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ADMINISTRIVIA

Project #3 is due Sunday Nov 16™ @ 11:59pm
— Recitation Video + Slides (see @235)

Homework #5 will be released Wednesday Nov 5%
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UPCOMING DATABASE TALKS 5

Delta Lake (DB Seminar) A DELTA LAKE
— Monday Nov 3" @ 4:30pm
— Zoom

Apache Pinot @ Uber (DB Group) ? Pi N ot
— Tuesday Nov 4™ @ 12:00pm

— GHC 8115

Mooncake (DB Seminar) mooncake
— Monday Nov 10% @ 4:30pm
— Zoom
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https://db.cs.cmu.edu/events/futuredata-deltalake/
https://db.cs.cmu.edu/events/real-time-analytics-query-architecture-evolution-uber-ankit-sultana/
https://db.cs.cmu.edu/events/futuredata-mooncake/

COURSE OUTLINE

We Nnow knOW hOW to blllld a Query Planning
DBMS that stores data and .
executes queries. Operator Execution
But it is not safe for production... Access Methods
Buffer Pool Manager

Disk Manager
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COURSE OUTLINE

Query Planning
We now know how to build a

DBMS that stores data and
executes queries. Operator Execution

But it is not safe for production...

Concurrency Control

Access Methods
A DBMS’s concurrency control and R
ecovery
recovery components permeate
throughout the design of its entire Buffer Pool Manager
architecture.

Disk Manager



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION EXAMPLE #A

Application Logic
B Read(A);
Check(A > $25);
Pay($25);
A=A - $25;
Write(A);

Read Balance: $100

N

—

Bank Balance: $100

=
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MOTIVATION EXAMPLE #A

Application Logic
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B Check(A > $25);
Pay($25);
A=A - $25;
Write(A);
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Sufficient funds?
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MOTIVATION EXAMPLE #A

Application Logic
Read(A);
Check(A > $25);

» Pay($25);
A=A - $25;
Write(A);

Read Balance: $100

¥

Sufficient funds?

RN

—

¥

Pay $25

Bank Balance: $100

=
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MOTIVATION EXAMPLE #A 5

Application Logic
Read(A): Read Balance: $100
(A); :
Check(A > $25); Sufficient funds? E::::a
; Bank Balance: $100
Pay($25); Pay $25 @
»A = A - $25; Newba&ce: $75

Write(A);
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MOTIVATION EXAMPLE #A

Application Logic
Read(A);
Check(A > $25);
Pay($25);

A=A - $25;

»Write(A);

Read Balance: $100

¥

Sufficient funds?

—

¥

Pay $25

Bank Balance: $75

¥

New balance: $75

¥

Write Balance: $75

N
v

=
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MOTIVATION EXAMPLE #A 5

Application Logic
Read(A): Read Balance: $100
(A); :
Check (A > $25 ) X Sufficient funds? Q
Pa ( $25 ) . > ;$25 Bank Balance: $100
ANY 3 =

Jo o 222
o owme
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MOTIVATION EXAMPLE %

Application Logic

»Read(A);
Check(A > $25); ~=

Bank Balance: $100

Pay($25);

A=A - $25;
Write(A);
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MOTIVATION EXAMPLE

Application Logic
B Read(A);
Check(A > $25);
Pay($25);
A=A - $25;
Write(A);

Read Balance: $100

Read Balance: $100

b

Bank Balance: $100

=
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MOTIVATION EXAMPLE %

Application Logic |
Read (A) ; Read Bala;nce: $100 Read Balice: $100
’
» Check (A > $25 ) : Sufficient funds? Sufficient funds?

Bank Balance: $100

Pay($25);

A=A - $25;
Write(A);
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MOTIVATION EXAMPLE %

Application Logic |
Read (A) ; Read Balice: $100 Read Balice: $100
’
Check (A > $25 ) : Sufficient funds? Sufficient funds?

; ; Bank Balance: $100
» Pay($25); Pay $25 Pay $25 @

A=A - $25;
Write(A);
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MOTIVATION EXAMPLE %

Application Logic |
Read (A) ; Read Bala;nce: $100 Read Balice: $100
’
Check (A > $25 ) : Sufficient funds? Sufficient funds?

P ( $2 5 ) ; ; Bank Balance: $100
ay ; Pay;$25 Pa@ZS @
» A=A - $25 ’ New balance: $75 New balance: $75

Write(A);
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MOTIVATION EXAMPLE %

Application Logic |
Read (A) ; Read Balice: $100 Read Bala;nce: $100
b
Check (A > $25 ) ; Sufficient funds? Sufficient funds?

; ; Bank Balance: $75
Pay($25); Pay $25 Pay $25
I ¥ ¥
A=A $25 ’ New balance: $75 New balance: $75
. . 3 oW

» Write (A) ) Write Balance: $75 Write Balance: $75
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STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as they
arrive at the DBMS.

— One and only one txn can run simultaneously in the DBMS.

Before a txn starts, copy the entire database to a new file

and make all changes to that file.

— [f the txn completes successfully, overwrite the original file
with the new one.

— If the txn fails, just remove the dirty copy.
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PROBLEM STATEMENT

A (potentially) better approach is to allow concurrent
execution of independent transactions.

Why do we want that?

— Better utilization/throughput
— Increased response times to users.

But we also would like:

— Correctness
— Fairness
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PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
— Temporary Inconsistency (ok, unavoidable)
— Permanent Inconsistency (bad!)

The DBMS is only concerned about what data is

read/written from/to the database.

— Changes to the “outside world” are beyond the scope of the
DBMS.

We need formal correctness criteria to determine
whether an interleaving is valid.
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FORMAL DEFINITIONS

Database: A fixed set of named data objects
(e.g.,A,B,C,...).

— We do not need to define what these objects are now.
— We will discuss how to handle inserts/deletes next class.

Transaction: A sequence of read and write operations
(e.2., R(A), W(B), ...

— DBMS'’s abstract view of a user program.

— A new txn starts with the BEGIN command.

— The txn stops with either COMMIT or ROLLBACK
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CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability

All actions in txn happen, or none happen.
“All or nothing...”

If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

[f a txn commits, its effects persist.
"My changes will survive...”
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TODAY'S AGENDA

Atomicity
Consistency
[solation
Durability
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ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:

— Commit after completing all its actions.

— Abort (or be aborted by the DBMS) after executing some
actions.

DBMS guarantees that txns are atomic.

— From application's point of view: txn always either executes all
its actions or executes no actions at all.
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MECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging

— DBMS records all actions in an ordered ledger so that it can
reverse (undo) the actions of aborted transactions.

— Maintain undo records both in memory and on disk.

— Replay log after crash to put database back in correct state.

— Think of this like the black box in airplanes...

Logging is used by almost every DBMS.
— Audit Trail
— Efficiency Reasons
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B MECHANISMS FOR ENSURING ATOMICITY 5

Approach #2: Shadow Paging

— DBMS makes copies of pages and txns make changes to those
copies. Make modified pages visible to other txns only when
the txn successfully commits.

— Instant recovery after a crash!

— Originally from IBM System R.

Few systems do this today:
— CouchDB

— Tokyo Cabinet
— LMDB (OpenLDAP)
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B MECHANISMS FOR ENSURING ATOMICITY 5

\ R 4
Q » Approach #2: Shadow Paging
Bon; — DBMS makes copies of pages and txns make changes to those

g copies. Make modified pages visible to other txns only when
Do This! the txn successfully commits.
— Instant recovery after a crash!
— Originally from IBM System R.

Few systems do this today:
— CouchDB

— Tokyo Cabinet
— LMDB (OpenLDAP)
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CONSISTENCY

The database accurately models the real world.

— SQL has methods to specify integrity constraints (e.g., key
definitions, CHECK and ADD CONSTRAINT) and the DBMS will
enforce them.

— Application must define these constraints.

— DBMS ensures that all ICs are true before and after the
transaction ends.

A note on Eventual Consistency.
— A committed transaction may see inconsistent results (e.g., may

not see the updates of an older committed txn).
— Difficult for developers to reason about such semantics.
— The trend is to move away from such models.
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ISOLATION OF TRANSACTIONS

Application submit txns to the DBMS, and each txn

executes as if it were running by itself.
— Easier programming model to reason about.

But the DBMS achieves concurrency by interleaving the
actions (reads/writes of DB objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.
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MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the DBMS
decides the proper interleaving of operations from
multiple transactions.

Two categories of protocols:

— Pessimistic: Do not let problems arise in the first place.

— Optimistic: Assume conflicts are rare; deal with them after
they happen.
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1 EXAMPLE

Assume at first A and B each have $1000.
T, transfers $100 from A’s account to B’s
T, credits both accounts with 6% interest.

T, T,
BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT COMMIT
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1 EXAMPLE

Assume at first A and B each have $1000.
W hat are the possible outcomes of running T, and T.,?

T, T,
BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT COMMIT
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EXAMPLE

Assume at first A and B each have $1000.
What are the possible outcomes of running T, and T,?

Many! But A+B should be:
— $2000%1.06=$2120

There is no guarantee that T, will execute before T, or
vice-versa, if both are submitted together.

But the outcome of the database must be equivalent to
these two txns running serially in some order.
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EXAMPLE

Allowed database states:
— A=954,B=1166 + A+B=%$2120
— A=960,B=1160 - A+B=%$2120

The outcome depends on whether T, executes before T,
OT VICe Versa.
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SERIAL EXECUTION EXAMPLE

Schedule
T1 T2
BEGIN
A=A-100
B=B+100
COMMIT
BEGIN
A=A%1.06
B=Bx1.06
COMMIT

A=954, B=1166

Schedule
T, T,
BEGIN
A=A%1.06
B=Bx1.06
COMMIT
BEGIN
A=A-100
B=B+100
COMMIT

A=960, B=1160



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SERIAL EXECUTION EXAMPLE

Schedule
T1 T2
BEGIN
A=A-100
B=B+100
COMMIT
BEGIN
A=A%1.06
B=Bx1.06
COMMIT

| A=954, B=1166 [«

Schedule
T, T,
BEGIN
A=A%1.06
B=Bx1.06
COMMIT
BEGIN
A=A-100
B=B+100
COMMIT

» A=960, B=1160 |

A+B=$2120
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1 INTERLEAVING TRANSACTIONS

We want to interleave txns to maximize concurrency.
— Slow disk/network I/0O.

— Multi-core CPUs,
— Application pauses.

When one txn stalls because of a resource (e.g., page
fault), another txn can continue executing and make
forward progress.
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1 INTERLEAVING EXAMPLE (500D) 5

Schedule
T, T,
BEGIN
A=A-100
g BEGIN
A=Ax1.06
B=B+100 g
COMMIT
B=Bx1.06
COMMIT

A=954, B=1166
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1 INTERLEAVING EXAMPLE (500D)

Schedule Schedule
T, T, T, T,
BEGIN BEGIN
A=A-100 A=A-100
g iEilN o B=B+100
=A*1. —
B=B+100 g B COMMIT BEGIN
COMMIT A=A%1.06
B=Bx1.06 B=Bx1.06
COMMIT COMMIT

A=954, B=1166 A=960, B=1160
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INTERLEAVING EXAMPLE (500D) 5

Schedule Schedule
T1 TZ T1 TZ
BEGIN BEGIN
A=A-100 A=A-100
g BEGIN B=B+100
A=A%1.06

C(B=B+100 D g COMMIT BEGIN
COMMIT A=A%1.06

B=Bx1.06 B=B*1.06
COMMIT COMMIT

| A=954, B=1166 |« » A=960, B=1160 |

A+B=$2120
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INTERLEAVING EXAMPLE (BAD)

Schedule
T1 TZ
BEGIN
A=A-100
aohet 06 A=954, B=1166
e | F or
B=B+100 A=960, B=1160

COMMIT

A=954, B=1160

__Off by 6!
A+B=%$2114
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INTERLEAVING EXAMPLE (BAD)

Schedule DBMS View
T1 T2 T1 T2
BEGIN BEGIN
A=A-100 =—m——— J R(A)
BEGIN W(A)
A=Ax1.06 BEGIN
B=Bx1.06 R(A)
COMMIT W(A)
B=B+100 R(B)
COMMIT ~~'."'====:::: W(B)
\ COMMIT
_ _ R(B)
A=954, B=1160 WeB)
COMMIT

A+B=%$2114
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INTERLEAVING EXAMPLE (BAD) 5

Schedule
T1 T2

BEGIN How do we judge whether a
BEGIN schedule 1s correct?
A=A%1.06 _ .
B=Bx1.06 If the schedule is equivalent to
COMMIT . .

B=B+100 some serial execution.

COMMIT

A=954, B=1160

A+B=%$2114
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1 FORMAL PROPERTIES OF SCHEDULES 5

Serial Schedule

— A schedule that does not interleave the actions of different
transactions.

Equivalent Schedules

— For any database state, the effect of executing the first schedule
is identical to the effect of executing the second schedule.
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FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

— A schedule that is equivalent to some serial execution of the
transactions.

— [f each transaction preserves consistency, every serializable
schedule preserves consistency.

Serializability is a less intuitive notion of correctness
compared to txn initiation time or commit order, but it

enables more flexibility in scheduling operations.
— More flexibility means better parallelism.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.

Two operations conflict if:

— They are by different transactions,
— They are on the same object and one of them is a write.

Interleaved Execution Anomalies
— Unrepeatable Read (Read-Write)

— Dirty Read (Write-Read)

— Lost Update (Write-Write)

— Phantom Reads (Scan-Write)
— Write-Skew (Read-Write)
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1 READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when
reading the same object multiple times.

T, T,
BEGIN
$10 4mmR(A)
BEGIN
R(A)
W(A)
COMMIT
R(A)
COMMIT
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1 READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when
reading the same object multiple times.

T, T,
BEGIN
$10 4mmR(A)
BEGIN
R(A) $10
W(A) $19
COMMIT
R(A)
COMMIT
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READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when
reading the same object multiple times.

T, T,
BEGIN
$10 4mmR(A)
L P 4 BEGIN
R(A) $10
oo W(A) $19
COMMIT
$19 4mmR(A)
COMMIT
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WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn
that has not committed yet.

$12

T, T,
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
COMMIT

ROLLBACK
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WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn
that has not committed yet.

T, T,
BEGIN
$10 R(A)
$12 W(A) BEGIN
R(A) $12
W(A) $14
COMMIT
ROLLBACK



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn
that has not committed yet.

COMMIT
( ROLLBACK
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WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted data

from another uncommitted txn.

T, T,
BEGIN
$10 mmp W(A)
BEGIN
W(A) $19
W(B) Bob
COMMIT
Alice mmp w(B)
COMMIT
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WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted data
from another uncommitted txn.

T, T,
BEGIN
$10 %
BEGIN
W(A) $19

COMMIT
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FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what it

means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels of serializability:
Conflict Serializability 4@ Most Common
View Serializability « No DBMS can do this
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CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
— They involve the same actions of the same transactions.
— Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:

— S is conflict equivalent to some serial schedule.

— Intuition: You can transform S into a serial schedule by
swapping consecutive non-conflicting operations of different
transactions.
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1 DEPENDENCY GRAPHS

One node per txn.
Edge from T; to T if:

— An operation 0; of T, conflicts with an
operation O; of T, and

— 0; appears earlier in the schedule than 0;.

Dependency Graph

Also known as a precedence graph.
A schedule is conflict serializable iff its
dependency graph is acyclic.
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EXAMPLE #1

Schedule
T, T,
BEGIN BEGIN
R(A)
W(A)
" )
W(A)
R(B)
W(B)
R(B)
W(B)
COMMIT COMMIT

Dependency Graph
A

=
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EXAMPLE #1 5

Schedule Dependency Graph
T 1 T2 A

BEGIN BEGIN
o@iBo
W(A)
ot
®, :
R(B)
oWy i)
R(B)

Pl
W(B)

COMMIT COMMIT
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Schedule
T, T,
BEGIN BEGIN
R(A)
W(A)
ot
.
R(B)
Y Al JPAUCY
REB )/
W(B)
COMMIT COMMIT

EXAMPLE #1

Dependency Graph
A

(7., (7.,
r—ﬂ -
Th -

e cycle in the graph reveals the

problem.
The output of T,dependsonT,,

and vice-versa.
\_ Yy,

=
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PU  EXAMPLE #2: THREE TRANSACTIONS &

Schedule Dependency Graph

T, T, T, G @
BEGIN
R(A)
W(A) BEGIN A
R(A)
o

BEGIN | COMMIT
R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT
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EXAMPLE #2: THREE TRANSACTIONS

Schedule
T1 TZ T3

BEGIN

R(A)

W(A BEGIN

W(A)

BEGIN | COMMIT
R(B)
W(B)

R(B) | COMMIT

W(B)

COMMIT

Dependency Graph

@

=
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EXAMPLE #2: THREE TRANSACTIONS

Schedule
T, T, T,
BEGIN
R(A)
W(A) BEGIN
\ R(A)
W(A)
BEGIN | COMMIT
R(B)
W(B)
R(B) | COMMIT
W(B)

COMMIT

Dependency Graph

@

=
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EXAMPLE #2: THREE TRANSACTIONS

Schedule
T, T, T,
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
BEGIN | COMMIT
R(B)
W(B)
R(B)/ COMMIT
W(B)
COMMIT

Dependency Graph

=
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EXAMPLE #2: THREE TRANSACTIONS

Schedule
T, T, T,
BEGIN
R(A)
W(A) BEGIN
RCA)
W(A)
BEGIN | COMMIT
R(B)
W(B)
R(B)‘(/'COMMIT
W(B)
COMMIT

Dependency Graph

=
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PU  EXAMPLE #2: THREE TRANSACTIONS &

Schedule Dependency Graph
T1 T2 T3
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
BEGIN | COMMIT
R(B) . . . .
W(B) Is this equivalent to a serial execution?
R(B) / COMMIT
e Yes (T,, T, T,)
COMMIT — Notice that T, should go after T,

although it starts before it!
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BU EXAMPLE #3: INCONSISTENT ANALYSIS M

Schedule Dependency Graph
T1 T2
BEGIN BEGIN
R(A)
A = A-10
W(A)
R(A)
sum = A
R(B)
sum += B
COMMIT
R(B) ret(sum)

B = B+10
W(B)
COMMIT
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BU EXAMPLE #3: INCONSISTENT ANALYSIS M

Schedule Dependency Graph
T T, A
BEGIN BEGIN
R(A)
A = A-10
W(A)
0
sum = A
R(B)
sum += B
COMMIT
R(B) ret(sum)

B = B+10
W(B)
COMMIT
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EXAMPLE #3: INCONSISTENT ANALYSIS

Schedule
T1 T2
BEGIN BEGIN
R(A)
A = A-10
W(A)
0

B =
W(B)
COMMIT

2.
sum += B
OO/ vt
R(B) ret(sum)
10

sum = A
R(B)

Dependency Graph

B

[s it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?

=
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EXAMPLE #3: INCONSISTENT ANALYSIS

Schedule
T1 T2
BEGIN BEGIN
R(A)
A= A-10
W(A) cnt = 0
R(A)

R(B)

B = B+10
W(B)
COMMIT

if(A=0): cnt++

R(B)

if(B=0): cnt++

COMMIT

ret(cnt)

Dependency Graph

B

[s it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?

=
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VIEW SERIALIZABILITY

Alternative (broader) notion of serializability.

Schedules S; and S, are view equivalent if:

— If T, reads initial value of A in S,, then T, also reads initial value
of Ain S,.

— If T, reads value of A written by T, in S,, then T, also reads
value of A written by T, in S,

— If T, writes final value of A in S, then T, also writes final value
of Ain S,.
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VIEW SERIALIZABILITY

Schedule
T1 T2 T3
BEGIN
R(A)~g| BEGIN
W(A)
BEGIN
W(A)
W(A)
COMMIT | COMMIT | COMMIT

Dependency Graph
A
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VIEW SERIALIZABILITY =

Schedule Dependency Graph
T 1 T2 T3

A
BEGIN
R(A) BEGIN G G
W(A)
BEGIN
W(A)
A

W(A)
COMMIT | COMMIT | COMMIT G
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Schedule
T 1

VIEW SERIALIZABILITY

T,

Ts

COMMIT

BEGIN

R(A)ag] BEGIN
W(A)

W(A)

COMMIT

BEGIN

W(A)
COMMIT

Dependency Graph
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Schedule
T 1

VIEW SERIALIZABILITY

T,

Ts

COMMIT

BEGIN
R(A)ag] BEGIN
W(A)
BEGIN
W(A)

COMMIT

W(A)
COMMIT

Dependency Graph
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Schedule
T 1

VIEW SERIALIZABILITY

T,

Ts

COMMIT

BEGIN
R(A)ag] BEGIN
W(A)
BEGIN
W(A)
W(A)

COMMIT

COMMIT

Dependency Graph
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VIEW SERIALIZABILITY

Schedule
T1 T2 T3
BEGIN
R(A) | BEGIN
W(A)

BEGIN
W(A)

W(A)
COMMIT | COMMIT | COMMIT

VIEW

Schedule
T1 T2 T3
BEGIN
R(A)
W(A)
COMMIT
BEGIN
W(A)
COMMIT
BEGIN
W(A)
COMMIT
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VIEW SERIALIZABILITY

Schedule Schedule
T1 T2 T3 T1 T2 T3
BEGIN BEGIN
R(A) BEGIN R(A)
W(A) W(A)
COMMIT
W(A) BEGIN
C W(A)
COMMIT | COMMIT COMMIT
BEGIN
Allows all conflict W)
serializable schedules + COMMIT
)
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SERIALIZABILITY

View Serializability allows for (slightly) more

schedules than Conflict Serializability does.
— But it is difficult to enforce efficiently.

Neither definition allows all schedules that you would

consider “serializable.”

— This DBMSs do not understand the meanings of the operations
or the data (recall example #3)

— In practice, Conflict Serializability is what systems support
because it can be enforced efficiently.
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UNIVERSE OF SCHEDULES
All Schedules
View Serializable
Conflict Serializable

| Serial |
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D TRANSACTION DURABILITY

All the changes of committed transactions should be

persistent.
— No torn updates.
— No changes from failed transactions.

The DBMS can use either logging or shadow paging to
ensure that all changes are durable.
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CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability

All actions in txn happen, or none happen.
“All or nothing...”

If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

[f a txn commiits, its effects persist.
"My changes will survive...”
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CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability

Redo/Undo Mechanisms
Concurrency Control

Integrity Constraints
Replication Protocols

Concurrency Control

Redo/Undo Mechanisms
Replication
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CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability

Redo/Undo Mechanisms
Concurrency Control

Integrity Constraints
Replication Protocols

Concurrency Control

Redo/Undo Mechanisms
Replication
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CONCLUSION

Concurrency control and recovery are among the most
important functions provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock requests and
schedules actions of different txns.

— Ensures that resulting execution is equivalent to executing the
txns one after the other in some order.

The NoSQL movement was pushing the narrative that
txns were bad / slow. That trend has (mostly) passed!
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Spanner; Google’s Clobally-l)istribuled Database

James C. Corber, Jeffrey Dean, Michael Epstein, Andrew Fikes, (] hristopher Frosi, JJ Furman,
Sanjay Ghemawar, Andrey Gubarey, ¢ hristopher Heiser. Peter Hochschild, Wilson Hsieh,

Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lioyd, Sergey Melnik, David M waura,
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important functions provided b

. 5 . 1 or 2 datacenter failures.
Spanner is Google’s scalable, multi-version, globally-

distributed, and synchmnumly-rcplu.ucd database. It ¥
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NEXT CLASS

Two-Phase Locking
[solation Levels
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