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ADMINISTRIVIA

Project #3 is due Sunday Nov 16th @ 11:59pm
→ Recitation Video + Slides (see @235)

Homework #5 will be released Wednesday Nov 5th

2

https://db.cs.cmu.edu/
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https://piazza.com/class/me9159rcdhm69w/post/235
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UPCOMING DATABASE TALKS

Delta Lake (DB Seminar)
→ Monday Nov 3rd @ 4:30pm
→ Zoom

Apache Pinot @ Uber (DB Group)
→ Tuesday Nov 4th @ 12:00pm
→ GHC 8115

Mooncake (DB Seminar)
→ Monday Nov 10th @ 4:30pm
→ Zoom

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/futuredata-deltalake/
https://db.cs.cmu.edu/events/real-time-analytics-query-architecture-evolution-uber-ankit-sultana/
https://db.cs.cmu.edu/events/futuredata-mooncake/
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COURSE OUTLINE

We now know how to build a
DBMS that stores data and
executes queries.
But it is not safe for production…

                                  
                             
                                    
             

4

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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Concurrency Control

Recovery

COURSE OUTLINE

We now know how to build a
DBMS that stores data and
executes queries.
But it is not safe for production…

A DBMS’s concurrency control and 
recovery components permeate 
throughout the design of its entire 
architecture.

 

4

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Read Balance: $100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds?

Read Balance: $100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds?

Read Balance: $100

Pay $25
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Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds?

New balance: $75

Read Balance: $100

Pay $25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds?

New balance: $75

Bank Balance: $75

Read Balance: $100

Pay $25

Write Balance: $75
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Application Logic

MOTIVATION EXAMPLE #1
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds?

Read Balance: $100

Pay $25

???

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Read Balance: $100 Read Balance: $100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25
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Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100

New balance: $75 New balance: $75

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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Application Logic

MOTIVATION EXAMPLE #2
6

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance: $100Bank Balance: $75

New balance: $75 New balance: $75

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25

Write Balance: $75 Write Balance: $75

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as they 
arrive at the DBMS.
→ One and only one txn can run simultaneously in the DBMS.

Before a txn starts, copy the entire database to a new file 
and make all changes to that file.
→ If the txn completes successfully, overwrite the original file 

with the new one.
→ If the txn fails, just remove the dirty copy.

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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PROBLEM STATEMENT

A (potentially) better approach is to allow concurrent 
execution of independent transactions.

Why do we want that?
→ Better utilization/throughput
→ Increased response times to users.

But we also would like:
→ Correctness
→ Fairness

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
→ Temporary Inconsistency (ok, unavoidable)
→ Permanent Inconsistency (bad!)

The DBMS is only concerned about what data is 
read/written from/to the database.
→ Changes to the “outside world” are beyond the scope of the 

DBMS.

We need formal correctness criteria to determine 
whether an interleaving is valid.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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FORMAL DEFINITIONS

Database: A fixed set of named data objects
(e.g., A, B, C, …).
→ We do not need to define what these objects are now.
→ We will discuss how to handle inserts/deletes next class.

Transaction: A sequence of read and write operations 
(e.g., R(A), W(B), …)
→ DBMS’s abstract view of a user program.
→ A new txn starts with the BEGIN command.
→ The txn stops with either COMMIT or ROLLBACK

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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CORRECTNESS CRITERIA: ACID
11

Atomicity All actions in txn happen, or none happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts 
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that 
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“My changes will survive…”

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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TODAY'S AGENDA
Atomicity

Consistency

Isolation

Durability

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:
→ Commit after completing all its actions.
→ Abort (or be aborted by the DBMS) after executing some 

actions.

DBMS guarantees that txns are atomic.  
→ From application's point of view: txn always either executes all 

its actions or executes no actions at all.

13A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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MECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging
→ DBMS records all actions in an ordered ledger so that it can 

reverse (undo) the actions of aborted transactions.
→ Maintain undo records both in memory and on disk.
→ Replay log after crash to put database back in correct state.
→ Think of this like the black box in airplanes…

Logging is used by almost every DBMS.
→ Audit Trail
→ Efficiency Reasons

14A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Flight_recorder
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MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging
→ DBMS makes copies of pages and txns make changes to those 

copies. Make modified pages visible to other txns only when 
the txn successfully commits.

→ Instant recovery after a crash!
→ Originally from IBM System R.

Few systems do this today:
→ CouchDB
→ Tokyo Cabinet
→ LMDB (OpenLDAP)

15A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging
→ DBMS makes copies of pages and txns make changes to those 

copies. Make modified pages visible to other txns only when 
the txn successfully commits.

→ Instant recovery after a crash!
→ Originally from IBM System R.

Few systems do this today:
→ CouchDB
→ Tokyo Cabinet
→ LMDB (OpenLDAP)

15A

Don't
Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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CONSISTENCY

The database accurately models the real world.
→ SQL has methods to specify integrity constraints (e.g., key 

definitions, CHECK and ADD CONSTRAINT) and the DBMS will 
enforce them.

→ Application must define these constraints.
→ DBMS ensures that all ICs are true before and after the 

transaction ends.

A note on Eventual Consistency.
→ A committed transaction may see inconsistent results (e.g., may 

not see the updates of an older committed txn).
→ Difficult for developers to reason about such semantics. 
→ The trend is to move away from such models.

16C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Eventual_consistency
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ISOLATION OF TRANSACTIONS

Application submit txns to the DBMS, and each txn 
executes as if it were running by itself.
→ Easier programming model to reason about.

But the DBMS achieves concurrency by interleaving the 
actions (reads/writes of DB objects) of txns.

We need a way to interleave txns but still make it 
appear as if they ran one-at-a-time.

17I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the DBMS 
decides the proper interleaving of operations from 
multiple transactions.

Two categories of protocols:
→ Pessimistic: Do not let problems arise in the first place.
→ Optimistic: Assume conflicts are rare; deal with them after 

they happen.

18I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Concurrency_control#Concurrency_control_in_databases
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EXAMPLE

Assume at first A and B each have $1000. 

T1 transfers $100 from A’s account to B’s

T2 credits both accounts with 6% interest.

19

BEGIN
A=A-100
B=B+100
COMMIT

T1
BEGIN
A=A*1.06   
B=B*1.06
COMMIT

T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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EXAMPLE

Assume at first A and B each have $1000. 

What are the possible outcomes of running T1 and T2?

20

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06   
B=B*1.06
COMMIT

T1 T2

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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EXAMPLE

Assume at first A and B each have $1000. 

What are the possible outcomes of running T1 and T2?

Many! But A+B should be:
→ $2000*1.06=$2120

There is no guarantee that T1 will execute before T2 or 
vice-versa, if both are submitted together.

But the outcome of the database must be equivalent to 
these two txns running serially in some order.

21I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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EXAMPLE

Allowed database states:
→ A=954, B=1166
→ A=960, B=1160

The outcome depends on whether T1 executes before T2 
or vice versa.

22

→ A+B=$2120
→ A+B=$2120

I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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ScheduleSchedule

SERIAL EXECUTION EXAMPLE
23

≡

A=954, B=1166 A=960, B=1160

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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ScheduleSchedule

SERIAL EXECUTION EXAMPLE
23

≡

A=954, B=1166 A=960, B=1160

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

A+B=$2120

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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INTERLEAVING TRANSACTIONS

We want to interleave txns to maximize concurrency.
→ Slow disk/network I/O.
→ Multi-core CPUs.
→ Application pauses.

When one txn stalls because of a resource (e.g., page 
fault), another txn can continue executing and make 
forward progress.

24I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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INTERLEAVING EXAMPLE (GOOD)
25

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

I

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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INTERLEAVING EXAMPLE (GOOD)
25

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

T
IM

E
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INTERLEAVING EXAMPLE (GOOD)
25

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

T
IM

E

A+B=$2120

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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INTERLEAVING EXAMPLE (BAD)
26

≢
A=954, B=1166

or
A=960, B=1160

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule
T1 T2

A=954, B=1160

A+B=$2114

I

T
IM

E

Off by $6!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

DBMS View

T1 T2

INTERLEAVING EXAMPLE (BAD)
27

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule
T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

                          
                    

                    
     

https://db.cs.cmu.edu/
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INTERLEAVING EXAMPLE (BAD)
27

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule
T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

How do we judge whether a 
schedule is correct?

If the schedule is equivalent to 
some serial execution.

                    
     

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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FORMAL PROPERTIES OF SCHEDULES

Serial Schedule
→ A schedule that does not interleave the actions of different 

transactions.

Equivalent Schedules
→ For any database state, the effect of executing the first schedule 

is identical to the effect of executing the second schedule.

28I

https://db.cs.cmu.edu/
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FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule
→ A schedule that is equivalent to some serial execution of the 

transactions.
→ If each transaction preserves consistency, every serializable 

schedule preserves consistency.

Serializability is a less intuitive notion of correctness 
compared to txn initiation time or commit order, but it 
enables more flexibility in scheduling operations.
→ More flexibility means better parallelism.
                                           

29I
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CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be 
implemented efficiently based on the notion of 
“conflicting” operations.

Two operations conflict if:
→ They are by different transactions, 
→ They are on the same object and one of them is a write.

Interleaved Execution Anomalies
→ Unrepeatable Read (Read-Write)
→ Dirty Read (Write-Read)
→ Lost Update (Write-Write)
→ Phantom Reads (Scan-Write)
→ Write-Skew (Read-Write)

30I

Lecture #18

Lecture #20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
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READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when 
reading the same object multiple times.

31

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

T1 T2

I
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READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when 
reading the same object multiple times.

31

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

T1 T2

I
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READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when 
reading the same object multiple times.

31

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

I
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WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn 
that has not committed yet.

32

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

I

https://db.cs.cmu.edu/
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WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn 
that has not committed yet.
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WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted data 
from another uncommitted txn.
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FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what it 
means for a schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:

Conflict Serializability

View Serializability

34I
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CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
→ They involve the same actions of the same transactions.
→ Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:
→ S is conflict equivalent to some serial schedule.
→ Intuition: You can transform S into a serial schedule by 

swapping consecutive non-conflicting operations of different 
transactions.

35I
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DEPENDENCY GRAPHS

One node per txn.

Edge from Ti to Tj if:
→ An operation Oi of Ti conflicts with an 

operation Oj of Tj and
→ Oi appears earlier in the schedule than Oj.

Also known as a precedence graph.
A schedule is conflict serializable iff its 
dependency graph is acyclic.

36
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EXAMPLE #1
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EXAMPLE #2: THREE TRANSACTIONS
38
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EXAMPLE #2: THREE TRANSACTIONS
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EXAMPLE #3: INCONSISTENT ANALYSIS
39
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VIEW SERIALIZABILITY

Alternative (broader) notion of serializability.

Schedules S1 and S2 are view equivalent if:
→ If T1 reads initial value of A in S1, then T1 also reads initial value 

of A in S2.
→ If T1 reads value of A written by T2 in S1, then T1 also reads 

value of A written by T2 in S2.
→ If T1 writes final value of A in S1, then T1 also writes final value 

of A in S2.

40I
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VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A
T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

A

T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

A
A

T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

AA
A

T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VIEW SERIALIZABILITY
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SERIALIZABILITY

View Serializability allows for (slightly) more 
schedules than Conflict Serializability does.
→ But it is difficult to enforce efficiently.

Neither definition allows all schedules that you would 
consider “serializable.”
→ This DBMSs do not understand the meanings of the operations 

or the data (recall example #3)
→ In practice, Conflict Serializability is what systems support 

because it can be enforced efficiently.

43I
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All Schedules

UNIVERSE OF SCHEDULES
44

View Serializable
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TRANSACTION DURABILITY

All the changes of committed transactions should be 
persistent.
→ No torn updates.
→ No changes from failed transactions.

The DBMS can use either logging or shadow paging to 
ensure that all changes are durable.

45D
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CORRECTNESS CRITERIA: ACID
46

Atomicity All actions in txn happen, or none happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts 
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that 
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“My changes will survive…”
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CORRECTNESS CRITERIA: ACID
47

Atomicity Redo/Undo Mechanisms
Concurrency Control

Consistency Integrity Constraints
Replication Protocols

Isolation Concurrency Control

Durability Redo/Undo Mechanisms
Replication
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CONCLUSION

Concurrency control and recovery are among the most 
important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and 

schedules actions of different txns.
→ Ensures that resulting execution is equivalent to executing the 

txns one after the other in some order.

The NoSQL movement was pushing the narrative that 
txns were bad / slow. That trend has (mostly) passed!

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

Concurrency control and recovery are among the most 
important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and 

schedules actions of different txns.
→ Ensures that resulting execution is equivalent to executing the 

txns one after the other in some order.

The NoSQL movement was pushing the narrative that 
txns were bad / slow. That trend has (mostly) passed!

48

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

NEXT CLASS

Two-Phase Locking

Isolation Levels
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