

6

8

4

Harmonic
Mean = ~5.39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Harmonic_mean

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SAMPLING

Execute a predicate on a random sample of the target
data set. The number of tuples to examine depends on
the size of the original table.

Approach #1: Maintain Read-Only Copy
→ Periodically refresh to maintain accuracy.

Approach #2: Sample Real Tables
→ May read multiple versions of same logical tuple.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SAMPLING

Modern DBMSs also collect samples
from tables to estimate selectivities.

Update samples when the underlying
tables changes significantly.

⋮
1 billion tuples

SELECT AVG(age)
 FROM people
 WHERE age > 50

id name age status

1001 Obama 64 Rested

1002 Swift 35 Engaged

1003 Tupac 25 Dead

1004 Bieber 31 Crunk

1005 DJ Cache 21 Paid

1006 TigerKing 62 Jailed

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SAMPLING

Modern DBMSs also collect samples
from tables to estimate selectivities.

Update samples when the underlying
tables changes significantly.

⋮
1 billion tuples

1/3sel(age>50) =

SELECT AVG(age)
 FROM people
 WHERE age > 50

id name age status

1001 Obama 64 Rested

1002 Swift 35 Engaged

1003 Tupac 25 Dead

1004 Bieber 31 Crunk

1005 DJ Cache 21 Paid

1006 TigerKing 62 Jailed1001 Obama 64 Rested

1003 Tupac 25 Dead

1005 DJ Cache 21 Paid

Table Sample

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CARDINALITY ESTIMATION

Estimate the number of rows that a query operator will
produce, such as a filter or join, to help the optimizer
choose the most efficient execution plan.

There are three cardinality estimations an optimizer
must support as the core of its cost model:
→ Selection Conditions (filters)
→ Join Size Estimation
→ Distinct Value Estimation

29

Source: EQOP Book

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DERIVABLE STATISTICS

For each relation R, the DBMS maintains statistics to
approximate the following information:
→ NR: Number of tuples in R.
→ V(A,R): Number of distinct values for attribute A.

The selection cardinality SC(A,R) is the average
number of tuples with a value for an attribute A given
NR / V(A,R)

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SINGLE SELECTION CONDITION

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.

Equality Predicate: A=constant
→ sel(A=constant) = #occurrences / | R |

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

31

SELECT * FROM people
 WHERE age = 9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SINGLE SELECTION CONDITION

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.

Equality Predicate: A=constant
→ sel(A=constant) = #occurrences / | R |
→ Example: sel(age=9)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

31

SELECT * FROM people
 WHERE age = 9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SINGLE SELECTION CONDITION

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.

Equality Predicate: A=constant
→ sel(A=constant) = #occurrences / | R |
→ Example: sel(age=9)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

31

SC(age=9)=4

SELECT * FROM people
 WHERE age = 9

= 4 /45 = 0.088

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

12 12

9

12

0

5

10

15

[1,5] [6,8] [9,13] [14,15]

Equi-Depth Histogram

SINGLE SELECTION CONDITION

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.

Equality Predicate: A=constant
→ sel(A=constant) = #occurrences / | R |
→ Example: sel(age=9)

31

SELECT * FROM people
 WHERE age = 9

= 4 /45 = 0.088

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

12 12

9

12

0

5

10

15

[1,5] [6,8] [9,13] [14,15]

Equi-Depth Histogram

SINGLE SELECTION CONDITION

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.

Equality Predicate: A=constant
→ sel(A=constant) = #occurrences / | R |
→ Example: sel(age=9)

31

SELECT * FROM people
 WHERE age = 9

= 4 /45 = 0.088
≈ (9/5) /45 ≈ 1.8 /45 ≈ 0.04

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ASSUMPTIONS

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is the

same within a histogram bucket.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

12 12

9

12

0

5

10

15

[1,5] [6,8] [9,13] [14,15]

Equi-Depth Histogram

SINGLE SELECTION CONDITION

Range Predicate:
→ sel(A >= a) = (#RANGE-ROWS + #EQ-ROWS) / | R |
→ Example: sel(age >= 7) ≈ ((9+12)

SELECT * FROM people
 WHERE age >= 7

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

12 12

9

12

0

5

10

15

[1,5] [6,8] [9,13] [14,15]

Equi-Depth Histogram

SINGLE SELECTION CONDITION

Range Predicate:
→ sel(A >= a) = (#RANGE-ROWS + #EQ-ROWS) / | R |
→ Example: sel(age >= 7) ≈ ((9+12)

SELECT * FROM people
 WHERE age >= 7

33

+ (2 × (12/3))) / 45
≈ 29 / 45 ≈ 0.6444

This assumes continuous distribution of values.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

12 12

9

12

0

5

10

15

1-5 6-8 9-13 14-15

Equi-Depth Histogram

SINGLE SELECTION CONDITION

Negation Query:
→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

SELECT * FROM people
 WHERE age != 2

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

12 12

9

12

0

5

10

15

1-5 6-8 9-13 14-15

Equi-Depth Histogram

SINGLE SELECTION CONDITION

Negation Query:
→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

SELECT * FROM people
 WHERE age != 2

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

12 12

9

12

0

5

10

15

1-5 6-8 9-13 14-15

Equi-Depth Histogram

SINGLE SELECTION CONDITION

Negation Query:
→ sel(not P) = 1 – sel(P)
→ Example: sel(age != 2)

SELECT * FROM people
 WHERE age != 2

34

≈ 1 - ((12/5) /45)
≈ 1 - (2.4 /45) ≈ 1 - 0.05 ≈ 0.95

Observation: Selectivity ≈ Probability

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

We can compute selectivities for
individual predicates, but what
happens if there are multiple
predicates in a query?
→ Even though the predicates are on the

same table, the attributes may have
different distributions.

Example:
→ sel(age = 2) ≈ 0.053
→ sel(name LIKE 'A%') ≈ 0.1

SELECT * FROM people
 WHERE age = 2
 AND name LIKE 'A%'

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

We can compute selectivities for
individual predicates, but what
happens if there are multiple
predicates in a query?
→ Even though the predicates are on the

same table, the attributes may have
different distributions.

Example:
→ sel(age = 2) ≈ 0.053
→ sel(name LIKE 'A%') ≈ 0.1

SELECT * FROM people
 WHERE age = 2
 AND name LIKE 'A%'

P1 P2

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

We can compute selectivities for
individual predicates, but what
happens if there are multiple
predicates in a query?
→ Even though the predicates are on the

same table, the attributes may have
different distributions.

Example:
→ sel(age = 2) ≈ 0.053
→ sel(name LIKE 'A%') ≈ 0.1

SELECT * FROM people
 WHERE age = 2
 AND name LIKE 'A%'

P1 P2

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ASSUMPTIONS

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is the

same within a histogram bucket.

Assumption #2: Independent Predicates
→ The selectivity of the conjunction of two or more predicates is

estimated as the product of their individual selectivities.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MULTIPLE SELECTION CONDITION

Conjunction:
→ sel(P1 ⋀ P2) = sel(P1) × sel(P2)
→ Example: sel(age=2 ⋀ name LIKE 'A%')

This assumes that the predicates are
independent.

SELECT * FROM people
 WHERE age = 2
 AND name LIKE 'A%'

37

≈ sel(age=2) × sel(name LIKE 'A%')
≈ 0.053 × 0.1 ≈ 0.0053

P1 P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MULTIPLE SELECTION CONDITION

Conjunction:
→ sel(P1 ⋀ P2) = sel(P1) × sel(P2)
→ Example: sel(age=2 ⋀ name LIKE 'A%')

This assumes that the predicates are
independent.

Optimization: When there are
multiple predicates, diminish their
weights to reduce underestimations.

SELECT * FROM people
 WHERE age = 2
 AND name LIKE 'A%'

37

≈ sel(age=2) × sel(name LIKE 'A%')
≈ 0.053 × 0.1 ≈ 0.0053

P1 P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MULTIPLE SELECTION CONDITION

Disjunction:
→ sel(P1 ⋁ P2)

 ≈ sel(P1) + sel(P2) – sel(P1 ⋀ P2)
 ≈ sel(P1) + sel(P2) – sel(P1) × sel(P2)

SELECT * FROM people
 WHERE age = 2
 OR name LIKE 'A%'

38

P1 P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MULTIPLE SELECTION CONDITION

Disjunction:
→ sel(P1 ⋁ P2)

 ≈ sel(P1) + sel(P2) – sel(P1 ⋀ P2)
 ≈ sel(P1) + sel(P2) – sel(P1) × sel(P2)

SELECT * FROM people
 WHERE age = 2
 OR name LIKE 'A%'

38

P1 P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MULTIPLE SELECTION CONDITION

Disjunction:
→ sel(P1 ⋁ P2)

 ≈ sel(P1) + sel(P2) – sel(P1 ⋀ P2)
 ≈ sel(P1) + sel(P2) – sel(P1) × sel(P2)

→ Example: sel(age=2 ⋁ name LIKE 'A%')

This again assumes that the
selectivities are independent.

SELECT * FROM people
 WHERE age = 2
 OR name LIKE 'A%'

38

≈ 0.053 + 0.1 – (0.053 × 0.1)
≈ 0.1477 P1 P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CORRELATED ATTRIBUTES

Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

Then the following query shows up:
→ WHERE (make='Honda' AND model='Accord')

With the independence and uniformity assumptions,
the selectivity is:
→ 1/10 × 1/100 ≈ 0.001

But since only Honda makes Accords the real selectivity
is 1/100 = 0.01

39

Guy Lohman

Source: Guy Lohman

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
http://wp.sigmod.org/?p=1075

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

JOIN SIZE ESTIMATION

Given a join of R and S, what is the range of possible
result sizes in # of tuples?
→ In other words, for a given tuple of R, how many tuples of S

will it match?

Assume each key in the inner relation will exist in the
outer table.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ASSUMPTIONS

Assumption #1: Uniform Data
→ The distribution of values (except for the heavy hitters) is the

same within a histogram bucket.

Assumption #2: Independent Predicates
→ The selectivity of the conjunction of two or more predicates is

estimated as the product of their individual selectivities.

Assumption #3: Containment Principle
→ The domain of join keys overlap such that each key in the inner

relation will also exist in the outer table.

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

JOIN SIZE ESTIMATION

General case: Rcols⋂ Scols={A} where A is not a primary
key for either table.
→ Match each R-tuple with S-tuples:

estSize ≈ NR × NS / V(A,S)
→ Symmetrically, for S:

estSize ≈ NR × NS / V(A,R)

The cardinality estimate of a join is:
→ estSize ≈ NR × NS / max({V(A,S), V(A,R)})

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ERROR PROPAGATION
43

SELECT A.id
 FROM A, B, C
 WHERE A.id = B.id
 AND A.id = C.id
 AND B.id > 100

A

⨝A.id=B.id

B
B.id>100

C

A.id=C.id

A.id

⨝
π

Compute the cardinality of base tables

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ERROR PROPAGATION
43

SELECT A.id
 FROM A, B, C
 WHERE A.id = B.id
 AND A.id = C.id
 AND B.id > 100

A

⨝A.id=B.id

B
B.id>100

C

A.id=C.id

A.id

⨝
π

Compute the cardinality of base tables
A → |A|
B.id > 100 → |B| × sel(B.id > 100)
C → |C|

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ERROR PROPAGATION
43

SELECT A.id
 FROM A, B, C
 WHERE A.id = B.id
 AND A.id = C.id
 AND B.id > 100

A

⨝A.id=B.id

B
B.id>100

C

A.id=C.id

A.id

⨝
π

Compute the cardinality of base tables

Compute the cardinality of join results

A → |A|
B.id > 100 → |B| × sel(B.id > 100)
C → |C|

A⨝B ≈ (|A| × |B|) /
max(sel(A.id=B.id), sel(B.id>100))

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ERROR PROPAGATION
43

SELECT A.id
 FROM A, B, C
 WHERE A.id = B.id
 AND A.id = C.id
 AND B.id > 100

A

⨝A.id=B.id

B
B.id>100

C

A.id=C.id

A.id

⨝
π

Compute the cardinality of base tables

Compute the cardinality of join results

A → |A|
B.id > 100 → |B| × sel(B.id > 100)
C → |C|

A⨝B ≈ (|A| × |B|) /
max(sel(A.id=B.id), sel(B.id>100))

(A⨝B)⨝C ≈ (|A| × |B| × |C|) /
max(sel(A.id=B.id), sel(B.id>100),

sel(A.id=C.id))

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ERROR PROPAGATION
43

SELECT A.id
 FROM A, B, C
 WHERE A.id = B.id
 AND A.id = C.id
 AND B.id > 100

A

⨝A.id=B.id

B
B.id>100

C

A.id=C.id

A.id

⨝
π

Compute the cardinality of base tables

Compute the cardinality of join results

A → |A|
B.id > 100 → |B| × sel(B.id > 100)
C → |C|

A⨝B ≈ (|A| × |B|) /
max(sel(A.id=B.id), sel(B.id>100))

(A⨝B)⨝C ≈ (|A| × |B| × |C|) /
max(sel(A.id=B.id), sel(B.id>100),

sel(A.id=C.id))

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ERROR PROPAGATION
43

SELECT A.id
 FROM A, B, C
 WHERE A.id = B.id
 AND A.id = C.id
 AND B.id > 100

A

⨝A.id=B.id

B
B.id>100

C

A.id=C.id

A.id

⨝
π

Compute the cardinality of base tables

Compute the cardinality of join results

A → |A|
B.id > 100 → |B| × sel(B.id > 100)
C → |C|

A⨝B ≈ (|A| × |B|) /
max(sel(A.id=B.id), sel(B.id>100))

(A⨝B)⨝C ≈ (|A| × |B| × |C|) /
max(sel(A.id=B.id), sel(B.id>100),

sel(A.id=C.id))

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

Statistics allow the optimizer to summarize the contents
of the database.
→ These data structures are only approximations of real data.

Then the optimizer guesses how many tuples it will
examine or emit at each operator in a query plan.
→ Another approximation of what a real predicate will do.

This entire process is fraught with errors.

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

Statistics allow the optimizer to summarize the contents
of the database.
→ These data structures are only approximations of real data.

Then the optimizer guesses how many tuples it will
examine or emit at each operator in a query plan.
→ Another approximation of what a real predicate will do.

This entire process is fraught with errors.

44

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://15799.courses.cs.cmu.edu/spring2025/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

NEXT CLASS

Transactions!
→ aka the second hardest part about database systems

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Query Planning – Pt.2
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS
	Slide 4: TODAY'S AGENDA
	Slide 5: SEARCH ALGORITHM

	Bottom-Up Search
	Slide 6: BOTTOM-UP OPTIMIZATION
	Slide 7: SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES
	Slide 8: SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES
	Slide 9: SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES
	Slide 10: SYSTEM R OPTIMIZER
	Slide 11: SYSTEM R OPTIMIZER
	Slide 12: SYSTEM R OPTIMIZER
	Slide 13: SYSTEM R OPTIMIZER
	Slide 14: SYSTEM R OPTIMIZER
	Slide 15: SYSTEM R OPTIMIZER
	Slide 16: SYSTEM R OPTIMIZER

	Top-Down Search
	Slide 17: TOP-DOWN OPTIMIZATION
	Slide 18: TOP-DOWN OPTIMIZATION
	Slide 19: TOP-DOWN OPTIMIZATION
	Slide 20: TOP-DOWN OPTIMIZATION
	Slide 21: TOP-DOWN OPTIMIZATION
	Slide 22: TOP-DOWN OPTIMIZATION
	Slide 23: TOP-DOWN OPTIMIZATION
	Slide 24: TOP-DOWN OPTIMIZATION
	Slide 25: TOP-DOWN OPTIMIZATION
	Slide 26: TOP-DOWN OPTIMIZATION
	Slide 27: TOP-DOWN OPTIMIZATION
	Slide 28: TOP-DOWN OPTIMIZATION
	Slide 29: TOP-DOWN OPTIMIZATION
	Slide 30: TOP-DOWN OPTIMIZATION
	Slide 31: TOP-DOWN OPTIMIZATION
	Slide 32: TOP-DOWN OPTIMIZATION
	Slide 33: TOP-DOWN OPTIMIZATION
	Slide 34: TOP-DOWN OPTIMIZATION: ENFORCERS
	Slide 35: TOP-DOWN OPTIMIZATION: ENFORCERS
	Slide 36: TOP-DOWN OPTIMIZATION: ENFORCERS
	Slide 37: TOP-DOWN OPTIMIZATION: ENFORCERS

	Cost Estimation
	Slide 38: OBSERVATION
	Slide 39: COST ESTIMATION
	Slide 40: COST MODEL COMPONENTS
	Slide 41: POSTGRES COST MODEL
	Slide 42: POSTGRES COST MODEL

	Statistics
	Slide 43: STATISTICAL SUMMARIES
	Slide 44: STATISTICS STORAGE
	Slide 45: COLUMN STATISTICS
	Slide 46: SUMMARIZATION APPROACHES

	Histograms
	Slide 47: HISTOGRAMS
	Slide 48: EQUI-WIDTH HISTOGRAM
	Slide 49: EQUI-WIDTH HISTOGRAM
	Slide 50: EQUI-DEPTH HISTOGRAMS
	Slide 51: EQUI-DEPTH HISTOGRAMS
	Slide 52: END-BIASED HISTOGRAMS
	Slide 53: END-BIASED HISTOGRAMS
	Slide 54: END-BIASED HISTOGRAMS

	Sketches
	Slide 55: SKETCHES
	Slide 56: COUNT-MIN SKETCH
	Slide 57: COUNT-MIN SKETCH
	Slide 58: COUNT-MIN SKETCH
	Slide 59: COUNT-MIN SKETCH
	Slide 60: COUNT-MIN SKETCH
	Slide 61: COUNT-MIN SKETCH
	Slide 62: COUNT-MIN SKETCH
	Slide 63: COUNT-MIN SKETCH
	Slide 64: HYPERLOGLOG
	Slide 65: HYPERLOGLOG
	Slide 66: HYPERLOGLOG
	Slide 67: HYPERLOGLOG
	Slide 68: HYPERLOGLOG
	Slide 69: HYPERLOGLOG

	Sampling
	Slide 70: SAMPLING
	Slide 71: SAMPLING
	Slide 72: SAMPLING

	Cardinality Estimation
	Slide 73: CARDINALITY ESTIMATION
	Slide 74: DERIVABLE STATISTICS
	Slide 75: SINGLE SELECTION CONDITION
	Slide 76: SINGLE SELECTION CONDITION
	Slide 77: SINGLE SELECTION CONDITION
	Slide 78: SINGLE SELECTION CONDITION
	Slide 79: SINGLE SELECTION CONDITION
	Slide 80: ASSUMPTIONS
	Slide 81: SINGLE SELECTION CONDITION
	Slide 82: SINGLE SELECTION CONDITION
	Slide 83: SINGLE SELECTION CONDITION
	Slide 84: SINGLE SELECTION CONDITION
	Slide 85: SINGLE SELECTION CONDITION
	Slide 86: OBSERVATION
	Slide 87: OBSERVATION
	Slide 88: OBSERVATION
	Slide 89: ASSUMPTIONS
	Slide 90: MULTIPLE SELECTION CONDITION
	Slide 91: MULTIPLE SELECTION CONDITION
	Slide 92: MULTIPLE SELECTION CONDITION
	Slide 93: MULTIPLE SELECTION CONDITION
	Slide 94: MULTIPLE SELECTION CONDITION
	Slide 95: CORRELATED ATTRIBUTES
	Slide 96: JOIN SIZE ESTIMATION
	Slide 97: ASSUMPTIONS
	Slide 98: JOIN SIZE ESTIMATION
	Slide 99: ERROR PROPAGATION
	Slide 100: ERROR PROPAGATION
	Slide 101: ERROR PROPAGATION
	Slide 102: ERROR PROPAGATION
	Slide 103: ERROR PROPAGATION
	Slide 104: ERROR PROPAGATION

	Conclusion
	Slide 105: CONCLUSION
	Slide 106: CONCLUSION
	Slide 107: NEXT CLASS

