
DatabaseSystems

15-445/645 FALL 2025

15- 445/645 FALL 2025
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Concurrency Control Theory
LECTURE #17

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ADMINISTRIVIA

Project #3 is due Sunday Nov 16th @ 11:59pm
→ Recitation Video + Slides (see @235)

Homework #5 will be released Wednesday Nov 5th

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/235

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

UPCOMING DATABASE TALKS

Delta Lake (DB Seminar)
→ Monday Nov 3rd @ 4:30pm
→ Zoom

Apache Pinot @ Uber (DB Group)
→ Tuesday Nov 4th @ 12:00pm
→ GHC 8115

Mooncake (DB Seminar)
→ Monday Nov 10th @ 4:30pm
→ Zoom

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/futuredata-deltalake/
https://db.cs.cmu.edu/events/real-time-analytics-query-architecture-evolution-uber-ankit-sultana/
https://db.cs.cmu.edu/events/futuredata-mooncake/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COURSE OUTLINE

We now know how to build a
DBMS that stores data and
executes queries.
But it is not safe for production…

4

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Concurrency Control

Recovery

COURSE OUTLINE

We now know how to build a
DBMS that stores data and
executes queries.
But it is not safe for production…

A DBMS’s concurrency control and
recovery components permeate
throughout the design of its entire
architecture.

4

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Read Balance: $100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds?

Read Balance: $100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds?

Read Balance: $100

Pay $25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds?

New balance: $75

Read Balance: $100

Pay $25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds?

New balance: $75

Bank Balance: $75

Read Balance: $100

Pay $25

Write Balance: $75

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds?

Read Balance: $100

Pay $25

???

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Read Balance: $100 Read Balance: $100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

New balance: $75 New balance: $75

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100Bank Balance: $75

New balance: $75 New balance: $75

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25

Write Balance: $75 Write Balance: $75

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as they
arrive at the DBMS.
→ One and only one txn can run simultaneously in the DBMS.

Before a txn starts, copy the entire database to a new file
and make all changes to that file.
→ If the txn completes successfully, overwrite the original file

with the new one.
→ If the txn fails, just remove the dirty copy.

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PROBLEM STATEMENT

A (potentially) better approach is to allow concurrent
execution of independent transactions.

Why do we want that?
→ Better utilization/throughput
→ Increased response times to users.

But we also would like:
→ Correctness
→ Fairness

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
→ Temporary Inconsistency (ok, unavoidable)
→ Permanent Inconsistency (bad!)

The DBMS is only concerned about what data is
read/written from/to the database.
→ Changes to the “outside world” are beyond the scope of the

DBMS.

We need formal correctness criteria to determine
whether an interleaving is valid.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

FORMAL DEFINITIONS

Database: A fixed set of named data objects
(e.g., A, B, C, …).
→ We do not need to define what these objects are now.
→ We will discuss how to handle inserts/deletes next class.

Transaction: A sequence of read and write operations
(e.g., R(A), W(B), …)
→ DBMS’s abstract view of a user program.
→ A new txn starts with the BEGIN command.
→ The txn stops with either COMMIT or ROLLBACK

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CORRECTNESS CRITERIA: ACID
11

Atomicity All actions in txn happen, or none happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“My changes will survive…”

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TODAY'S AGENDA
Atomicity

Consistency

Isolation

Durability

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:
→ Commit after completing all its actions.
→ Abort (or be aborted by the DBMS) after executing some

actions.

DBMS guarantees that txns are atomic.
→ From application's point of view: txn always either executes all

its actions or executes no actions at all.

13A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging
→ DBMS records all actions in an ordered ledger so that it can

reverse (undo) the actions of aborted transactions.
→ Maintain undo records both in memory and on disk.
→ Replay log after crash to put database back in correct state.
→ Think of this like the black box in airplanes…

Logging is used by almost every DBMS.
→ Audit Trail
→ Efficiency Reasons

14A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Flight_recorder

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging
→ DBMS makes copies of pages and txns make changes to those

copies. Make modified pages visible to other txns only when
the txn successfully commits.

→ Instant recovery after a crash!
→ Originally from IBM System R.

Few systems do this today:
→ CouchDB
→ Tokyo Cabinet
→ LMDB (OpenLDAP)

15A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging
→ DBMS makes copies of pages and txns make changes to those

copies. Make modified pages visible to other txns only when
the txn successfully commits.

→ Instant recovery after a crash!
→ Originally from IBM System R.

Few systems do this today:
→ CouchDB
→ Tokyo Cabinet
→ LMDB (OpenLDAP)

15A

Don't
Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONSISTENCY

The database accurately models the real world.
→ SQL has methods to specify integrity constraints (e.g., key

definitions, CHECK and ADD CONSTRAINT) and the DBMS will
enforce them.

→ Application must define these constraints.
→ DBMS ensures that all ICs are true before and after the

transaction ends.

A note on Eventual Consistency.
→ A committed transaction may see inconsistent results (e.g., may

not see the updates of an older committed txn).
→ Difficult for developers to reason about such semantics.
→ The trend is to move away from such models.

16C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Eventual_consistency

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ISOLATION OF TRANSACTIONS

Application submit txns to the DBMS, and each txn
executes as if it were running by itself.
→ Easier programming model to reason about.

But the DBMS achieves concurrency by interleaving the
actions (reads/writes of DB objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

17I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the DBMS
decides the proper interleaving of operations from
multiple transactions.

Two categories of protocols:
→ Pessimistic: Do not let problems arise in the first place.
→ Optimistic: Assume conflicts are rare; deal with them after

they happen.

18I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Concurrency_control#Concurrency_control_in_databases

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE

Assume at first A and B each have $1000.

T1 transfers $100 from A’s account to B’s

T2 credits both accounts with 6% interest.

19

BEGIN
A=A-100
B=B+100
COMMIT

T1
BEGIN
A=A*1.06
B=B*1.06
COMMIT

T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE

Assume at first A and B each have $1000.

What are the possible outcomes of running T1 and T2?

20

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE

Assume at first A and B each have $1000.

What are the possible outcomes of running T1 and T2?

Many! But A+B should be:
→ $2000*1.06=$2120

There is no guarantee that T1 will execute before T2 or
vice-versa, if both are submitted together.

But the outcome of the database must be equivalent to
these two txns running serially in some order.

21I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE

Allowed database states:
→ A=954, B=1166
→ A=960, B=1160

The outcome depends on whether T1 executes before T2
or vice versa.

22

→ A+B=$2120
→ A+B=$2120

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ScheduleSchedule

SERIAL EXECUTION EXAMPLE
23

≡

A=954, B=1166 A=960, B=1160

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ScheduleSchedule

SERIAL EXECUTION EXAMPLE
23

≡

A=954, B=1166 A=960, B=1160

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

A+B=$2120

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INTERLEAVING TRANSACTIONS

We want to interleave txns to maximize concurrency.
→ Slow disk/network I/O.
→ Multi-core CPUs.
→ Application pauses.

When one txn stalls because of a resource (e.g., page
fault), another txn can continue executing and make
forward progress.

24I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INTERLEAVING EXAMPLE (GOOD)
25

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INTERLEAVING EXAMPLE (GOOD)
25

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INTERLEAVING EXAMPLE (GOOD)
25

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

T
IM

E

A+B=$2120

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INTERLEAVING EXAMPLE (BAD)
26

≢
A=954, B=1166

or
A=960, B=1160

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule
T1 T2

A=954, B=1160

A+B=$2114

I

T
IM

E

Off by $6!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

DBMS View

T1 T2

INTERLEAVING EXAMPLE (BAD)
27

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule
T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INTERLEAVING EXAMPLE (BAD)
27

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule
T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

How do we judge whether a
schedule is correct?

If the schedule is equivalent to
some serial execution.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

FORMAL PROPERTIES OF SCHEDULES

Serial Schedule
→ A schedule that does not interleave the actions of different

transactions.

Equivalent Schedules
→ For any database state, the effect of executing the first schedule

is identical to the effect of executing the second schedule.

28I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule
→ A schedule that is equivalent to some serial execution of the

transactions.
→ If each transaction preserves consistency, every serializable

schedule preserves consistency.

Serializability is a less intuitive notion of correctness
compared to txn initiation time or commit order, but it
enables more flexibility in scheduling operations.
→ More flexibility means better parallelism.

29I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.

Two operations conflict if:
→ They are by different transactions,
→ They are on the same object and one of them is a write.

Interleaved Execution Anomalies
→ Unrepeatable Read (Read-Write)
→ Dirty Read (Write-Read)
→ Lost Update (Write-Write)
→ Phantom Reads (Scan-Write)
→ Write-Skew (Read-Write)

30I

Lecture #18

Lecture #20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when
reading the same object multiple times.

31

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when
reading the same object multiple times.

31

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when
reading the same object multiple times.

31

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn
that has not committed yet.

32

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn
that has not committed yet.

32

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn
that has not committed yet.

32

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted data
from another uncommitted txn.

33

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Bob
$19

T1 T2

$10

Alice

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted data
from another uncommitted txn.

33

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Bob
$19

T1 T2

$10

Alice

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what it
means for a schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:

Conflict Serializability

View Serializability

34I

Most Common

No DBMS can do this

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
→ They involve the same actions of the same transactions.
→ Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:
→ S is conflict equivalent to some serial schedule.
→ Intuition: You can transform S into a serial schedule by

swapping consecutive non-conflicting operations of different
transactions.

35I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DEPENDENCY GRAPHS

One node per txn.

Edge from Ti to Tj if:
→ An operation Oi of Ti conflicts with an

operation Oj of Tj and
→ Oi appears earlier in the schedule than Oj.

Also known as a precedence graph.
A schedule is conflict serializable iff its
dependency graph is acyclic.

36

Ti Tj

I

Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #1
37

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)

COMMIT

T1 T2

A

Schedule
T1 T2

Dependency Graph

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #1
37

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)

COMMIT

T1 T2

A

B

Schedule
T1 T2

Dependency Graph

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #1
37

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)

COMMIT

T1 T2

A

B

The cycle in the graph reveals the
problem.
The output of T1 depends on T2,
and vice-versa.

Schedule
T1 T2

Dependency Graph

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #2: THREE TRANSACTIONS
38

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

A

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #2: THREE TRANSACTIONS
38

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

A

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #2: THREE TRANSACTIONS
38

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

A

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #2: THREE TRANSACTIONS
38

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #2: THREE TRANSACTIONS
38

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #2: THREE TRANSACTIONS
38

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule
T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #3: INCONSISTENT ANALYSIS
39

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
COMMIT
ret(sum)

T1 T2

Schedule
T1 T2

I

Dependency Graph
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #3: INCONSISTENT ANALYSIS
39

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
COMMIT
ret(sum)

T1 T2

Schedule
T1 T2 A

I

Dependency Graph
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #3: INCONSISTENT ANALYSIS
39

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
COMMIT
ret(sum)

T1 T2

Is it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?

Schedule
T1 T2 A

B

I

Dependency Graph
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE #3: INCONSISTENT ANALYSIS
39

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
COMMIT
ret(sum)

T1 T2

Is it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?

Schedule
T1 T2 A

B
cnt = 0

if(A≥0): cnt++

if(B≥0): cnt++

ret(cnt)

I

Dependency Graph
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY

Alternative (broader) notion of serializability.

Schedules S1 and S2 are view equivalent if:
→ If T1 reads initial value of A in S1, then T1 also reads initial value

of A in S2.
→ If T1 reads value of A written by T2 in S1, then T1 also reads

value of A written by T2 in S2.
→ If T1 writes final value of A in S1, then T1 also writes final value

of A in S2.

40I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A
T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

A

T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

A
A

T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

AA
A

T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
42

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡
VIEW

Schedule
T1 T2 T3

Schedule
T1 T2 T3

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
42

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡
VIEW

Schedule
T1 T2 T3

Allows all conflict
serializable schedules +
“blind writes”

Schedule
T1 T2 T3

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SERIALIZABILITY

View Serializability allows for (slightly) more
schedules than Conflict Serializability does.
→ But it is difficult to enforce efficiently.

Neither definition allows all schedules that you would
consider “serializable.”
→ This DBMSs do not understand the meanings of the operations

or the data (recall example #3)
→ In practice, Conflict Serializability is what systems support

because it can be enforced efficiently.

43I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

All Schedules

UNIVERSE OF SCHEDULES
44

View Serializable

Conflict Serializable

I

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION DURABILITY

All the changes of committed transactions should be
persistent.
→ No torn updates.
→ No changes from failed transactions.

The DBMS can use either logging or shadow paging to
ensure that all changes are durable.

45D

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CORRECTNESS CRITERIA: ACID
46

Atomicity All actions in txn happen, or none happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“My changes will survive…”

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CORRECTNESS CRITERIA: ACID
47

Atomicity Redo/Undo Mechanisms
Concurrency Control

Consistency Integrity Constraints
Replication Protocols

Isolation Concurrency Control

Durability Redo/Undo Mechanisms
Replication

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CORRECTNESS CRITERIA: ACID
47

Atomicity Redo/Undo Mechanisms
Concurrency Control

Consistency Integrity Constraints
Replication Protocols

Isolation Concurrency Control

Durability Redo/Undo Mechanisms
Replication

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

Concurrency control and recovery are among the most
important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and

schedules actions of different txns.
→ Ensures that resulting execution is equivalent to executing the

txns one after the other in some order.

The NoSQL movement was pushing the narrative that
txns were bad / slow. That trend has (mostly) passed!

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

Concurrency control and recovery are among the most
important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and

schedules actions of different txns.
→ Ensures that resulting execution is equivalent to executing the

txns one after the other in some order.

The NoSQL movement was pushing the narrative that
txns were bad / slow. That trend has (mostly) passed!

48

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

NEXT CLASS

Two-Phase Locking

Isolation Levels

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Concurrency Control Theory
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: COURSE OUTLINE
	Slide 5: COURSE OUTLINE
	Slide 6: MOTIVATION EXAMPLE #1
	Slide 7: MOTIVATION EXAMPLE #1
	Slide 8: MOTIVATION EXAMPLE #1
	Slide 9: MOTIVATION EXAMPLE #1
	Slide 10: MOTIVATION EXAMPLE #1
	Slide 11: MOTIVATION EXAMPLE #1
	Slide 12: MOTIVATION EXAMPLE #2
	Slide 13: MOTIVATION EXAMPLE #2
	Slide 14: MOTIVATION EXAMPLE #2
	Slide 15: MOTIVATION EXAMPLE #2
	Slide 16: MOTIVATION EXAMPLE #2
	Slide 17: MOTIVATION EXAMPLE #2
	Slide 18: STRAWMAN SYSTEM
	Slide 19: PROBLEM STATEMENT
	Slide 20: PROBLEM STATEMENT
	Slide 21: FORMAL DEFINITIONS
	Slide 22: CORRECTNESS CRITERIA: ACID
	Slide 23: TODAY'S AGENDA

	Atomicity
	Slide 24: ATOMICITY OF TRANSACTIONS
	Slide 25: MECHANISMS FOR ENSURING ATOMICITY
	Slide 26: MECHANISMS FOR ENSURING ATOMICITY
	Slide 27: MECHANISMS FOR ENSURING ATOMICITY

	Consistency
	Slide 28: CONSISTENCY

	Isolation
	Slide 29: ISOLATION OF TRANSACTIONS
	Slide 30: MECHANISMS FOR ENSURING ISOLATION
	Slide 31: EXAMPLE
	Slide 32: EXAMPLE
	Slide 33: EXAMPLE
	Slide 34: EXAMPLE
	Slide 35: SERIAL EXECUTION EXAMPLE
	Slide 36: SERIAL EXECUTION EXAMPLE
	Slide 37: INTERLEAVING TRANSACTIONS
	Slide 38: INTERLEAVING EXAMPLE (GOOD)
	Slide 39: INTERLEAVING EXAMPLE (GOOD)
	Slide 40: INTERLEAVING EXAMPLE (GOOD)
	Slide 41: INTERLEAVING EXAMPLE (BAD)
	Slide 42: INTERLEAVING EXAMPLE (BAD)
	Slide 43: INTERLEAVING EXAMPLE (BAD)
	Slide 44: FORMAL PROPERTIES OF SCHEDULES
	Slide 45: FORMAL PROPERTIES OF SCHEDULES
	Slide 46: CONFLICTING OPERATIONS
	Slide 47: READ-WRITE CONFLICTS
	Slide 48: READ-WRITE CONFLICTS
	Slide 49: READ-WRITE CONFLICTS
	Slide 50: WRITE-READ CONFLICTS
	Slide 51: WRITE-READ CONFLICTS
	Slide 52: WRITE-READ CONFLICTS
	Slide 53: WRITE-WRITE CONFLICTS
	Slide 54: WRITE-WRITE CONFLICTS
	Slide 55: FORMAL PROPERTIES OF SCHEDULES
	Slide 56: CONFLICT SERIALIZABLE SCHEDULES
	Slide 57: DEPENDENCY GRAPHS
	Slide 58: EXAMPLE #1
	Slide 59: EXAMPLE #1
	Slide 60: EXAMPLE #1
	Slide 61: EXAMPLE #2: THREE TRANSACTIONS
	Slide 62: EXAMPLE #2: THREE TRANSACTIONS
	Slide 63: EXAMPLE #2: THREE TRANSACTIONS
	Slide 64: EXAMPLE #2: THREE TRANSACTIONS
	Slide 65: EXAMPLE #2: THREE TRANSACTIONS
	Slide 66: EXAMPLE #2: THREE TRANSACTIONS
	Slide 67: EXAMPLE #3: INCONSISTENT ANALYSIS
	Slide 68: EXAMPLE #3: INCONSISTENT ANALYSIS
	Slide 69: EXAMPLE #3: INCONSISTENT ANALYSIS
	Slide 70: EXAMPLE #3: INCONSISTENT ANALYSIS
	Slide 71: VIEW SERIALIZABILITY
	Slide 72: VIEW SERIALIZABILITY
	Slide 73: VIEW SERIALIZABILITY
	Slide 74: VIEW SERIALIZABILITY
	Slide 75: VIEW SERIALIZABILITY
	Slide 76: VIEW SERIALIZABILITY
	Slide 77: VIEW SERIALIZABILITY
	Slide 78: VIEW SERIALIZABILITY
	Slide 79: SERIALIZABILITY
	Slide 80: UNIVERSE OF SCHEDULES

	Durability
	Slide 81: TRANSACTION DURABILITY

	Conclusion
	Slide 82: CORRECTNESS CRITERIA: ACID
	Slide 83: CORRECTNESS CRITERIA: ACID
	Slide 84: CORRECTNESS CRITERIA: ACID
	Slide 85: CONCLUSION
	Slide 86: CONCLUSION
	Slide 87: NEXT CLASS

