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ADMINISTRIVIA

Mid-term Exam grades posted
— Come to Andy's OH to view your grade and solution.

Homework #4 is due Sunday Nov 2" @ 11:59pm

Project #3 is due Sunday Nov 16" @ 11:59pm
— Recitation Tuesday Oct 28™ @ 8:00pm (see @195)
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LAST CLASS

A DBMS's query optimizer takes logical query plan as
input and generates a physical execution plan that has
the lowest "cost".

The quality of the plans that an optimizer generates is

mostly based on three factors:

—> Transformations / Enumeration
— Search Algorithm

— Cost Model
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TODAY'S AGENDA

Search Algorithms
Data Statistics
Cost Models
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SEARCH ALGORITHM

Approach #1: Bottom-Up / Forward Chaining
— Start with nothing and then iteratively assemble and add

building blocks to generate a query plan.
— Examples: System R, Starburst

Approach #2: Top-Down / Backward Chaining

— Start with the outcome that the query wants and then
transform it to equivalent alternative sub-plans to find the
optimal plan that gets to that goal.

— Examples: Volcano, Cascades
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BOTTOM-UP OPTIMIZATION

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL, Germans,
DuckDB, Postgres, most open-source DBMSs.
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SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES ™

SELECT ARTIST.NAME .
FROM ARTIST, APPEARS, ALBUM ARTIST: Sequential Scan

WHERE ARTIST.ID=APPEARS.ARTIST_ID APPEARS: Sequential Scan

AND APPEARS.ALBUM_ID=ALBUM. ID. ALBUM: Index Look-up on NAME
AND ALBUM.NAME=“Andy's OG Remix”

ORDER BY ARTIST.ID

Step #1: Choose the best access paths
to each table
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SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Andy's OG Remix”
ORDER BY ARTIST.ID

ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST D4 APPEARS B ALBUM
APPEARS D ALBUM B4 ARTIST
ALBUM  Dd APPEARS B ARTIST
APPEARS D4 ARTIST b ALBUM
orderings for tables ARTIST x ALBUM DI APPEARS
ALBUM  x ARTIST Dd APPEARS

Step #1: Choose the best access paths
to each table

Step #2: Enumerate all possible join
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SYSTEM R OPTIMIZER: MULTI-RELATION QUERIES

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Andy's OG Remix”
ORDER BY ARTIST.ID

Step #1: Choose the best access paths
to each table

Step #2: Enumerate all possible join
orderings for tables

Step #3: Determine the join ordering
with the lowest cost

ARTIST: Sequential Scan
APPEARS : Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST P APPEARS D> ALBUM
APPEARS D ALBUM D] ARTIST
ALBUM D] APPEARS D ARTIST
APPEARS P ARTIST P ALBUM
ARTIST x ALBUM P APPEARS
ALBUM  x ARTIST P APPEARS
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., SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P ALBUM

ARTIST ALBUM APPEARS
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e SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) MERGE_JOIN(A1,A3) HASH_JOIN(A2,A3) MERGE_JOIN(A2,A3) HASH_JOIN(A3,A2)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST.ID=APPEARS.ARTIST_ID APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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o SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P ALBUM

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSP<IALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST.ID=APPEARS.ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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e SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

g__———fzi:_—’)‘ ‘&\‘-___

HASH_JOIN(A1<IA3,A2) |[MERGE_JOIN(A11<1A3,A2) |HASH_JOIN(A21<IA3, A1)

MERGE_JOIN(A2P<A3,A1) JHASH_JOIN(A3P<IA2,A1) | MERGE_JOIN(A3P<IA2,A1) I

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST. ID=APPEARS . ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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e SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P<{ ALBUM

4__———"‘)’

HASH_JOIN(CA1P<A3,A2) HASH_JOIN(A2P<IA3,A1)

HASH_JOIN(A3P<A2,A1) oo e

APPEARS . ALBUM_ID=ALBUM. ID APPEARS . ARTIST_ID=ARTIST.ID APPEARS . ARTIST_ID=ARTIST.ID

ARTISTPAPPEARS ALBUMPIAPPEARS APPEARSPJALBUM
ALBUM ARTIST ARTIST

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

MERGE_JOIN(A3,A2) X

ARTIST. ID=APPEARS . ARTIST_ID \ / APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
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o SYSTEM R OPTIMIZER

ARTIST P4 APPEARS P ALBUM

HASH_JOIN(A2D<IA3,A1)

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST ALBUM APPEARS
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(] Logical Op

SYSTEM R OPTIMIZER &

ARTIST P4 APPEARS P ALBUM

The query has ORDER BY on
HASH_JOIN(A2<IA3,A1) ARTIST.ID but the logical pl(ms
do not contain sorting properties.’

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMPIAPPEARS
ARTIST

Hack: Keep track of best plans with and
without data in proper physical form,
and then check whether tacking on a sort
operator at the end is better.

HASH_JOIN(A2,A3)

ALBUM. ID=APPEARS . ALBUM_ID

ARTIST ALBUM APPEARS
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T0P-DOWN OPTIMIZATION

Start with a logical plan of what we want the query to
be. Perform a branch-and-bound search to traverse the
plan tree by converting logical operators into physical

operators.

— Keep track of global best plan during search.

— Treat physical properties of data as first-class entities during
planning.

Examples: MSSQL, Greenplum, CockroachDB
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TOP-DOWN OPTIMI

Start with a logical plan of what we
be. Perform a branch-and-bound se
plan tree by converting logical oper

operators. .
— Keep track of global best plan during s

— Treat physical properties of data as firs
planning.

Examples: MSSQL, Greenplum, (

Foundations and Trends® in Databases
Extensible Query Optimizers in
Practice

Suggested Citation: Baily Ding, Vivek Narasayya and Surajit Chaudhuri (2024), “Ex-
tensible Query Optimizers in Practice”, Foundations and Trends” in Databases: Vol. 14,
No. 3-4, pp 186-402. Dot 10.1561,/1900000077.

Bailu Ding
Microsoft Corporation
badin@microsoft.com

Vivek Narasayya
Microsoft Corporation
viveknar@microsoft.com

Surajit Chaudhuri
Microsoft Corporation
surajitc@microsoft.com

new

the essence of knouwledge
Boston — Delft,

™
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ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTP<APPEARS ALBUMP<APPEARS ARTISTPALBUM

ARTIST ALBUM APPEARS
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ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what » ARTEST b APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes

and traverse tree.

RN Logical—>L0gicaI: MERGE_JOIN(A1P<IA2,A3)
JOIN(CA,B) to JOIN(B,A)

— Logical-Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTP<APPEARS ALBUMP<APPEARS ARTISTPALBUM

ARTIST ALBUM APPEARS



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. :

Invoke rules to create new nodes

and traverse tree.

RN Logical—>L0gicaI: MERGE_JOIN(A1P<IA2,A3)
JOIN(CA,B) to JOIN(B,A)

— Logical-Physical:

JOIN (A ! B) to HASH_JOIN (A , B) ARTISTP<APPEARS ALBUMP<APPEARS ARTISTPALBUM

ARTIST ALBUM APPEARS
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., TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN(A1DA2,A3)

/

ARTISTPIAPPEARS

ALBUMPIAPPEARS

ARTISTPALBUM

ARTIST

ALBUM

APPEARS
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., TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN

/

(A1D>dA2,A3)

»‘ ARTISTP<APPEARS ALBUMP

PPEARS

ARTISTPALBUM

ARTIST

ALBUM

APPEARS
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o TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:

JOIN(CA,B) to JOIN(B,A)

ARTIST P APPEARS P4 ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN(A1DA2,A3)

/

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B) »‘

ARTISTP<IAPPEARS ALBUMPIAPPEARS ARTISTP<IALBUM
ARTIST ALBUM APPEARS
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ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. t :

Invoke rules to create new nodes
and traverse tree.

— Logical—>Logica]: MERGE_JOIN(A1P<A2,A3)
JOIN(A,B) to JOIN(B,A) /

— Logical-Physical:
JOIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMP<APPEARS ARTISTP<IALBUM

» HASH_JOIN(A1,A2)
—

ARTIST ALBUM APPEARS
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o TOP-DOWN OPTIMIZATION

Start with a logical plan of what
we want the query to be.

Invoke rules to create new nodes
and traverse tree.
— Logical—Logical:
JOIN(CA,B) to JOIN(B,A)
— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM

ORDER-BY (ARTIST.ID)

|

MERGE_JOIN(A1DA2,A3)

/

»‘ ARTISTP<APPEARS ALBUMPIAPPEARS

ARTISTP<ALBUM
HASH_JOIN(A1,A2) 0
—
ARTIST ALBUM APPEARS
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ol TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. t :

Invoke rules to create new nodes
and traverse tree.

— Logical—>Logicalz MERGE_JOIN(A1P<A2,A3)
JOIN(A,B) to JOIN(B,A) /

— Logical-Physical:
J'OIN(A B) to HASH J’OIN(A B) ARTISTP<IAPPEARS ALBUMP<APPEARS ARTISTP<IALBUM

HASH_JOIN(A1,A2) : 0

ARTIST ALBUM APPEARS
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o TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTEST b APPEARS >t ALY
we want the query to be. t :

Invoke rules to create new nodes
and traverse tree.

HASH_JOIN(A1P<IA2,A3)

N Logical—>L0gicaI: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B,A) /
— Logical-Physical:
J-OIN (A : B) to HASH_JOIN(A , B) ARTISTP<IAPPEARS ALBUMPIAPPEARS ARTISTP<IALBUM
Can create "enforcer" rules LR :
that require input to have —

certain properties.

ARTIST ALBUM

APPEARS
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o TOP-DOWN OPTIMIZATION

Start with a logical plan of what » ARTIST b< APPEARS b ALBUM
we want the query to be. ORDER'BY(%RTIST'ID)
Invoke rules to create new nodes HASH_JOIN'  ~iA2,A3)
and traverse tree.
L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)
JOINCA,B) to JOIN(B, A) /
— Logical-Physical:
JOIN (A : B) to HASH_JOIN(A , B) ARTISTP<IAPPEARS ALBUMP<{JPPEARS ARTISTP<IALBUM
Can create "enforcer" rules T ST —
that require input to have —

certain properties.

ARTIST ALBUM APPEARS
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il TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what » ARTIST bd APPEARS >d ALBUM

ORDER-BY (ARTIST.ID)

we want the query to be. X

Invoke rules to create new nodes HASH_JOIN'  ~dA2,A3)
and traverse tree.

L Logical—>Logical: MERGE_JOIN(A1P<IA2,A3)

JOIN(A,B) to JOIN(B,A) t
— Logical-Physical:
JOIN (A ! B) to HASH_JOI N (A , B) ARTISTP<IAPPEARS ¢BUMN+PPEARS ARTISTP<IALBUM

Can create "enforcer" rules S SR
that require input to have
certain properties.

MERGE_JOIN(A1,A2)

ARTIST ALBUM APPEARS
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il TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTIST b< APPEARS >4 ALBUM
ORDER-BY (ARTIST.ID)

we want the query to be. X
Invoke rules to create new nodes » HASH_JOIN'  ~iA2,A3)

and traverse tree.

— Logical~Logical

JOIN(A,B) to JOIN(B,A) / t
— Logical-Physical:
JOINCA B to HASH JOINCA.B ARTISTPIAPPEARS ALBUMMA‘PPEARS ARTISTPALBUM
(A,B) to HASH_JOIN(A, B) { L
Can create "enforcer" rules HASH_JOIN(A1,A2) MERGE_JOIN(A1,A2)

that require input to have
certain properties.

ARTIST ALBUM APPEARS
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il TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. :

|

Invoke rules to create new nodes T HASH_JOIN'  1A2,A3)

and traverse tree.
MERGE_JOIN(A1P<IA2,A3)

N Loglcal%Loglcalz HASH_JOIN(A1p<IA2,A3)
JOIN(A,B) to JOIN(B,A) t

— Logical-Physical:
JOIN A’ B) to HASH JOINCA , B ARTISTP<IAPPEARS ALBUMN{PPEARS ARTISTP<IALBUM
(A,B) _JOIN(A,B) -
" 1"
Can create "enforcer" rules T S ————

that require input to have
certain properties.

ARTIST ALBUM APPEARS
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il TOP-DOWN OPTIMIZATION 5

Start with a logical plan of what ARTEST b APPEARS >t ALY
we want the query to be. :

|

Invoke rules to create new nodes T HASH_JOIN'  1A2,A3)

and traverse tree.
MERGE_JOIN(A1P<IA2,A3)

— Logical—Logical:

HASH_JOIM 1p<A2,A3)
JOIN(CA,B) to JOIN(B,A) t
— Logical-Physical:
J-OIN A B to HASH JOIN A B ARTISTP<APPEARS ALBUMN{PPEARS ARTISTP<ALBUM
(A,B) _JOIN(A,B) L
Can create "enforcer" rules P T T

that require input to have
certain properties.

ARTIST ALBUM APPEARS
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m o, TOP-DOWN OPTIMIZATION: ENFORCERS 5

B Enforcer

. SELECT *x FROM xxx
Enforcers are physical operators that WHERE xxx.a > 10 ORDER BY xxx.b;

ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satistfy its

property requirements.
— Example: INDEX_SCAN(xxx.b)

Source: EQOP Book


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/extensible-query-optimizers-in-practice/

m o, TOP-DOWN OPTIMIZATION: ENFORCERS 5

B Enforcer

. SELECT * FROM xxx
Enforcers are physical operators that WHERE xxx.a > 10 ORDER BY xxx.b;

ensure the properties of the output of
. GET(xxx.a > 10)
a sub-plan / expression. ORDER-BY (T.b)

Properties:
ORDER-BY (T.b)

Properties:
ORDER-BY (T.b)

Volcano's rule engine has additional | g

ORDER-BY (xxx.b)

logical to avoid considering operators
below it in the plan that satisfy its BTl | crooxae)

.................................................................

property requirements.
— Example: INDEX_SCAN(xxx.b)

Source: EQOP Book
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m o, TOP-DOWN OPTIMIZATION: ENFORCERS 5

B Enforcer

. SELECT * FROM xxx
Enforcers are physical operators that WHERE xxx.a > 10 ORDER BY xxx.b;

ensure the properties of the output of
. GET(xxx.a > 10)
a sub-plan / expression. ORDER-BY (T.b)

Properties:
ORDER-BY (T.b)

Volcano's rule engine has additional | g

Properties:
ORDER-BY (T.b)

ORDER-BY (xxx.b)

logical to avoid considering operators
below it in the plan that satisfy its BTl | crooxae)

............................................................

property requirements. i
— Example: INDEX_SCAN(xxx.b) I .-

FILTER(XxxX.a>10)

INDEX_SCAN(XxXxX.a)

Source: EQOP Book
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(] Logical Op
B Physical Op

B Enforcer

Enforcers are physical operators that
ensure the properties of the output of
a sub-plan / expression.

Volcano's rule engine has additional
logical to avoid considering operators
below it in the plan that satistfy its

property requirements.
— Example: INDEX_SCAN(xxx.b)

Source: EQOP Book

TOP-DOWN OPTIMIZATION: ENFORCERS

=

SELECT * FROM xxx
WHERE xxx.a > 10 ORDER BY xxx.b;

GET(xxx.a > 10)
ORDER-BY (T.b)

Properties:
ORDER-BY (T.b)

QUICKSORT(T.b)

I

GET(xxx.a>10)

.............................................................

Properties:
ORDER-BY (T.b)

FILTER(xxx.a>10)

] INDEX_SCAN(xxx.b)

Properties:
None

FILTER(XxxX.a>10)

INDEX_SCAN(XxXxX.a)
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OBSERVATION 5

We have formulas for the operator
algorithms (e.g., the cost formulas for 27?7 ‘ 7;[ename ‘
hash join, sort-merge join), but we
also need to estimate the size of the

output that an operator produces. ‘M: X Emp. did = Dept.did 207

Dept 277
This is hard because the output of P L?ename,did ces
each operators depends on its input.

Emp
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COST ESTIMATION

The DBMS uses a cost model to predict the behavior of

a query plan given a database state.
— This is an internal cost that allows the DBMS to compare one
plan with another.

[t is too expensive to run every possible plan to
determine this information, so the DBMS need a way to
derive this information.
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COST MODEL COMPONENTS

Choice #1: Physical Costs

— Predict CPU cycles, I/O, cache misses, RAM consumption,
network messages...

— Depends heavily on hardware.

Choice #2: Logical Costs

— Estimate output size per operator.

— Independent of the operator algorithm.
— Need estimations for operator result sizes.
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POSTORES COST MODEL

Uses a combination of CPU and I/O costs that are
weighted by “magic” constant factors.

Default settings are obviously for a disk-resident

database without a lot of memory:

— Processing a tuple in memory is 400x faster than reading a
tuple from disk.

— Sequential I/0 is 4x faster than random /0.
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19.7.2. Planner Cost Constants

PostgreSQ)

TABLESPACE),

random%pageﬁcost (floating point)
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STATISTICAL SUMMARIES 5

Auxiliary data structures that the DBMS populates from
scanning the database to allow the optimizer to
approximate data contents for different scenarios.

Trade-offs to consider:

— Accuracy

— Efficiency

— Memory Consumption

— Coverage / Applicability

— Creation + Maintenance Costs

Source: EQOP Book
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STATISTICS STORAGE

Most DBMSs store a database's statistics in its internal
catalog.

The DBMS will periodically update statistics according

to one or more triggering mechanisms:
— Periodic Background Tasks (e.g., Postgres Autovacuum)

— Maintenance Schedules (e.g., Oracle)
— Modification Thresholds
— Manual Invocation (e.g., ANALYZE, UPDATE STATISTICS)
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COLUMN STATISTICS

Most DBMSs create single-column statistics for each
column in a table.

The DBMS can also track statistics for groups of
attributes together rather than just treating them all as

independent variables.

— Some systems automatically build multi-column statistics if
they are already used in an index together (MSSQL).

— Otherwise, a human manually specifies target columns.

— Also called Column Group Statistics (Db2) or Extended
Statistics (Oracle).
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SUMMARIZATION APPROACHES

Choice #1: Histograms« Most Common

— Maintain an occurrence count per value (or range of
values) in a column.

Choice #2: Sketches « Increasing Usage

— Probabilistic data structure that gives an approximate
count for a given value.

Choice #3: Sampling « Rare
— DBMS maintains a small subset of each table that it then
uses to evaluate expressions to compute selectivity.

Choice #4: ML Model « Experimental / Very Rare

— Train an ML model that learns the selectivity of predicates
and correlations between multiple tables.
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HISTOGRAMS 5

Approximate the distribution of values in a column for

cardinality estimation.
— Maintain an occurrence count per value (or range of values) in
a column.

10 Histogram

# of occurrences

2 3 405 6 7 8 9 10 11 12 13 14 15 y5 Reys x 32-bits =
60 bytes

Distinct values of attribute
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EQUI-WIDTH HISTOGRAM

Maintain counts for a group of values instead of each
unique key. All buckets have the same width (i.e., same
# of value).

10 Histogram

Bucket Ranges | |

1 2 3,4 5 6,7 8 9,10 11 12,13 14 15,

) ) ) ) ) §
Bucket #1 Bucket #2 Bucket #3 Bucket #4 Bucket #5
Count=8 Count=4 Count=15 Count=3 Count=14

\
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Maintain

EQUI-WIDTH HISTOGRAM

counts for a group of values instead of each

unique key. All buckets have the same width (i.e., same

# of value).
15 Equi-Width Histogram
10 2
5 7 4 3
Bucket Ranges | | -

31, [460 . [7.91 . [10,12] . [13;15] )

) ) ) )
Bucket #1 Bucket #2 Bucket #3 Bucket #4 Bucket #5
Count=8 Count=4 Count=15 Count=3 Count=14
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EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number of

occurrences for each bucket is roughly the same.
— Equi-depth histograms are shown to have better worst-case and
average error than equi-width histograms.

10 Histogram

1 2 3 4 5.6 7 8.9 1011 12 13,14 15,

) ) ) )
Bucket #1 Bucket #2 Bucket #3 Bucket #4
Count=12 Count=12 Count=9 Count=12

\
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EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number of

occurrences for each bucket is roughly the same.
— Equi-depth histograms are shown to have better worst-case and
average error than equi-width histograms.

15 Histogram (Quantiles)

12 12

9

[1,5] [6,8] [9,13] [14,15]
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END-BIASED HISTOGRAMS

Use N-1 buckets to store the exact count for the most
frequent keys. The last bucket (R) stores the average
frequency of all remaining values.

10

5

Histogram

ataly il

1 2 3 4 5 6 7 8 9 10 I1 12 13 14 15
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END-BIASED HISTOGRAMS

Use N-1 buckets to store the exact count for the most
frequent keys. The last bucket (R) stores the average
frequency of all remaining values.

Most Frequent Keys ftogram

10

Z llIJL-JJ_I_l,_L.LLI.

1 21314 5 6 7 |8)19]10 I1 12 13 [14}j15

Count=4 Count=8 Count=4 Count=4 Count=8
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END-BIASED HISTOGRAMS

Use N-1 buckets to store the exact count for the most
frequent keys. The last bucket (R) stores the average
frequency of all remaining values.

10 End-Biased Histogram (N=6)

8 8

5 1 4 4

O T T T T T - |
8 15 3 9 14 R
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SKETCHES

Maintaining exact statistics about the database is
expensive and slow.

Use probabilistic data structures called sketches to

generate error-bounded estimates.
— Frequent Items (Count-min Sketch)
— Count Distinct (HyperLogLog)

— Quantiles (t-digest)

Open-source implementations are available (Apache
DataSketches, Google ZetaSketch)
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COUNT-MIN SKETCH

Probabilistic data structure that Count-Min Sketch
approximates frequency counts of e 1 2 3 4 5 6 7
elements in a data stream using hash ™% @@ 0|6 |00 0|0
functions and a multi-dimensional hash,l 0 [0 | 0| 0| 0| 0|00
array of counters. hashsl 0 | 0| 0|0 |0 0|00
hash,, 0 |0 | 0| 0| 0|0 | 0|0

Approximates answers with tunable
accuracy and space trade-offs.
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COUNT-MIN SKETCH

Probabilistic data structure that Count-Min Sketch
approximates frequency counts of e 1 2 3 4 5 6 7
elements in a data stream using hash ™% @@ 0|6 |00 0|0
functions and a multi-dimensional hash,l 0 [0 | 0| 0| 0| 0|00
array of counters. hashsl 0 | 0| 0|0 |0 0|00
hash,, 0 |0 | 0| 0| 0|0 | 0|0

Approximates answers with tunable
accuracy and space trade-offs.

INSERT 'ODB' —

[ hash ('ODB') =9022% 8 =6
hash,('ODB') =1412% 8 = 4
hash,('ODB') = 4211% 8 = 3

| hash ('ODB') = 5000 % 8 = 0
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COUNT-MIN SKETCH

Probabilistic data structure that Count-Min Sketch
approximates frequency counts of e 1 2 3 4 5 6 7
elements in a data stream using hash ™" @ | © | 0|0 | 0|0 +1 10
functions and a multi-dimensional hash,l @ | @ | @ | @ | 0| 0| Q|0
array of counters. hashsl 0 | 0| 0|0 |0 0|00
hash,| 0 [0 | 0| 0| 0| 0|0]o

Approximates answers with tunable
accuracy and space trade-offs. ™ hash,('ODB) = 9022 % 8 = 6
hash,('ODB') =1412% 8 = 4
hash,('ODB') = 4211% 8 = 3
| hash('ODB') = 5000 % 8 = 0

INSERT 'ODB' —
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COUNT-MIN SKETCH

Probabilistic data structure that Count-Min Sketch
approximates frequency counts of 6 1 2 3 4 5 6 7
elements in a data stream using hash "% © @ |0 |00 |0 |+1*®
functions and a multi-dimensional hash,l © | 0 | 0 | O |+ [~BTOTB
array of counters. hashs| @ | 0 | 0 |+1 ~8—T0—Tq | 0
hash, | +1 [+b——6——6—T—0——0—— ©
Approximates answers with tunable
accuracy and space trade-offs. ™ hash('ODB') = 9022 % 8 = 6

hash,('ODB') =1412% 8 = 4
hash3('ODB') =4211% 8 = 3—
__hash ('ODB') = 5000 % 8 = 0—

INSERT 'ODB' —
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COUNT-MIN SKETCH

Count-Min Sketch

Probabilistic data structure that
approximates frequency counts of
elements in a data stream using hash
functions and a multi-dimensional
array of counters.

Approximates answers with tunable
accuracy and space trade-offs.

hash,
hash,
hash,

hash,

0

1

2

3

0

+10

0

0

+2

0

+2

0

+1

+1

+6

+6

+1

+3

0

+4

+2
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COUNT-MIN SKETCH

Probabilistic data structure that Count-Min Sketch
approximates frequency counts of e 1 2 3 4 5 6 7
elements in a data stream using hash ~ ""| @ [+10) 0 | 0 | 0 |+2|+2| ©
functions and a multi-dimensional hash,| @ | @ |+2| @ |+3|+8| 0 | +1
array of counters. hashy| +1| 0 | +6[+6| 0 | 0 [+1 | 0
hash,| +3 | @ | O |+4| 0 |+5| 0 |+2

Approximates answers with tunable
accuracy and space trade-offs. ™ hash,('ODB) = 9022 % 8 = 6
hash,('ODB') =1412% 8 = 4
hash,('ODB') = 4211% 8 = 3
| hash('ODB') = 5000 % 8 = 0

GET 'ODB' —
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COUNT-MIN SKETCH

Probabilistic data structure that Count-Min Sketch
approximates frequency counts of 6 1 2 3 4 5 6 7
elements in a data stream using hash " © [+10] 8 | 0 | 0 |+2|+2["®
functions and a multi-dimensional hash,| @ | 0 | +2| O |+3 [+8T O+
array of counters. hash| +1 | 0 | +6 | +6 [+6——0—T+ | 0
hash, | +3 [-f——f——+4—0—+5—F +2
Approximates answers with tunable
accuracy and space trade-offs. ™ hash('ODB') = 9022 % 8 = 6

hash,('ODB') =1412% 8 = 4
hash,('ODB') = 4211 % § = 3—
__hash ('ODB') = 5000 % 8 = 0—

GET 'ODB' —
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COUNT-MIN SKETCH

Probabilistic data structure that Count-Min Sketch
approximates frequency counts of e 1 2 3 4 5 6 7
elements in a data stream using hash ~ *"| @ [+10) 0 | 6 | @ +2|+2| 0
functions and a multi-dimensional hash, @ | @ |+2| 0 |+3|+8| 0 | +1
array of counters. hashs| +1| 0 |+6|+6| 0 | 0 [+1| 0
hash4|+3 0| 0 |+4| 0 |+5| 0 | +2

Approximates answers with tunable
accuracy and space trade-offs. -

GET 'ODB' <4 Min(2,3,6,3) =2
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HYPERLOGLOG

Probabilistic data structure to

approximate cardinality of a multiset.
— Store m fixed-size array of counters.

Update:

— The first b bits of the hash determine
which counter to update.

— Calculate the position of the leftmost 1-bit
in remaining bits.

Estimate;

— Compute the Harmonic mean across
counters and correct with a corrective
fudge factor.

HyperLogLog
0| o
1| o
2| o
3| o
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HYPERLOGLOG 5

Probabilistic data structure to HyperLogLog
approximate cardinality of a multiset. ol o
— Store m fixed-size array of counters. 1
Update: e
— The first b bits of the hash determine

which counter to update. 3| ©
— Calculate the position of the leftmost 1-bit

in remaining bits.

- INSERT 'ODB'
Estimate: .
. hash('ODB') = 9022

— Compute the Harmonic mean across

counters and correct with a corrective 0010001100111110

fudge factor.
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HYPERLOGLOG

Probabilistic data structure to

approximate cardinality of a multiset.
— Store m fixed-size array of counters.

Update:

— The first b bits of the hash determine
which counter to update.

— Calculate the position of the leftmost 1-bit
in remaining bits.

Estimate;

— Compute the Harmonic mean across
counters and correct with a corrective
fudge factor.

HyperLogLog

0

1

—>2

o | ©O o

3

INSERT 'ODB'
hash('ODB') = 9022

00100011001111

10
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HYPERLOGLOG

Probabilistic data structure to

approximate cardinality of a multiset.
— Store m fixed-size array of counters.

Update:

— The first b bits of the hash determine
which counter to update.

— Calculate the position of the leftmost 1-bit
in remaining bits.

Estimate;

— Compute the Harmonic mean across
counters and correct with a corrective
fudge factor.

HyperLogLog

0
1

—>2

3

*Max(o, 3)

o | ©O o

INSERT 'ODB'
hash('ODB') = 9022

00100011001111

10

8 )
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HYPERLOGLOG

Probabilistic data structure to

approximate cardinality of a multiset.
— Store m fixed-size array of counters.

Update:

— The first b bits of the hash determine
which counter to update.

— Calculate the position of the leftmost 1-bit
in remaining bits.

Estimate;

— Compute the Harmonic mean across
counters and correct with a corrective
fudge factor.

HyperLogLog

0
1

—>2

3

*Max(o, 3)

S W o o

INSERT 'ODB'
hash('ODB') = 9022

00100011001111

10

8 )
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HYPERLOGLOG

Probabilistic data structure to

approximate cardinality of a multiset.
— Store m fixed-size array of counters.

Update:

— The first b bits of the hash determine
which counter to update.

— Calculate the position of the leftmost 1-bit
in remaining bits.

Estimate;

— Compute the Harmonic mean across
counters and correct with a corrective
fudge factor.

HyperLogLog
0 6 N
1 8 Harmonic
2| s ~ Mean = ~5.39
3 4

=
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SAMPLING

Execute a predicate on a random sample of the target
data set. The number of tuples to examine depends on
the size of the original table.

Approach #1: Maintain Read-Only Copy

— Periodically refresh to maintain accuracy.

Approach #2: Sample Real Tables

— May read multiple versions of same logical tuple.
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SAMPLING

Modern DBMSs also collect samples
from tables to estimate selectivities.

Update samples when the underlying
tables changes significantly.

SELECT AVG(age)
FROM people
WHERE age > 50

id name age status
1001 |Obama 64 Rested
1002 [Swift 35 Engaged
1003 |[Tupac 25 Dead
1004 |Bieber 31 Crunk
1005 |DJ Cache (21 Paid
1006 |TigerKing|62 Jailed

1 billion tuples
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SAMPLING

Modern DBMSs also collect samples SELECT AVG(age)
from tables to estimate selectivities. FROM people

WHERE age > 50
Update samples when the underlying ‘4 name —

1001 |Obama 64 Rested
1002 [Swift 35 Engaged
1003 |[Tupac 25 Dead
1004 |Bieber 31 Crunk
Table Sample 1005 |DJ Cache [21  |Paid

1001 |[Obama 64 Rested 1006 |TigerKing|62 Jailed

sel(age>50) = 1/3 |1203 [Tupac 25  |Dead
1005 [DJ Cache |21 Paid

tables changes significantly.

A4

1 billion tuples
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Source: EQOP Book

CARDINALITY ESTIMATION

Estimate the number of rows that a query operator will
produce, such as a filter or join, to help the optimizer
choose the most efficient execution plan.

There are three cardinality estimations an optimizer

must support as the core of its cost model:
— Selection Conditions (filters)

— Join Size Estimation

— Distinct Value Estimation
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DERIVABLE STATISTICS

For each relation R, the DBMS maintains statistics to

approximate the following information:
— Npg: Number of tuples in R.
— V(A,R): Number of distinct values for attribute A.

The selection cardinality SC(A,R) is the average
number of tuples with a value for an attribute A given

N./V(A,R)
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SINGLE SELECTION CONDITION

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.

Equality Predicate: A=constant
— sel(A=constant) = #occurrences/ |R|

=

SELECT * FROM people
WHERE age = 9

10 Histogram

teealte il

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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SINGLE SELECTION CONDITION 5

The selectivity (sel) of a predicate P SELECT * FROM people
is the fraction of tuples that qualify. WHERE [age = 9

Equality Predicate: A=constant
— sel(A=constant) = #occurrences/ |R|
— Example: sel(age=9)

10 Histogram

teealte il

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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SINGLE SELECTION CONDITION

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.

Equality Predicate: A=constant

— sel(A=constant) = #occurrences/ |R|
— Example: sel(age=9) =4 /45 = 0.088

=

SELECT * FROM people

WHERE|age = 9

10 Histogram

LSC(age=9)=4

el

_IV

I

1 2 3 4 5 6 7 8

¢

10 11 12 13 14 15
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SINGLE SELECTION CONDITION

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.

Equality Predicate: A=constant

— sel(A=constant) = #occurrences/ |R|
— Example: sel(age=9) = 45 = 0.088

15 Equi-Depth Histogram

=

SELECT * FROM people

WHERE|age = 9

12

9

12

[1,5] [6,8]

[9,13]

[14,15]
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SINGLE SELECTION CONDITION

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.

Equality Predicate: A=constant

— sel(A=constant) = #occurrences/ |R|
— Example: sel(age=9) = 45 = 0.088

~(9/5) /45 ~ 1.8 /45 ~0.04

15 Equi-Depth Histogram

=

SELECT * FROM people

WHERE|age = 9

12

9

12

[1,5] [6,8]

[9,13]

[14,15]
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ASSUMPTIONS

Assumption #1: Uniform Data

— The distribution of values (except for the heavy hitters) is the
same within a histogram bucket.
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SINGLE SELECTION CONDITION 5

Range Predicate: SELECT * FROM people
— sel(A >= a) = (#RANGE-ROW'S + #£Q-ROW’S) / |R| | WHERE age >= 7/
— Example: sel(age >=7) ~((9+12)

15 Equi-Depth Histogram

12 12 12

11nl

[1,5] [6,8] [9,13] [14,15]
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SINGLE SELECTION CONDITION 5

Range Predicate: SELECT * FROM people
— sel(A >= a) = (#RANGE-ROW'S + #£Q-ROW'S) / |R| | WHERE age >= 7/
— Example: sel(age >=7) ~((9+12) + (2% (12/3))) / 45

~29/ 45 ~ 0.6444

A This assumes continuous distribution of values.

15 Equi-Depth Histogram
12 12
10 - o
5 _
0 -
[6,8] [9,13] [14,15]
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SINGLE SELECTION CONDITION 5

Negation Query: SELECT * FROM people
— sel(not P) =1 - sel(P) WHERE age != 2
— Example: sel(age!=2)

15 Equi-Depth Histogram

12 12 12

10 - :
5_
0_

1-5 6-8 9-13 14-15
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SINGLE SELECTION CONDITION 5

Negation Query: SELECT * FROM people
— sel(not P) =1 - sel(P) WHERE [age != 2

— Example: sel(age!=2)

15 Equi-Depth Histogram

12 12 12

10 9
5
0

1-5 6-8 9-13 14-15
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SINGLE SELECTION CONDITION 5

Negation Query: SELECT * FROM people
— sel(not P) =1 - sel(P) WHERE [age != 2
— Example: sel(age !=2) =~ 1-((12/5) /45)

~~1-(2.4/45) ~ 1-0.05 ~0.95

A\ Observation: Selectivity =~ Probability

15 Equi-Depth Histogram

12 12 12

10 ?
5
0

1-5 6-8 9-13 14-15
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OBSERVATION

We can compute selectivities for
individual predicates, but what
happens if there are multiple

predicates in a query?

— Even though the predicates are on the
same table, the attributes may have
different distributions.

Example:
— sel(age = 2) ~0.053
— sel(name LIKE'A%') ~0.1

=

SELECT * FROM people
WHERE age = 2
AND name LIKE 'A%’
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OBSERVATION 5

We can compute selectivities for SELECT x FROM people
individual predicates, but what 1 """W”izg'tage =LiKE —
happens if there are multiple S B ULV

predicates in a query?

— Even though the predicates are on the
same table, the attributes may have . PI
different distributions.

P,

Example:
— sel(age = 2) ~0.053
— sel(name LIKE'A%') ~0.1
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OBSERVATION 5

We can compute selectivities for SELECT * FROM people
individual predicates, but what 1 WHi:E I:age =LiKE —
happens if there are multiple P AP aTe R PRI

predicates in a query?

— Even though the predicates are on the :
same table, the attributes may have el PI P24 .z
different distributions.

Example:
— sel(age = 2) ~0.053
— sel(name LIKE'A%') ~0.1


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ASSUMPTIONS

Assumption #1: Uniform Data

— The distribution of values (except for the heavy hitters) is the
same within a histogram bucket.

Assumption #2: Independent Predicates

— The selectivity of the conjunction of two or more predicates is
estimated as the product of their individual selectivities.
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MULTIPLE SELECTION CONDITION 5

Conjunction: SELECT * FROM people
— sel(P1 \ P2) = sel(P1) x sel(P2) WHERE age = 2
— Example: sel(age=2 A name LIKE 'A%") AND name LIKE 'A%
= sel(age=2) x sel(name LIKE 'A%')
20.053 x 0.1 ~0.0053

This assumes that the predicates are P, P,
independent.
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MULTIPLE SELECTION CONDITION 5

Conjunction: SELECT * FROM people
— sel(P1 A\ P2) = sel(P1) x sel(P2) WHERE age = 2
— Example: sel(age=2 A name LIKE 'A%') AND name LIKE 'A%

= sel(age=2) x sel(name LIKE 'A%')
20.053 x 0.1 ~0.0053

This assumes that the predicates are P, P,
independent.

Optimization: When there are M
icrosoft®

multiple predicates, diminish their SQ | Se rver

weights to reduce underestimations.
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MULTIPLE SELECTION CONDITION 5

Disjunction: SELECT * FROM people
— sel(P1V P2) WHERE age = 2
= sel(P1) + sel(P2) —sel(P1\ P2) OR name LIKE 'A%'

= sel(P1) + sel(P2) - sel(P1) x sel(P2)
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MULTIPLE SELECTION CONDITION 5

Disjunction: SELECT * FROM people
— sel(P1V P2) WHERE age = 2
= sel(P1) + sel(P2) —sel(P1\ P2) OR name LIKE 'A%’

= sel(P1) + sel(P2) - sel(P1) x sel(P2)
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MULTIPLE SELECTION CONDITION 5

Disjunction: SELECT * FROM people
— sel(P1V P2) WHERE age = 2
= sel(P1) + sel(P2) —sel(P1\ P2) OR name LIKE 'A%'

= sel(P1) + sel(P2) - sel(P1) x sel(P2)

— Example: sel(age=2\/ name LIKE 'A%')

20.053 + 0.1 -(0.053x0.1)

~0.1477 P, P,
This again assumes that the

selectivities are independent.
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CORRELATED ATTRIBUTES

Consider a database of automobiles:
— # of Makes = 10, # of Models = 100

Then the following query shows up:
—  WHERE (make='Honda' AND model='Accord')

With the independence and uniformity assumptions,
the selectivity is:
— 1/10 x1/100 = 0.001

But since only Honda makes Accords the real selectivity
is 1/100 = 0.01

Source: Guy Lohman
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JOIN SIZE ESTIMATION

Given a join of R and §, what is the range of possible

result sizes in # of tuples?
— In other words, for a given tuple of R, how many tuples of §
will it match?

Assume each key in the inner relation will exist in the
outer table.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ASSUMPTIONS

Assumption #1: Uniform Data

— The distribution of values (except for the heavy hitters) is the
same within a histogram bucket.

Assumption #2: Independent Predicates

— The selectivity of the conjunction of two or more predicates is
estimated as the product of their individual selectivities.

Assumption #3: Containment Principle

— The domain of join keys overlap such that each key in the inner
relation will also exist in the outer table.
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JOIN SIZE ESTIMATION

General case: R_; [ S, ={A} where A is not a primary

key for either table.

— Match each R-tuple with S-tuples:
estSize ~ N, x Ny / V(A,S)

— Symmetrically, for :
estSize &~ Ny x Ng/ V(A,R)

The cardinality estimate of a join is:
— estSize ~ Ny x Ny / max({V(A,S), V(A,R)})
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SELECT A.1id
FROM A, B, C
WHERE A.id = B.id
AND A.id = C.1id
AND B.id > 100

ERROR PROPAGATION

Compute the cardinality of base tables
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SELECT A.id
FROM A, B, C
WHERE A.id = B.id
AND A.id = C.id
AND B.id > 100

ERROR PROPAGATION

Compute the cardinality of base tables
A-|A|

B.id > 100~ |B| x sel(B.id > 100)
C-|C|
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SELECT A.id
FROM A, B, C
WHERE A.id = B.id
AND A.id = C.id
AND B.id > 100

T[’ A.id
t
A.id=C.idM

/./"
)
A B C

B.id>100

ERROR PROPAGATION

Compute the cardinality of base tables
A-|A|

B.id > 100~ |B| x sel(B.id > 100)
C-|C|

Compute the cardinality of join results
AXB = (|A| x |B]) /
max(sel(A.id=B.id), sel(B.id>100))
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SELECT A.id
FROM A, B, C
WHERE A.id
AND A.id
AND B.id

B.id
C.1id
100

AVARN | ||

ERROR PROPAGATION

Compute the cardinality of base tables
A-|A|
B.id > 100~ |B| x sel(B.id > 100)
C-|C|

Compute the cardinality of join results
AXB = (|A| x |B]) /
max(sel(A.id=B.id), sel(B.id>100))

(ADIB)IXIC = (|A| x |[B| x |C]) /
max(sel(A.id=B.id), sel(B.id>100),
sel(A.id=C.id))
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SELECT A.id
FROM A, B, C
WHERE A.id
AND A.id
i

= d
= d
AND B.id >

B.1i
C.1i
100

ERROR PROPAGATION

Compute the cardinality of base tables
A—> | A| ..... "

B.id > 1005 |B| x sel(B.id > [00)++-+++++++---- 5
C-|C| : :

Compute the éardmalzty of join results
AMB = (|A| x |B|) /
max(sel(A.id=B.id), sel(B.id>1 00))

(ADIB)IXIC = (|A| x |[B| x |C]) /
max(sel(A.id=B.id), sel(B.id>100),
sel(A.id=C.id))
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SELECT A.id
FROM A, B, C
WHERE A.id
AND A.id
i

= B.
= (€.
AND B.id > 10

ERROR PROPAGATION

Compute the cardinality of base tables
A—> | A| ..... "

B.id > 1005 |B| x sel(B.id > [00)++-+++++++---- 5
C-|C| : :

Compute the éardmaltty of join results
AMXB = (|A| x |B|) /
max(sel(A.id=B.id), sel(B.id>1 00))

(ADIB)IXIC = (|A| x |B| x |C|) /
max(sel(A.id=B.id), sel(B.id>100),
sel(A.id=C.id))
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CONCLUSION

Statistics allow the optimizer to summarize the contents

of the database.
— These data structures are only approximations of real data.

Then the optimizer guesses how many tuples it will

examine or emit at each operator in a query plan.
— Another approximation of what a real predicate will do.

This entire process is fraught with errors.
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CONCLUSION
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NEXT CLASS

Transactions!
— aka the second hardest part about database systems
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