Carnegie Mellon University

DISE e

Concurrency Control

LECTURE #17)) 15-445/645 FALL 2025)) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #3 is due Sunday Nov 16™ @ 11:59pm
— Recitation Video + Slides (see @235)

Homework #5 will be released Wednesday Nov 5%

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/235

UPCOMING DATABASE TALKS 5

Delta Lake (DB Seminar) A DELTA LAKE
— Monday Nov 3" @ 4:30pm
— Zoom

Apache Pinot @ Uber (DB Group) ? Pi N ot
— Tuesday Nov 4™ @ 12:00pm

— GHC 8115

Mooncake (DB Seminar) mooncake
— Monday Nov 10% @ 4:30pm
— Zoom

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/futuredata-deltalake/
https://db.cs.cmu.edu/events/real-time-analytics-query-architecture-evolution-uber-ankit-sultana/
https://db.cs.cmu.edu/events/futuredata-mooncake/

COURSE OUTLINE

We Nnow knOW hOW to blllld a Query Planning
DBMS that stores data and .
executes queries. Operator Execution
But it is not safe for production... Access Methods
Buffer Pool Manager

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

COURSE OUTLINE

Query Planning
We now know how to build a

DBMS that stores data and
executes queries. Operator Execution

But it is not safe for production...

Concurrency Control

Access Methods
A DBMS’s concurrency control and R
ecovery
recovery components permeate
throughout the design of its entire Buffer Pool Manager
architecture.

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE #A

Application Logic
B Read(A);
Check(A > $25);
Pay($25);
A=A - $25;
Write(A);

Read Balance: $100

N

—

Bank Balance: $100

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE #A

Application Logic
Read(A);

B Check(A > $25);
Pay($25);
A=A - $25;
Write(A);

Read Balance: $100

¥

Sufficient funds?

RN

—

Bank Balance: $100

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE #A

Application Logic
Read(A);
Check(A > $25);

» Pay($25);
A=A - $25;
Write(A);

Read Balance: $100

¥

Sufficient funds?

RN

—

¥

Pay $25

Bank Balance: $100

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE #A 5

Application Logic
Read(A): Read Balance: $100
(A); :
Check(A > $25); Sufficient funds? E::::a
; Bank Balance: $100
Pay($25); Pay $25 @
»A = A - $25; Newba&ce: $75

Write(A);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE #A

Application Logic
Read(A);
Check(A > $25);
Pay($25);

A=A - $25;

»Write(A);

Read Balance: $100

¥

Sufficient funds?

—

¥

Pay $25

Bank Balance: $75

¥

New balance: $75

¥

Write Balance: $75

N
v

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE #A 5

Application Logic
Read(A): Read Balance: $100
(A); :
Check (A > $25) X Sufficient funds? Q
Pa ($25) . > ;$25 Bank Balance: $100
ANY 3 =

Jo o 222
o owme

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE %

Application Logic

»Read(A);
Check(A > $25); ~=

Bank Balance: $100

Pay($25);

A=A - $25;
Write(A);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE

Application Logic
B Read(A);
Check(A > $25);
Pay($25);
A=A - $25;
Write(A);

Read Balance: $100

Read Balance: $100

b

Bank Balance: $100

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE %

Application Logic |
Read (A) ; Read Bala;nce: $100 Read Balice: $100
’
» Check (A > $25) : Sufficient funds? Sufficient funds?

Bank Balance: $100

Pay($25);

A=A - $25;
Write(A);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE %

Application Logic |
Read (A) ; Read Balice: $100 Read Balice: $100
’
Check (A > $25) : Sufficient funds? Sufficient funds?

; ; Bank Balance: $100
» Pay($25); Pay $25 Pay $25 @

A=A - $25;
Write(A);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE %

Application Logic |
Read (A) ; Read Bala;nce: $100 Read Balice: $100
’
Check (A > $25) : Sufficient funds? Sufficient funds?

P ($2 5) ; ; Bank Balance: $100
ay ; Pay;$25 Pa@ZS @
» A=A - $25 ’ New balance: $75 New balance: $75

Write(A);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE %

Application Logic |
Read (A) ; Read Balice: $100 Read Bala;nce: $100
b
Check (A > $25) ; Sufficient funds? Sufficient funds?

; ; Bank Balance: $75
Pay($25); Pay $25 Pay $25
I ¥ ¥
A=A $25 ’ New balance: $75 New balance: $75
. . 3 oW

» Write (A)) Write Balance: $75 Write Balance: $75

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as they
arrive at the DBMS.

— One and only one txn can run simultaneously in the DBMS.

Before a txn starts, copy the entire database to a new file

and make all changes to that file.

— [f the txn completes successfully, overwrite the original file
with the new one.

— If the txn fails, just remove the dirty copy.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROBLEM STATEMENT

A (potentially) better approach is to allow concurrent
execution of independent transactions.

Why do we want that?

— Better utilization/throughput
— Increased response times to users.

But we also would like:

— Correctness
— Fairness

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
— Temporary Inconsistency (ok, unavoidable)
— Permanent Inconsistency (bad!)

The DBMS is only concerned about what data is

read/written from/to the database.

— Changes to the “outside world” are beyond the scope of the
DBMS.

We need formal correctness criteria to determine
whether an interleaving is valid.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FORMAL DEFINITIONS

Database: A fixed set of named data objects
(e.g.,A,B,C,...).

— We do not need to define what these objects are now.
— We will discuss how to handle inserts/deletes next class.

Transaction: A sequence of read and write operations
(e.2., R(A), W(B), ...

— DBMS'’s abstract view of a user program.

— A new txn starts with the BEGIN command.

— The txn stops with either COMMIT or ROLLBACK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability

All actions in txn happen, or none happen.
“All or nothing...”

If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

[f a txn commits, its effects persist.
"My changes will survive...”

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TODAY'S AGENDA

Atomicity
Consistency
[solation
Durability

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:

— Commit after completing all its actions.

— Abort (or be aborted by the DBMS) after executing some
actions.

DBMS guarantees that txns are atomic.

— From application's point of view: txn always either executes all
its actions or executes no actions at all.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging

— DBMS records all actions in an ordered ledger so that it can
reverse (undo) the actions of aborted transactions.

— Maintain undo records both in memory and on disk.

— Replay log after crash to put database back in correct state.

— Think of this like the black box in airplanes...

Logging is used by almost every DBMS.
— Audit Trail
— Efficiency Reasons

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Flight_recorder

B MECHANISMS FOR ENSURING ATOMICITY 5

Approach #2: Shadow Paging

— DBMS makes copies of pages and txns make changes to those
copies. Make modified pages visible to other txns only when
the txn successfully commits.

— Instant recovery after a crash!

— Originally from IBM System R.

Few systems do this today:
— CouchDB

— Tokyo Cabinet
— LMDB (OpenLDAP)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

B MECHANISMS FOR ENSURING ATOMICITY 5

\ R 4
Q » Approach #2: Shadow Paging
Bon; — DBMS makes copies of pages and txns make changes to those

g copies. Make modified pages visible to other txns only when
Do This! the txn successfully commits.
— Instant recovery after a crash!
— Originally from IBM System R.

Few systems do this today:
— CouchDB

— Tokyo Cabinet
— LMDB (OpenLDAP)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENCY

The database accurately models the real world.

— SQL has methods to specify integrity constraints (e.g., key
definitions, CHECK and ADD CONSTRAINT) and the DBMS will
enforce them.

— Application must define these constraints.

— DBMS ensures that all ICs are true before and after the
transaction ends.

A note on Eventual Consistency.
— A committed transaction may see inconsistent results (e.g., may

not see the updates of an older committed txn).
— Difficult for developers to reason about such semantics.
— The trend is to move away from such models.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Eventual_consistency

ISOLATION OF TRANSACTIONS

Application submit txns to the DBMS, and each txn

executes as if it were running by itself.
— Easier programming model to reason about.

But the DBMS achieves concurrency by interleaving the
actions (reads/writes of DB objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the DBMS
decides the proper interleaving of operations from
multiple transactions.

Two categories of protocols:

— Pessimistic: Do not let problems arise in the first place.

— Optimistic: Assume conflicts are rare; deal with them after
they happen.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Concurrency_control#Concurrency_control_in_databases

1 EXAMPLE

Assume at first A and B each have $1000.
T, transfers $100 from A’s account to B’s
T, credits both accounts with 6% interest.

T, T,
BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

1 EXAMPLE

Assume at first A and B each have $1000.
W hat are the possible outcomes of running T, and T.,?

T, T,
BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE

Assume at first A and B each have $1000.
What are the possible outcomes of running T, and T,?

Many! But A+B should be:
— $2000%1.06=$2120

There is no guarantee that T, will execute before T, or
vice-versa, if both are submitted together.

But the outcome of the database must be equivalent to
these two txns running serially in some order.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE

Allowed database states:
— A=954,B=1166 + A+B=%$2120
— A=960,B=1160 - A+B=%$2120

The outcome depends on whether T, executes before T,
OT VICe Versa.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SERIAL EXECUTION EXAMPLE

Schedule
T1 T2
BEGIN
A=A-100
B=B+100
COMMIT
BEGIN
A=A%1.06
B=Bx1.06
COMMIT

A=954, B=1166

Schedule
T, T,
BEGIN
A=A%1.06
B=Bx1.06
COMMIT
BEGIN
A=A-100
B=B+100
COMMIT

A=960, B=1160

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SERIAL EXECUTION EXAMPLE

Schedule
T1 T2
BEGIN
A=A-100
B=B+100
COMMIT
BEGIN
A=A%1.06
B=Bx1.06
COMMIT

| A=954, B=1166 [«

Schedule
T, T,
BEGIN
A=A%1.06
B=Bx1.06
COMMIT
BEGIN
A=A-100
B=B+100
COMMIT

» A=960, B=1160 |

A+B=$2120

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

1 INTERLEAVING TRANSACTIONS

We want to interleave txns to maximize concurrency.
— Slow disk/network I/0O.

— Multi-core CPUs,
— Application pauses.

When one txn stalls because of a resource (e.g., page
fault), another txn can continue executing and make
forward progress.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

1 INTERLEAVING EXAMPLE (500D) 5

Schedule
T, T,
BEGIN
A=A-100
g BEGIN
A=Ax1.06
B=B+100 g
COMMIT
B=Bx1.06
COMMIT

A=954, B=1166

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

1 INTERLEAVING EXAMPLE (500D)

Schedule Schedule
T, T, T, T,
BEGIN BEGIN
A=A-100 A=A-100
g iEilN o B=B+100
=A*1. —
B=B+100 g B COMMIT BEGIN
COMMIT A=A%1.06
B=Bx1.06 B=Bx1.06
COMMIT COMMIT

A=954, B=1166 A=960, B=1160

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTERLEAVING EXAMPLE (500D) 5

Schedule Schedule
T1 TZ T1 TZ
BEGIN BEGIN
A=A-100 A=A-100
g BEGIN B=B+100
A=A%1.06

C(B=B+100 D g COMMIT BEGIN
COMMIT A=A%1.06

B=Bx1.06 B=B*1.06
COMMIT COMMIT

| A=954, B=1166 |« » A=960, B=1160 |

A+B=$2120

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTERLEAVING EXAMPLE (BAD)

Schedule
T1 TZ
BEGIN
A=A-100
aohet 06 A=954, B=1166
e | F or
B=B+100 A=960, B=1160

COMMIT

A=954, B=1160

__Off by 6!
A+B=%$2114

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTERLEAVING EXAMPLE (BAD)

Schedule DBMS View
T1 T2 T1 T2
BEGIN BEGIN
A=A-100 =—m——— J R(A)
BEGIN W(A)
A=Ax1.06 BEGIN
B=Bx1.06 R(A)
COMMIT W(A)
B=B+100 R(B)
COMMIT ~~'."'====:::: W(B)
\ COMMIT
_ _ R(B)
A=954, B=1160 WeB)
COMMIT

A+B=%$2114

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTERLEAVING EXAMPLE (BAD) 5

Schedule
T1 T2

BEGIN How do we judge whether a
BEGIN schedule 1s correct?
A=A%1.06 _ .
B=Bx1.06 If the schedule is equivalent to
COMMIT . .

B=B+100 some serial execution.

COMMIT

A=954, B=1160

A+B=%$2114

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

1 FORMAL PROPERTIES OF SCHEDULES 5

Serial Schedule

— A schedule that does not interleave the actions of different
transactions.

Equivalent Schedules

— For any database state, the effect of executing the first schedule
is identical to the effect of executing the second schedule.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

— A schedule that is equivalent to some serial execution of the
transactions.

— [f each transaction preserves consistency, every serializable
schedule preserves consistency.

Serializability is a less intuitive notion of correctness
compared to txn initiation time or commit order, but it

enables more flexibility in scheduling operations.
— More flexibility means better parallelism.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.

Two operations conflict if:

— They are by different transactions,
— They are on the same object and one of them is a write.

Interleaved Execution Anomalies
— Unrepeatable Read (Read-Write)

— Dirty Read (Write-Read)

— Lost Update (Write-Write)

— Phantom Reads (Scan-Write)
— Write-Skew (Read-Write)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

1 READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when
reading the same object multiple times.

T, T,
BEGIN
$10 4mmR(A)
BEGIN
R(A)
W(A)
COMMIT
R(A)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

1 READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when
reading the same object multiple times.

T, T,
BEGIN
$10 4mmR(A)
BEGIN
R(A) $10
W(A) $19
COMMIT
R(A)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when
reading the same object multiple times.

T, T,
BEGIN
$10 4mmR(A)
L P 4 BEGIN
R(A) $10
oo W(A) $19
COMMIT
$19 4mmR(A)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn
that has not committed yet.

$12

T, T,
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
COMMIT

ROLLBACK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn
that has not committed yet.

T, T,
BEGIN
$10 R(A)
$12 W(A) BEGIN
R(A) $12
W(A) $14
COMMIT
ROLLBACK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn
that has not committed yet.

COMMIT
(ROLLBACK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted data

from another uncommitted txn.

T, T,
BEGIN
$10 mmp W(A)
BEGIN
W(A) $19
W(B) Bob
COMMIT
Alice mmp w(B)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted data
from another uncommitted txn.

T, T,
BEGIN
$10 %
BEGIN
W(A) $19

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what it

means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels of serializability:
Conflict Serializability 4@ Most Common
View Serializability « No DBMS can do this

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
— They involve the same actions of the same transactions.
— Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:

— S is conflict equivalent to some serial schedule.

— Intuition: You can transform S into a serial schedule by
swapping consecutive non-conflicting operations of different
transactions.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

1 DEPENDENCY GRAPHS

One node per txn.
Edge from T; to T if:

— An operation 0; of T, conflicts with an
operation O; of T, and

— 0; appears earlier in the schedule than 0;.

Dependency Graph

Also known as a precedence graph.
A schedule is conflict serializable iff its
dependency graph is acyclic.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE #1

Schedule
T, T,
BEGIN BEGIN
R(A)
W(A)
")
W(A)
R(B)
W(B)
R(B)
W(B)
COMMIT COMMIT

Dependency Graph
A

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE #1 5

Schedule Dependency Graph
T 1 T2 A

BEGIN BEGIN
o@iBo
W(A)
ot
®, :
R(B)
oWy i)
R(B)

Pl
W(B)

COMMIT COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T, T,
BEGIN BEGIN
R(A)
W(A)
ot
.
R(B)
Y Al JPAUCY
REB)/
W(B)
COMMIT COMMIT

EXAMPLE #1

Dependency Graph
A

(7., (7.,
r—ﬂ -
Th -

e cycle in the graph reveals the

problem.
The output of T,dependsonT,,

and vice-versa.
_ Yy,

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PU EXAMPLE #2: THREE TRANSACTIONS &

Schedule Dependency Graph

T, T, T, G @
BEGIN
R(A)
W(A) BEGIN A
R(A)
o

BEGIN | COMMIT
R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE #2: THREE TRANSACTIONS

Schedule
T1 TZ T3

BEGIN

R(A)

W(A BEGIN

W(A)

BEGIN | COMMIT
R(B)
W(B)

R(B) | COMMIT

W(B)

COMMIT

Dependency Graph

@

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE #2: THREE TRANSACTIONS

Schedule
T, T, T,
BEGIN
R(A)
W(A) BEGIN
\ R(A)
W(A)
BEGIN | COMMIT
R(B)
W(B)
R(B) | COMMIT
W(B)

COMMIT

Dependency Graph

@

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE #2: THREE TRANSACTIONS

Schedule
T, T, T,
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
BEGIN | COMMIT
R(B)
W(B)
R(B)/ COMMIT
W(B)
COMMIT

Dependency Graph

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE #2: THREE TRANSACTIONS

Schedule
T, T, T,
BEGIN
R(A)
W(A) BEGIN
RCA)
W(A)
BEGIN | COMMIT
R(B)
W(B)
R(B)‘(/'COMMIT
W(B)
COMMIT

Dependency Graph

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PU EXAMPLE #2: THREE TRANSACTIONS &

Schedule Dependency Graph
T1 T2 T3
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
BEGIN | COMMIT
R(B)
W(B) Is this equivalent to a serial execution?
R(B) / COMMIT
e Yes (T,, T, T,)
COMMIT — Notice that T, should go after T,

although it starts before it!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BU EXAMPLE #3: INCONSISTENT ANALYSIS M

Schedule Dependency Graph
T1 T2
BEGIN BEGIN
R(A)
A = A-10
W(A)
R(A)
sum = A
R(B)
sum += B
COMMIT
R(B) ret(sum)

B = B+10
W(B)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BU EXAMPLE #3: INCONSISTENT ANALYSIS M

Schedule Dependency Graph
T T, A
BEGIN BEGIN
R(A)
A = A-10
W(A)
0
sum = A
R(B)
sum += B
COMMIT
R(B) ret(sum)

B = B+10
W(B)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE #3: INCONSISTENT ANALYSIS

Schedule
T1 T2
BEGIN BEGIN
R(A)
A = A-10
W(A)
0

B =
W(B)
COMMIT

2.
sum += B
OO/ vt
R(B) ret(sum)
10

sum = A
R(B)

Dependency Graph

B

[s it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE #3: INCONSISTENT ANALYSIS

Schedule
T1 T2
BEGIN BEGIN
R(A)
A= A-10
W(A) cnt = 0
R(A)

R(B)

B = B+10
W(B)
COMMIT

if(A=0): cnt++

R(B)

if(B=0): cnt++

COMMIT

ret(cnt)

Dependency Graph

B

[s it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VIEW SERIALIZABILITY

Alternative (broader) notion of serializability.

Schedules S; and S, are view equivalent if:

— If T, reads initial value of A in S,, then T, also reads initial value
of Ain S,.

— If T, reads value of A written by T, in S,, then T, also reads
value of A written by T, in S,

— If T, writes final value of A in S, then T, also writes final value
of Ain S,.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VIEW SERIALIZABILITY

Schedule
T1 T2 T3
BEGIN
R(A)~g| BEGIN
W(A)
BEGIN
W(A)
W(A)
COMMIT | COMMIT | COMMIT

Dependency Graph
A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VIEW SERIALIZABILITY =

Schedule Dependency Graph
T 1 T2 T3

A
BEGIN
R(A) BEGIN G G
W(A)
BEGIN
W(A)
A

W(A)
COMMIT | COMMIT | COMMIT G

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T 1

VIEW SERIALIZABILITY

T,

Ts

COMMIT

BEGIN

R(A)ag] BEGIN
W(A)

W(A)

COMMIT

BEGIN

W(A)
COMMIT

Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T 1

VIEW SERIALIZABILITY

T,

Ts

COMMIT

BEGIN
R(A)ag] BEGIN
W(A)
BEGIN
W(A)

COMMIT

W(A)
COMMIT

Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T 1

VIEW SERIALIZABILITY

T,

Ts

COMMIT

BEGIN
R(A)ag] BEGIN
W(A)
BEGIN
W(A)
W(A)

COMMIT

COMMIT

Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VIEW SERIALIZABILITY

Schedule
T1 T2 T3
BEGIN
R(A) | BEGIN
W(A)

BEGIN
W(A)

W(A)
COMMIT | COMMIT | COMMIT

VIEW

Schedule
T1 T2 T3
BEGIN
R(A)
W(A)
COMMIT
BEGIN
W(A)
COMMIT
BEGIN
W(A)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VIEW SERIALIZABILITY

Schedule Schedule
T1 T2 T3 T1 T2 T3
BEGIN BEGIN
R(A) BEGIN R(A)
W(A) W(A)
COMMIT
W(A) BEGIN
C W(A)
COMMIT | COMMIT COMMIT
BEGIN
Allows all conflict W)
serializable schedules + COMMIT
)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SERIALIZABILITY

View Serializability allows for (slightly) more

schedules than Conflict Serializability does.
— But it is difficult to enforce efficiently.

Neither definition allows all schedules that you would

consider “serializable.”

— This DBMSs do not understand the meanings of the operations
or the data (recall example #3)

— In practice, Conflict Serializability is what systems support
because it can be enforced efficiently.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

UNIVERSE OF SCHEDULES
All Schedules
View Serializable
Conflict Serializable

| Serial |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

D TRANSACTION DURABILITY

All the changes of committed transactions should be

persistent.
— No torn updates.
— No changes from failed transactions.

The DBMS can use either logging or shadow paging to
ensure that all changes are durable.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability

All actions in txn happen, or none happen.
“All or nothing...”

If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

[f a txn commiits, its effects persist.
"My changes will survive...”

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability

Redo/Undo Mechanisms
Concurrency Control

Integrity Constraints
Replication Protocols

Concurrency Control

Redo/Undo Mechanisms
Replication

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability

Redo/Undo Mechanisms
Concurrency Control

Integrity Constraints
Replication Protocols

Concurrency Control

Redo/Undo Mechanisms
Replication

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCLUSION

Concurrency control and recovery are among the most
important functions provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock requests and
schedules actions of different txns.

— Ensures that resulting execution is equivalent to executing the
txns one after the other in some order.

The NoSQL movement was pushing the narrative that
txns were bad / slow. That trend has (mostly) passed!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Spanner; Google’s Clobally-l)istribuled Database

James C. Corber, Jeffrey Dean, Michael Epstein, Andrew Fikes, (] hristopher Frosi, JJ Furman,
Sanjay Ghemawar, Andrey Gubarey, ¢ hristopher Heiser. Peter Hochschild, Wilson Hsieh,

Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lioyd, Sergey Melnik, David M waura,

C O n C urr e n CY C O ntr O 1 an d r e C OVe David Nagle, Sean Qucf;::‘?::uplfitr’\ }fi(fl(:’rj‘ f(.::;;r!y;zf:fﬁlflf;;;:S:I’::Zo Michal Szymaniak,

Gaogle, Inc.

important functions provided b

. 5 . 1 or 2 datacenter failures.
Spanner is Google’s scalable, multi-version, globally-

distributed, and synchmnumly-rcplu.ucd database. It ¥
° m t the first system (o distribute data at global scale andsup- - teplicated data, but we have aso speat a great deal of
I l I l O 1 S a uto a pott externally-consistent distributed transactions. This ~ 'ime in designing and implementing important database
rr e C C O r paper describes how Spanner is sy ructured, its feature ser, Features on top of our @smhumdayneum nfrastructure
O Il C u the rationale underlying various design decisions, and a Even though many projects happily use Biguable (9), we

. novel time AP that exposes clock uncertainty. This Ap; ~ bave also consistently received complaints from users
. S erts O C and its implementation are crigeal supporting exter. (hat Bigtable can be difficult 1o use for some kinds of ap-
System auto m atlca y 1n Bl consistency and a variety of powertul foaturess g Plications: (e, that have complex, evoiving schemas,

blocking reads in the past, lock-free read-only transac- or those that want strong consistency in the Ppresence of

. . f f r ent tXn S . tions. and atomic schema changes, across all of Spanner. :; fdzafnr:g";if”;’;;' ;q[‘\'m"‘; :;::lh.l:a::;:i 2‘;6;’]::1‘::
ons of diffe =
schedules acti

have chosen 1o use Megastore {5) because of its senmi-

Spanner's main focu

is managin, 2 cross-datacenter

1 Introduction relational data model and SUPport for synchronous repij-

.

. . n ls ife its relatively poor write throughput, As a

Itln g eXe Cutlo e, Spanver has evolved from a Bigtable.like

E sures th at resu . . fey-value store int0 1 temporal multioyersig

H n e lt it is stored in schemarized semi-relational
We e leV is versioned. and each Version is automati-

pmped with its commit time; old versions of

ject to configurabje garbage-colfection poli-
pPlications can read data at old 1 nestamps.
[Ports general-purpose transactions, and pro-

. - * er—
1s better to have application programmers deal with p

ally-distributed database, Spanner provides

esting features. First, the replication con-
Pr data can be dynamically controlied at a

i bot- o
formance problems due to overuse of transactions as b

is from its users (to control read latency),
as are from each other (to controf write fa.

- lack fpammoa
. Odln around the Sty an o mined 10 con-
tlenecks ar 1S€, I ather than always ¢ & B . ey movd

centers. Second, Spanner has two features
o implement in a distributed database: it

of transactions.

OTZ07TZ 1
ae

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf

NEXT CLASS

Two-Phase Locking
[solation Levels

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Concurrency Control Theory
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: COURSE OUTLINE
	Slide 5: COURSE OUTLINE
	Slide 6: MOTIVATION EXAMPLE #1
	Slide 7: MOTIVATION EXAMPLE #1
	Slide 8: MOTIVATION EXAMPLE #1
	Slide 9: MOTIVATION EXAMPLE #1
	Slide 10: MOTIVATION EXAMPLE #1
	Slide 11: MOTIVATION EXAMPLE #1
	Slide 12: MOTIVATION EXAMPLE #2
	Slide 13: MOTIVATION EXAMPLE #2
	Slide 14: MOTIVATION EXAMPLE #2
	Slide 15: MOTIVATION EXAMPLE #2
	Slide 16: MOTIVATION EXAMPLE #2
	Slide 17: MOTIVATION EXAMPLE #2
	Slide 18: STRAWMAN SYSTEM
	Slide 19: PROBLEM STATEMENT
	Slide 20: PROBLEM STATEMENT
	Slide 21: FORMAL DEFINITIONS
	Slide 22: CORRECTNESS CRITERIA: ACID
	Slide 23: TODAY'S AGENDA

	Atomicity
	Slide 24: ATOMICITY OF TRANSACTIONS
	Slide 25: MECHANISMS FOR ENSURING ATOMICITY
	Slide 26: MECHANISMS FOR ENSURING ATOMICITY
	Slide 27: MECHANISMS FOR ENSURING ATOMICITY

	Consistency
	Slide 28: CONSISTENCY

	Isolation
	Slide 29: ISOLATION OF TRANSACTIONS
	Slide 30: MECHANISMS FOR ENSURING ISOLATION
	Slide 31: EXAMPLE
	Slide 32: EXAMPLE
	Slide 33: EXAMPLE
	Slide 34: EXAMPLE
	Slide 35: SERIAL EXECUTION EXAMPLE
	Slide 36: SERIAL EXECUTION EXAMPLE
	Slide 37: INTERLEAVING TRANSACTIONS
	Slide 38: INTERLEAVING EXAMPLE (GOOD)
	Slide 39: INTERLEAVING EXAMPLE (GOOD)
	Slide 40: INTERLEAVING EXAMPLE (GOOD)
	Slide 41: INTERLEAVING EXAMPLE (BAD)
	Slide 42: INTERLEAVING EXAMPLE (BAD)
	Slide 43: INTERLEAVING EXAMPLE (BAD)
	Slide 44: FORMAL PROPERTIES OF SCHEDULES
	Slide 45: FORMAL PROPERTIES OF SCHEDULES
	Slide 46: CONFLICTING OPERATIONS
	Slide 47: READ-WRITE CONFLICTS
	Slide 48: READ-WRITE CONFLICTS
	Slide 49: READ-WRITE CONFLICTS
	Slide 50: WRITE-READ CONFLICTS
	Slide 51: WRITE-READ CONFLICTS
	Slide 52: WRITE-READ CONFLICTS
	Slide 53: WRITE-WRITE CONFLICTS
	Slide 54: WRITE-WRITE CONFLICTS
	Slide 55: FORMAL PROPERTIES OF SCHEDULES
	Slide 56: CONFLICT SERIALIZABLE SCHEDULES
	Slide 57: DEPENDENCY GRAPHS
	Slide 58: EXAMPLE #1
	Slide 59: EXAMPLE #1
	Slide 60: EXAMPLE #1
	Slide 61: EXAMPLE #2: THREE TRANSACTIONS
	Slide 62: EXAMPLE #2: THREE TRANSACTIONS
	Slide 63: EXAMPLE #2: THREE TRANSACTIONS
	Slide 64: EXAMPLE #2: THREE TRANSACTIONS
	Slide 65: EXAMPLE #2: THREE TRANSACTIONS
	Slide 66: EXAMPLE #2: THREE TRANSACTIONS
	Slide 67: EXAMPLE #3: INCONSISTENT ANALYSIS
	Slide 68: EXAMPLE #3: INCONSISTENT ANALYSIS
	Slide 69: EXAMPLE #3: INCONSISTENT ANALYSIS
	Slide 70: EXAMPLE #3: INCONSISTENT ANALYSIS
	Slide 71: VIEW SERIALIZABILITY
	Slide 72: VIEW SERIALIZABILITY
	Slide 73: VIEW SERIALIZABILITY
	Slide 74: VIEW SERIALIZABILITY
	Slide 75: VIEW SERIALIZABILITY
	Slide 76: VIEW SERIALIZABILITY
	Slide 77: VIEW SERIALIZABILITY
	Slide 78: VIEW SERIALIZABILITY
	Slide 79: SERIALIZABILITY
	Slide 80: UNIVERSE OF SCHEDULES

	Durability
	Slide 81: TRANSACTION DURABILITY

	Conclusion
	Slide 82: CORRECTNESS CRITERIA: ACID
	Slide 83: CORRECTNESS CRITERIA: ACID
	Slide 84: CORRECTNESS CRITERIA: ACID
	Slide 85: CONCLUSION
	Slide 86: CONCLUSION
	Slide 87: NEXT CLASS

