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LAST CLASS

Conflict Serializable
→ Verify using dependency graphs.
→ Any DBMS that says that they support “serializable” isolation 

does this.

View Serializable
→ No efficient way to verify.
→ No DBMS that supports this.
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OBSERVATION

We need a way to guarantee that all execution 
schedules are correct (i.e., serializable) without knowing 
the entire schedule ahead of time.

Solution: Use locks to protect database objects.
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LOCKS VS. LATCHES

Locks Latches

Separate… Transactions Workers (threads, processes)

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update, 
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure

Goetz Graefe

Source: Goetz Graefe
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Lock Manager

EXECUTING WITH LOCKS
5

Granted (T1→A)

Denied!

Granted (T2→A)

Released (T1→A)

Released (T2→A)

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule
T1 T2
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TODAY'S AGENDA
Lock Types

Two-Phase Locking

Deadlock Detection + Prevention

Hierarchical Locking

DB Flash Talk: Firebolt
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BASIC LOCK TYPES

S-LOCK: Shared locks for reads.

X-LOCK: Exclusive locks for writes.
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Shared
S-LOCK

Exclusive
X-LOCK

Shared
S-LOCK ×

Exclusive
X-LOCK × ×

Compatibility Matrix
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BASIC LOCK TYPES

S-LOCK: Shared locks for reads.

X-LOCK: Exclusive locks for writes.
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Shared
S-LOCK

Exclusive
X-LOCK

Shared
S-LOCK ×

Exclusive
X-LOCK × ×

Compatibility Matrix

Table

Description automatically generated

Table

Description automatically generated

Calendar

Description automatically generated

Table

Description automatically generated

Table

Description automatically generated
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EXECUTING WITH LOCKS

Transactions request locks (or upgrades).

Lock manager grants or blocks requests.

Transactions release locks.

Lock manager updates its internal lock-table.
→ It keeps track of what transactions hold what locks and what 

transactions are waiting to acquire any locks.
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Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS
9

Granted (T1→A)

T1 T2
T
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E
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Schedule Lock Manager
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CONCURRENCY CONTROL PROTOCOL

Two-phase locking (2PL) is a concurrency control 
protocol that determines whether a txn can access an 
object in the database at runtime.

The protocol does not need to know all the queries that 
a txn will execute ahead of time.
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TWO-PHASE LOCKING

Phase #1: Growing
→ Each txn requests the locks that it needs from the DBMS’s lock 

manager.
→ The lock manager grants/denies lock requests.

Phase #2: Shrinking
→ The txn is allowed to only release/downgrade locks that it 

previously acquired. It cannot acquire new locks.
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TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks after 
the growing phase finishes.

12
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TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks after 
the growing phase finishes.
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2PL Violation!
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Schedule
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Lock Manager
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TWO-PHASE LOCKING

2PL on its own is sufficient to guarantee conflict 
serializability because it generates schedules whose 
precedence graph is acyclic.

But it is subject to cascading aborts.
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Schedule
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2PL: CASCADING ABORTS
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Schedule
T1 T2

2PL: CASCADING ABORTS

This is a permissible schedule in 
2PL, but the DBMS has to also 
abort T2 when T1 aborts.
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Schedule
T1 T2

2PL: CASCADING ABORTS

This is a permissible schedule in 
2PL, but the DBMS has to also 
abort T2 when T1 aborts.

 

Any information about T1 cannot 
be “leaked” to the outside world.

Any computation performed must 
be rolled back.
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Schedule
T1 T2

2PL: CASCADING ABORTS

This is a permissible schedule in 
2PL, but the DBMS has to also 
abort T2 when T1 aborts.
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be “leaked” to the outside world.

Any computation performed must 
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X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
  ⋮
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2PL OBSERVATIONS

There are potential schedules that are serializable but 
would not be allowed by 2PL because locking limits 
concurrency.
→ Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention

17
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STRONG STRICT TWO-PHASE LOCKING

The txn is only allowed to release locks after it has 
ended (i.e., committed or aborted).

Allows only conflict serializable schedules, but it is 
often stronger than needed for some apps.

18
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STRONG STRICT TWO-PHASE LOCKING

A schedule is strict if a value written by a txn is not 
read or overwritten by other txns until that txn finishes.

Advantages:
→ Does not incur cascading aborts.
→ Reverse changes of aborted txns by just restoring original 

values of modified tuples.

19
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EXAMPLES

T1 – Move $100 from DJ Cache’s account (A) to his 
bookie’s account (B).

T2 – Compute the total amount in all accounts and 
return it to the application.

20

BEGIN
R(A)
A=A-100
W(A)
R(B)
B=B+100
W(B)
COMMIT

BEGIN
R(A)
R(B)
COMMIT
ret(A+B)

T1 T2
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Schedule
T1 T2

NON-2PL EXAMPLE
21

A=1000, B=1000

Initial Database State

A+B=1900

T2 Output

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)
R(B)

UNLOCK(B)
COMMIT
ret(A+B)

T
IM

E
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Schedule
T1 T2

2PL EXAMPLE
22

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
X-LOCK(B)
UNLOCK(A)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)

R(B)
UNLOCK(A)
UNLOCK(B)
COMMIT
ret(A+B)

A+B=2000

T2 Output

T
IM

E
A=1000, B=1000

Initial Database State
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Schedule
T1 T2

STRONG STRICT 2PL EXAMPLE
23

BEGIN
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X-LOCK(B)
R(B)
B=B+100
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT
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S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
UNLOCK(A)
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T
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A=1000, B=1000

Initial Database State

A+B=2000

T2 Output
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All Schedules

UNIVERSE OF SCHEDULES
24

View Serializable

Conflict Serializable

No Cascading
Aborts Strong Strict 2PL

Serial

https://db.cs.cmu.edu/
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2PL OBSERVATIONS

There are potential schedules that are serializable but 
would not be allowed by 2PL because locking limits 
concurrency.
→ Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention
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Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

IT JUST GOT REAL
26

Granted (T1→A)

T
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E
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Schedule
T1 T2

Lock Manager
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X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

IT JUST GOT REAL
26

Granted (T1→A)

Denied!

Granted (T2→B)

T
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E
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Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

IT JUST GOT REAL
26

Granted (T1→A)

Denied!

Granted (T2→B)
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IM

E
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2PL DEADLOCKS

A deadlock is a cycle of transactions waiting for locks 
to be released by each other.

Two ways of dealing with deadlocks:
→ Approach #1: Deadlock Detection
→ Approach #2: Deadlock Prevention

27
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DEADLOCK DETECTION

The DBMS creates a waits-for graph to keep track of 
what locks each txn is waiting to acquire:
→ Nodes are transactions
→ Edge from Ti to Tj if Ti is waiting for Tj to release a lock.

The system periodically checks for cycles in waits-for 
graph and then decides how to break it.
→ Trade-off between breaking deadlocks fast versus spending 

resources looking for them.

28
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Schedule
T1 T2 T3

DEADLOCK DETECTION
29
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T3
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S-LOCK(B)
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Waits-For Graph
T
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E
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DEADLOCK HANDLING

When the DBMS detects a deadlock, it will select a 
“victim” txn to rollback to break the cycle.

The victim txn will either restart or abort (more 
common) depending on how it was invoked.

There is a trade-off between the frequency of checking 
for deadlocks and how long txns wait before deadlocks 
are broken.

30
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DEADLOCK HANDLING: VICTIM SELECTION

Selecting the proper victim depends on a lot of different 
variables….
→ By age (lowest timestamp)
→ By progress (least/most queries executed)
→ By the # of items already locked
→ By the # of txns that we have to rollback with it

We also should consider the # of times a txn has been 
restarted in the past to prevent starvation.

31
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DEADLOCK HANDLING: ROLLBACK LENGTH

After selecting a victim txn to abort, the DBMS can also 
decide on how far to rollback the txn's changes.

Approach #1: Completely
→ Rollback entire txn and tell the application it was aborted.

Approach #2: Partial (Savepoints)
→ DBMS rolls back a portion of a txn (to break deadlock) and 

then attempts to re-execute the undone queries.

32
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DEADLOCK PREVENTION

When a txn tries to acquire a lock that is held by 
another txn, the DBMS kills one of them to prevent a 
deadlock.

This approach does not require a waits-for graph or 
detection algorithm.
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DEADLOCK PREVENTION

Assign each txn a timestamp when they start and use 
them to determine priorities.
→ For example, Older Timestamp = Higher Priority (e.g., T1 > T2)

Wait-Die (“Old Waits for Young”)
→ If requesting txn has higher priority than holding txn, then 

requesting txn waits for holding txn. 
→ Otherwise requesting txn aborts.

Wound-Wait (“Young Waits for Old”)
→ If requesting txn has higher priority than holding txn, then 

holding txn aborts and releases lock.
→ Otherwise requesting txn waits.

34
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DEADLOCK PREVENTION
35

BEGIN

X-LOCK(A)
   ⋮

BEGIN
X-LOCK(A)
   ⋮

BEGIN
X-LOCK(A)
   ⋮ BEGIN

X-LOCK(A)
   ⋮

Wait-Die

T1 waits

Wound-Wait

T2 aborts

Wait-Die

T2 aborts

Wound-Wait

T2 waits

T1 T2

T1 T2
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DEADLOCK PREVENTION

Why do these schemes guarantee no deadlocks?

Txns only wait for locks in one direction.

When a txn restarts, what is its (new) priority?

Its original timestamp to prevent it from getting starved 
for resources like an old man at a corrupt senior center.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

All these examples have a one-to-one mapping from 
database objects to locks.

If a txn wants to update one billion tuples, then it must 
acquire one billion locks.

Acquiring locks is a more expensive operation than 
acquiring a latch even if that lock is available.
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LOCK GRANULARITIES

When a txn wants to acquire a “lock”, the DBMS can 
decide the granularity (i.e., scope) of that lock.
→ Attribute? Tuple? Page? Table?

The DBMS should ideally obtain fewest number of  
locks that a txn needs.

Trade-off between parallelism versus overhead.
→ Fewer Locks, Larger Granularity vs. 

More Locks, Smaller Granularity.
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DATABASE LOCK HIERARCHY
39

Database

Table 1 Table 2

Attr 1 Attr 2 Attr n…

T1

Page 1 Page 2 Page 3 Page n…

Tuple 1 Tuple 2 Tuple n…Tuple 3
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DATABASE LOCK HIERARCHY
39

Database

Table 1 Table 2

Attr 1 Attr 2 Attr n…

T1

Page 1 Page 2 Page 3 Page n…

Tuple 1 Tuple 2 Tuple n…Tuple 3

Very Common

Slightly Rare

Common

Rare

Very Common
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INTENTION LOCKS

An intention lock allows a higher-level node to be 
locked in shared or exclusive mode without having to 
check all descendent nodes.

If a node is locked in an intention mode, then some txn 
is doing explicit locking at a lower level in the tree.
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INTENTION LOCKS

Intention-Shared (IS)
→ Indicates explicit locking at lower level with S locks.

→ Intent to get S lock(s) at finer granularity.

Intention-Exclusive (IX)
→ Indicates explicit locking at lower level with X locks.

→ Intent to get X lock(s) at finer granularity.

Shared+Intention-Exclusive (SIX)
→ The subtree rooted by that node is locked explicitly in S mode 

and explicit locking is being done at a lower level with X locks.
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COMPATIBILITY MATRIX
42

IS IX S SIX X

IS ×

IX × × ×

S × × ×

SIX × × × ×

X × × × × ×

T
1 H

ol
ds

T2 Wants
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LOCKING PROTOCOL

Each txn obtains the appropriate lock at highest level of 
the database hierarchy.

To get S or IS lock on a node, the txn must hold at least 
IS on parent node.

To get X, IX, or SIX on a node, must hold at least IX on 
parent node.
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EXAMPLE

T1 – Get the balance of DJ Cache’s bank account.

T2 – Increase bookie’s account balance by 1%.

What locks should these txns obtain?
→ Explicit Exclusive + Shared locks for leaf nodes of lock tree.
→ Special Intention locks for higher levels.
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EXAMPLE: TWO-LEVEL HIERARCHY
45

Table R

Tuple 2Tuple 1 Tuple n…

T1

Read

Read DJ Cache’s record in R.
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EXAMPLE: TWO-LEVEL HIERARCHY
45

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

Read

Read DJ Cache’s record in R.
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EXAMPLE: TWO-LEVEL HIERARCHY
45

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

T2

Write

Update bookie’s record in R.
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EXAMPLE: TWO-LEVEL HIERARCHY
45

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

T2

X
T2IX

T2

Write

Update bookie’s record in R.
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EXAMPLE: THREE TXNS

Assume three txns execute at same time:
→ T1 – Scan all tuples in R and update one tuple.
→ T2 – Read a single tuple in R.
→ T3 – Scan all tuples in R.

46

Table R

Tuple 2Tuple 1 Tuple n…
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EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

Read Read+Write

Tuple 2

Read

Scan all tuples in R and 
update one tuple.

…
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EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

Tuple 2

Scan all tuples in R and 
update one tuple.

…
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EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1

Read

Tuple 2

Read a single tuple in R.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Tuple 2

Read a single tuple in R.

…
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EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Read

T3

Tuple 2

Read Read

Scan all tuples in R.

…
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EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

T3

Tuple 2

Scan all tuples in R.

…
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EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

T3

Tuple 2

Scan all tuples in R.

S

…
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EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

T3

Tuple 2

Scan all tuples in R.

S

…
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EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T3

Tuple 2

Scan all tuples in R.

S
T3

…
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LOCK ESCALATION

The DBMS can automatically switch to coarser-grained 
locks when a txn acquires too many low-level locks.

This reduces the number of requests that the lock 
manager must process.

48
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LOCKING IN PRACTICE

Applications typically do not acquire a txn's locks 
manually (i.e., explicit SQL commands).

Sometimes you need to provide the DBMS with hints 
to help it to improve concurrency.
→ Update a tuple after reading it.
→ Skip any tuple that is locked.

Explicit locks are also useful when doing major changes 
to the database.

49
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SELECT...FOR UPDATE

Perform a SELECT and then sets an 
exclusive lock on the matching tuples.

Can also set shared locks:
→ Postgres: FOR SHARE
→ MySQL: LOCK IN SHARE MODE

50

SELECT * FROM <table>
 WHERE <qualification> FOR UPDATE;
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SELECT...SKIP LOCKED

Perform a SELECT and automatically ignore any tuples 
that are already locked in an incompatible mode.
→ Useful for maintaining queues inside of a DBMS.

51

SELECT * FROM <table>
 WHERE <qualification> SKIP LOCKED;
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CONCLUSION

2PL is used in almost every DBMS.

Automatically generates correct interleaving:
→ Locks + protocol (2PL, SS2PL ...)
→ Deadlock detection + handling
→ Deadlock prevention

Many more things not discussed…
→ Nested Transactions
→ Savepoints
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