Carnegie Mellon University

Two-Phase Lockmg““‘

LECTURE #18)) 15-445/645 FALL 2025)») PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

LAST CLASS

Conflict Serializable

— Verify using dependency graphs.

— Any DBMS that says that they support “serializable” isolation
does this.

View Serializable

— No efficient way to verify.
— No DBMS that supports this.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

We need a way to guarantee that all execution
schedules are correct (i.e., serializable) without knowing
the entire schedule ahead of time.

Solution: Use locks to protect database objects.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LOCKS V5. LATCHES

Locks Latches
Separate...| Transactions Workers (threads, processes)
Protect... | Database Contents In-Memory Data Structures
During...| Entire Transactions Critical Sections
Modes... | Shared, Exclusive, Update, Read, Write
Intention
Deadlock | Detection & Resolution Avoidance
...by...| Waits-for, Timeout, Aborts Coding Discipline
Keptin...| Lock Manager Protected Data Structure

Source: Goetz Graefe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

EXECUTING WITH LOCKS £

Schedule B Lock Manager
T T,
BEGIN
LOCK(A)= Granted (T,»A)
R(A) BEGIN

i
R(A) =
UNLOCK(A)I— Released (T1.)A)

v

R(A)— Granted (T,>A)
W(A)
COMMIT | UNLOCK(A) s [Re Leased (T,2A)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TODAY'S AGENDA

Lock Types
Two-Phase Locking
Deadlock Detection + Prevention

Hierarchical Locking
DB Flash Talk: Firebolt

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.firebolt.io/

BASIC LOCK TYPES

S-LOCK: Shared locks for reads.
X-LOCK: Exclusive locks for writes.

Compatibility Matrix

Shared Exclusive
S-LOCK X-LOCK
Shared
S-LOCK v X
Exclusive
X-LOCK X X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Compatibility of lock modes

The following table shows the compatibility of any twe modes for page
pecause a partition or table space cannot uss both page and row 10cks

Table 1. Compatibility rmatrix of page lock and row lock modes

Lock mode Share (S-lock)

share (S-lock) Yes

=

update {U-lock) es

Exclusive (X-lock)

|
il
]|

Compatibility for table space locks
modas for partition, table space, o'

\|l|'.u
I

ol
T

Table 2. Compatibility of table and|

Lock Mode

15 Yes Yes
™ Yes Yes
5] Yes No
u Yes No
SIX Yes No
X No No

Table 13.2. Conflicting Lock Modes

Requested Lock Mode ACC!
ACCESS SHARE

ROW SHARE

ROW EXCL.

GHARE UPDATE EXCL.
SHARE

SHARE ROW EXCL.

EXCL.

ACCESS EXCL. X

£SS SHARE ROW SHARE RO E

and row locks, N question of compatibility arlses between page and row locks,

update (

Yes

No

‘ N
PostgreiSQuX E : m :
S conticr|
X X X 7 mm

X
X
X X
X

XCL. SHARE UPDATE EXCL. SH.

T
fable 13:3 Summary of Tabye 1.
ocks

Existing granted mode 1S S 0L sotamen
Requested mode
intent shared (1s) Yes Yes e
Shared (5) W héiCéWf[SYes Yes B :
Update (U) « YeeSrVYgSr
intent exclusive 1x) Yes No
Yes No

Shared with intent exclusive (SIX)

Existing Lock Mode

ARE SHARE ROW EXCL. EXCL. AC

Mode of Table Lack

n.

Compatibje Compatipy
e

Lock Medes Permitteds

Compatible

Compatiple Compatipy
e

Compatible

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.ibm.com/docs/en/db2-for-zos/13?topic=locks-lock-modes-compatibility
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver16#lock_modes
https://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm#i5242
https://www.postgresql.org/docs/current/explicit-locking.html#LOCKING-TABLES
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html#innodb-intention-locks

EXECUTING WITH LOCKS

Transactions request locks (or upgrades).
Lock manager grants or blocks requests.
Transactions release locks.

Lock manager updates its internal lock-table.
— [t keeps track of what transactions hold what locks and what
transactions are waiting to acquire any locks.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXECUTING WITH LOCKS £

Schedule B Lock Manager
T, T,
BEGIN
X-LOCK (A) e Granted (T;»A)
R(A)
W(A)
UNLOCK (A)
BEGIN
X-LOCK(A)
W(A)
UNLOCK (A)

S-LOCK(A)
RCA)

UNLOCK (A)
COMMIT COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXECUTING WITH LOCKS £

Schedule B Lock Manager
T, T,
BEGIN
X-LOCK(A) e Granted (T;2A)
R(A)
W(A)
UNLOCK(A) — Released (T1'>A)
BEGIN
X-LOCK(A)
W(A)
UNLOCK (A)
S-LOCK(A)
R(A)
UNLOCK ()

COMMIT COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXECUTING WITH LOCKS £

Schedule B Lock Manager
T, T,

BEGIN

X-LOCK(A) e Granted (T;2A)

R(A)

W(A)

UNLOCK(A)— Released (T1'>A)
BEGIN
X-LOCK (A) W | Granted (T,%A)
W(A)
UNLOCK(A>— Released (T2'>A)

S-LOCK(A)

R(A)

UNLOCK(A)

COMMIT COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXECUTING WITH LOCKS £

Schedule B Lock Manager
T1 T2

BEGIN

X-LOCK(A) e Granted (T;2A)

R(A)

W(A)

UNLOCK(A)— Released (T1'>A)
BEGIN
X-LOCK (A) W | Granted (T,*A)
W(A)

UNLOCK(A) Released (T2'>A)

S-LOCK(A) Granted (T,+A)
R(A)

UNLOCK(A) Released (T,»A)
COMMIT COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXECUTING WITH LOCKS

Schedule
T1 T2
BEGIN
X-LOCK(A)
R(A)
W(A)
LOCK(A)
BEGIN
’Q' X-LOCK(A)
oWy W(A)
UNLOCK (A)
_Loguel2)
R(A)
UNLOCK (A)
COMMIT COMMIT

B Lock Manager

Granted (T,»A)

Released (T,»A)

Granted (T,»A)

Released (T,»A)

Granted (T,»A)

Released (T,»A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCURRENCY CONTROL PROTOCOL 5

Two-phase locking (2PL) is a concurrency control
protocol that determines whether a txn can access an
object in the database at runtime.

The protocol does not need to know all the queries that
a txn will execute ahead of time.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Two-phase_locking

TWO-PHASE LOCKING

Phase #1: Growing

— Each txn requests the locks that it needs from the DBMS'’s lock
manager.

— The lock manager grants/denies lock requests.

Phase #2: Shrinking

— The txn is allowed to only release/downgrade locks that it
previously acquired. It cannot acquire new locks.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks after
the growing phase finishes.

Transaction Lifetime

of Locks

Growmg iih&se”' hnk P as

_ TIME____ 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks after
the growing phase finishes.

2PL Violation!

Transaction Lifetime %

Growing Phase

of Locks

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXECUTING WITH 2PL &

Schedule B Lock Manager
T, T,
BEGIN
X-LOCK (A) e [Granted (T,2A)
R(A)
W(A)
BEGIN
X-LOCK(A)
R(A)
UNLOCK (A)
COMMIT
W(A)
UNLOCK(A)

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T 1

EXECUTING WITH 2PL

T,

BEGIN
R(A)
W(A)
R(A)

COMMIT

UNLOCK (A)

X-LOCK (A)

BEGIN

B Lock Manager

Granted (T,»A)

X—LOCK(A) — Denied!

[|
vX
W(A)

UNLOCK (A)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXECUTING WITH 2PL &

Schedule B Lock Manager
T, T,
BEGIN
X-LOCK (A) g | Granted (T2A)
RCA)
W(A)
BEGIN
X-LOCK (A)t | D1 €l
RCA) .
UNLOCK (A) s) (Re1eased (T,A)
COMMIT v
W(A)
UNLOCK (A)

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXECUTING WITH 2PL &

Schedule B Lock Manager
T, T,
BEGIN
X-LOCK (A) Y ® | Granted (T,2A)
R(A)
W(A)
BEGIN

X—LOCK(A) — Denied!
R(A) .

UNLOCK(A)_ Released (T1-)A)
COMMIT v

e EE—
UNLOCK(A) Released (T,»A)

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE LOCKING

2PL on its own is sufficient to guarantee conflict
serializability because it generates schedules whose
precedence graph is acyclic.

But it is subject to cascading aborts.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LPL: CASCADING ABORTS

Schedule
T, T,

BEGIN

X-LOCK(A)

X-LOCK(B)

R(A)

W(A)

UNLOCK(A) | BEGIN
X-LOCK(A)
R(A)

W(A)
R(B) ;
w(B)

ROLLBACK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

2PL: CASCADING ABORTS 5

Schedule
. . This is a permissible schedule in
‘ - 2PL, but the DBMS has to also
BEGIN
X-LOCK (A) abort T, when T, aborts.
X-LOCK(B)
RCA)
W(A)
UNLOEkSAQs‘iEGIN
~LOCK(A)
R(A)

W(A)
R(B) :

ROLLBACK ome

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ZPL: CASCADING ABORTS

Schedule . o .

- . This is a permissible schedule in
BEGIN1 2 2PL, but the DBMS has to also
X-LOCK(A) abort T, when T, aborts.

X-LOCK(B)

R(A)

mf_\(%MEGIN An‘}r inforf’nation abou.t T, cannot

~LOCK(A) be “leaked” to the outside world.

RCA) :
W(A) Any computation performed must

R(B) :

s o 0 be rolled back.

ROLLBACK |# z *

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T 1

ZPL: CASCADING ABORTS

T,

This is a permissible schedule in

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)

R(B)
W(B)

ROLLBACK

UNLOMEGIN

~LOCK(A) be “leaked” to the outside world.

R(A)
W(A)

Q@O
o we

2PL, but the DBMS has to also
abort T, when T, aborts.

Any information about T, cannot

_ Any computation performed must
Wasted work! |led back.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ZPL OBSERVATIONS

There are potential schedules that are serializable but
would not be allowed by 2PL because locking limits

concurrency.
— Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
— Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.

— Solution: Detection or Prevention

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

STRONG STRICT TWO-PHASE LOCKING 5

The txn is only allowed to release locks after it has
ended (i.e., committed or aborted).

Allows only conflict serializable schedules, but it is
often stronger than needed for some apps.

elease all locks at
end of txn.

of Locks

Growing Phase Shrinking Phase

_ TIME____ 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

STRONG STRICT TWO-PHASE LOCKING 5

A schedule is strict if a value written by a txn is not
read or overwritten by other txns until that txn finishes.

Advantages:

— Does not incur cascading aborts.

— Reverse changes of aborted txns by just restoring original
values of modified tuples.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLES

T, — Move $100 from DJ Cache’s account (A) to his
bookie’s account (B).

T, — Compute the total amount in all accounts and
return it to the application.

BEGIN BEGIN
R(A) R(A)
A=A-100 R(B)
W(A) COMMIT
R(B) ret(A+B)
B=B+100

W(B)

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NON-2PL EXAMPLE &

Schedule Initial Database State
T, T, (m=====mmm=mmmes :
BEGIN BEGIN | A=1000, B=1000
X-LOCK(A) e J
R(A)
NP %
W(A : T, Output
WKy | W g ,--2---£ ---------- ,
R(A
UISIL())CK(A) : A+B=1900 :
S-LOCK(B) e —————— J
R(B)
X-LOCK (B)
v UNLOCK(B)
R(B) g COMMIT
B=B+100 48 | ret(A+B)
W(B)
UNLOCK(B)
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ZPL EXAMPLE

Schedule
T1 T2
BEGIN BEGIN
X-LOCK(A)
R(A) S-LOCK(A)
A=A-100 .
Ak i X
X-LOCK(B) v
UNLOCK(A) | R(A)
S-LOCK(B)
R(B) : g
B=B+100 -
W(B) v
UNLOCK(B) | R(B)
COMMIT UNLOCK(A)
UNLOCK(B)
COMMIT

*ret(A+B)

Initial Database State

o
! A=1000, B=1000

L S
T, Output

i Tt shig N
: A+B=2000

L S p——

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

STRONG STRICT 2PL EXAMPLE

Schedule
T1 T2
BEGIN BEGIN
X-LOCK(A)
R(A) S-LOCK(A)
A=A-100 -
W(A) .
X-LOCK(B) m
oo |3
B=B+100 m
W(B) .
UNLOCK(A) v
UNLOCK(B) | R(A)
COMMIT S-LOCK(B)
R(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

ret(A+B)

Initial Database State

o
! A=1000, B=1000

L S
T, Output

i Tt shig N
: A+B=2000

L S p——

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

UNIVERSE OF SCHEDULES

All Schedules

View Serializable

Conflict Serializable

" No Cascading
b -
\ Wy

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ZPL OBSERVATIONS

There are potential schedules that are serializable but
would not be allowed by 2PL because locking limits

concurrency.
— Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
— Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.

— Solution: Detection or Prevention

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

IT JUST 60T REAL &

Schedule B Lock Manager
T1 T2

BEGIN | BEGIN

X-LOCK (A) ® | Granted (T;A)
S-LOCK(B)
R(B)
S-LOCK(A)

R(A)

X-LOCK(B)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

IT JUST 60T REAL &

Schedule B Lock Manager
T, T,
BEGIN BEGIN
X-LOCK(A) Granted (T,»A)
S-LOCK(B) Granted (T,»B)
R(B)
S-LOCK(A)

RCA)
X-LOCK(B)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

IT JUST 60T REAL &

Schedule B Lock Manager
T1 T2
BEGIN BEGIN
X-LOCK(A) Granted (T,»A)
S-LOCK(B) Granted (T,»B)
R(B)
S—LOCK (A) e | D11 /!

RCA)
X-LOCK(B)

<IIIIIIII

X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

IT JUST 60T REAL &

Schedule B Lock Manager
T T,
BEGIN
X-LOCK(A) Granted (T,»A)
Y N\ S-LOCK(B) Granted (T,»B)
oy
omnme S-LOCK(A) rpe— Do ied !
R(A) u
X—LOCK(B)_ Denied!
N u

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ZPL DEADLOCKS

A deadlocKk is a cycle of transactions waiting for locks
to be released by each other.

Two ways of dealing with deadlocks:
— Approach #1: Deadlock Detection
— Approach #2: Deadlock Prevention

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DEADLOCK DETECTION

The DBMS creates a waits-for graph to keep track of

what locks each txn is waiting to acquire:
— Nodes are transactions
— Edge from T; to T; if T; is waiting for T; to release a lock.

The system periodically checks for cycles in waits-for

graph and then decides how to break it.
— Trade-off between breaking deadlocks fast versus spending
resources looking for them.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DEADLOCK DETECTION 5

Schedule W aits-For Graph
T, T, T, a
BEGIN BEGIN BEGIN
S-LOCK(A)
X-LOCK(B)
N S-LOCK(C)
S-LOCK(B)

X-LOCK(C)
X-LOCK(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DEADLOCK DETECTION 5

Schedule W aits-For Graph
T1 T2 T3
BEGIN BEGIN BEGIN
S-LOCK(A)
X-LOCK(B)
S-LOCK(C)
S-LOCK(B)

X-LOCK(C)
X-LOCK(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DEADLOCK DETECTION

Schedule
T, T, T,
BEGIN BEGIN BEGIN
S-LOCK(A)
(B)
S-LOCK(C)

S-LOCK(B)

X-LOCK(C)

X-LOCK(A)

W aits-For Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DEADLOCK HANDLING

When the DBMS detects a deadlock, it will select a
“victim” txn to rollback to break the cycle.

The victim txn will either restart or abort (more
common) depending on how it was invoked.

There is a trade-off between the frequency of checking
for deadlocks and how long txns wait before deadlocks
are broken.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DEADLOCK HANDLING: VICTIM SELECTION

Selecting the proper victim depends on a lot of different

variables....

— By age (lowest timestamp)

— By progress (least/most queries executed)

— By the # of items already locked

— By the # of txns that we have to rollback with it

W e also should consider the # of times a txn has been
restarted in the past to prevent starvation.

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DEADLOCK HANDLING: ROLLBACK LENGTH

After selecting a victim txn to abort, the DBMS can also
decide on how far to rollback the txn's changes.

Approach #1: Completely

— Rollback entire txn and tell the application it was aborted.

Approach #2: Partial (Savepoints)

— DBMS rolls back a portion of a txn (to break deadlock) and
then attempts to re-execute the undone queries.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DEADLOCK PREVENTION

When a txn tries to acquire a lock that is held by

another txn, the DBMS kills one of them to prevent a
deadlock.

This approach does not require a waits-for graph or
detection algorithm.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DEADLOCK PREVENTION

Assign each txn a timestamp when they start and use

them to determine priorities.
— For example, Older Timestamp = Higher Priority (e.g., T, > T,)

Wait-Die (“Old Waits for Young”)

— If requesting txn has higher priority than holding txn, then
requesting txn waits for holding txn.
— Otherwise requesting txn aborts.

Wound-Wait (“Young Waits for Old”)

— If requesting txn has higher priority than holding txn, then
holding txn aborts and releases lock.
— Otherwise requesting txn waits.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DEADLOCK PREVENTION 5

T T
BEG IN1 : W ait-Die Wound-W ait
BEGIN r===-"-==" -1 === i
X-LOCK(A) » : T, waits : : T, aborts :
X-LOCK (A] Smm——— - emm—————— =
T1 TZ
BEGIN W ait-Die Wound-W ait

X-LOCK(A) Fr======" N
: BEGIN » I T,aborts ! T, waits :
X-LOCK(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DEADLOCK PREVENTION

Why do these schemes guarantee no deadlocks?

Txns only wait for locks in one direction.

When a txn restarts, what is its (new) priority?

[ts original timestamp to prevent it from getting starved
for resources like an old man at a corrupt senior center.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

All these examples have a one-to-one mapping from
database objects to locks.

[f a txn wants to update one billion tuples, then it must
acquire one billion locks.

Acquiring locks is a more expensive operation than
acquiring a latch even if that lock is available.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LOCK GRANULARITIES

When a txn wants to acquire a “lock”, the DBMS can

decide the granularity (i.e., scope) of that lock.
— Attribute? Tuple? Page? Table?

The DBMS should ideally obtain fewest number of
locks that a txn needs.

Trade-off between parallelism versus overhead.
— Fewer Locks, Larger Granularity vs.
More Locks, Smaller Granularity.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE LOCK HIERARCHY

Database

/\

Table 1

Page 2

Page 3

A

Tuple 2

Tuple 3

Table 2

Pagen

Attr 1

Attr 2

Tuplen

Attr n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE LOCK HIERARCHY

« Slightly Rare

Database

/\

=

« Very Common

« Common

@i Table 1 Table 2
S
@ Page 1 @ Page 2 @ Page 3 - |@Pagen
@Tuplel ||@Tuple2 | |@Tuple3 -« |@Tuplen
VAN
@ Attr 1 @ Attr 2 .. |BAttrn

« Very Common

« Rare

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTENTION LOCKS

An intention lock allows a higher-level node to be
locked in shared or exclusive mode without having to
check all descendent nodes.

If a node is locked in an intention mode, then some txn
is doing explicit locking at a lower level in the tree.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INTENTION LOCKS

Intention-Shared (IS)

— Indicates explicit locking at lower level with S locks.
— Intent to get S lock(s) at finer granularity.

Intention-Exclusive (IX)
— Indicates explicit locking at lower level with X locks.
— Intent to get X lock(s) at finer granularity.

Shared+Intention-Exclusive (SIX)
— The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

COMPATIBILITY MATRIX

T, Wants

IX
v
v
X
X
X

IS
v
v
v
v
X

IS
IX
S
SIX

SPIoH 'L

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LOCKING PROTOCOL &

Each txn obtains the appropriate lock at highest level of
the database hierarchy.

To get S or IS lock on a node, the txn must hold at least
IS on parent node.

To get X, IX, or SIX on a node, must hold at least IX on
parent node.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE

T, — Get the balance of DJ Cache’s bank account.
T, — Increase bookie’s account balance by 1%.

W hat locks should these txns obtain?

— Explicit Exclusive + Shared locks for leaf nodes of lock tree.
— Special Intention locks for higher levels.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: TWO-LEVEL HIERARCHY 5

Read DJ Cache’s record in R.

Table R

Ie n

Read

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: TWO-LEVEL HIERARCHY 5

Read DJ Cache’s record in R.

- B Table R
@P 1

Tuple 1 Tuple2 | - | Tuplen
Read

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: TWO-LEVEL HIERARCHY 5

Update bookie’s record in R.

IS IX S SIX X

IS\ v v V V X
IX| v X X X
S| Vv X v X X

8 TableR SIX| v x x x x

T, Xl x x x x X

Write

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: TWO-LEVEL HIERARCHY 5

Update bookie’s record in R.

IS IX S SIX X
IS\ v Vv V J X
IX| v v x X X
S| v X J x X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: THREE TXNS

Assume three txns execute at same time:
— T, — Scan all tuples in R and update one tuple.
— T, — Read a single tuple in R.

— T3 — Scan all tuples in R.

Table R

—

Tuple 1 Tuple2 | -+ | Tuplen

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: THREE TXNS

Scan all tuples in R and .
T

update one tuple.

Table R

Read Read Read+Write

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: THREE TXNS

Scan all tuples in R and .
T

update one tuple.
B Table R
Tuple 1 Tuple2 | --- i Tuplen

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: THREE TXNS 5

Read a single tuple in R.

IS IX S SIX X
IS| v v X
IX| v v x X X

S| Vv X v X X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: THREE TXNS 5

Read a single tuple in R.

IS IX S SIX X

IS| v Vv V JV X

IX| v v x X X

S| v x v x X
v

i Table R 2308

X X X X
LIS) o IO,
a
B Tuple 1 Tuple2 | --- & Tuplen

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: THREE TXNS 5

Scan all tuples in R.

IS IX S SIX X

IS| v v JV V X
T, y

X v X X

wn
L L

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: THREE TXNS

Scan all tuples in R.

Tuple 2

Fli

IS IX S SIX X

TupIe n

IS
IX

SIX

v v VvV X
v o/ X X X
v X v X X

XXXXX

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: THREE TXNS

Scan all tuples in R.

i X
Table R

oy =F
Tuple 1 Tuple 2 TupIe n

IS IX S SIX X

IS} v v Vv JV X
J v X X X

S|v x v x X
v

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: THREE TXNS 5

Scan all tuples in R.

K
a IS IX S SIX X
IS| v v V V X
é!:’ IX| v X X X
S| v X 4 X X
0

SIX| Vv X X X
Table R

X| x x x x «x
Tuple 1 Tuple2 | - g Tuple n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EXAMPLE: THREE TXNS 5

Scan all tuples in R.

IS IX S SIX X

IsS|v v v J x
S| v X 7 X X
“ SIX| v x x x X

3 Table R

m o

Tuple 1 Tuple2 | --- PTUple -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LOCK ESCALATION %

The DBMS can automatically switch to coarser-grained
locks when a txn acquires too many low-level locks.

This reduces the number of requests that the lock
manager must process.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LOCKING IN PRACTICE

Applications typically do not acquire a txn's locks
manually (i.e., explicit SQL commands).

Sometimes you need to provide the DBMS with hints

to help it to improve concurrency.
— Update a tuple after reading it.
— Skip any tuple that is locked.

Explicit locks are also useful when doing major changes
to the database.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SELECT...FOR UPDATE

Perform a SELECT and then sets an
exclusive lock on the matching tuples.

Can also set shared locks:

— Postgres: FOR SHARE
— MySQL: LOCK IN SHARE MODE

=

Table 13.3. Conflicting Row-Level Locks

Current Lock Mode

Requested Lock Mode FOR KEY SHARE FOR SHARE FOR NO KEY UPDATE FOR UPDATE

FOR KEY SHARE

FOR SHARE

FOR NO KEY UPDATE

FOR UPDATE X

X

X
X
X

SELECT * FROM <table>
WHERE <qualification>

FOR UPDATE;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SELECT...SKIP LOCKED

Perform a SELECT and automatically ignore any tuples

that are already locked in an incompatible mode.
— Useful for maintaining queues inside of a DBMS.

SELECT * FROM <table>
WHERE <qualification> SKIP LOCKED;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCLUSION

2PL is used in almost every DBMS.

Automatically generates correct interleaving:
— Locks + protocol (2PL, SS2PL ...)

— Deadlock detection + handling

— Deadlock prevention

Many more things not discussed...
— Nested Transactions
— Savepoints

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Two-Phase Locking
	Slide 2: LAST CLASS
	Slide 3: OBSERVATION
	Slide 4: LOCKS VS. LATCHES
	Slide 5: EXECUTING WITH LOCKS
	Slide 6: TODAY'S AGENDA

	Lock Types
	Slide 7: BASIC LOCK TYPES
	Slide 8: BASIC LOCK TYPES
	Slide 9: EXECUTING WITH LOCKS
	Slide 10: EXECUTING WITH LOCKS
	Slide 11: EXECUTING WITH LOCKS
	Slide 12: EXECUTING WITH LOCKS
	Slide 13: EXECUTING WITH LOCKS
	Slide 14: EXECUTING WITH LOCKS

	Two-Phase Locking
	Slide 15: CONCURRENCY CONTROL PROTOCOL
	Slide 16: TWO-PHASE LOCKING
	Slide 17: TWO-PHASE LOCKING
	Slide 18: TWO-PHASE LOCKING
	Slide 19: EXECUTING WITH 2PL
	Slide 20: EXECUTING WITH 2PL
	Slide 21: EXECUTING WITH 2PL
	Slide 22: EXECUTING WITH 2PL
	Slide 23: TWO-PHASE LOCKING
	Slide 24: 2PL: CASCADING ABORTS
	Slide 25: 2PL: CASCADING ABORTS
	Slide 26: 2PL: CASCADING ABORTS
	Slide 27: 2PL: CASCADING ABORTS
	Slide 28: 2PL OBSERVATIONS
	Slide 29: STRONG STRICT TWO-PHASE LOCKING
	Slide 30: STRONG STRICT TWO-PHASE LOCKING
	Slide 31: EXAMPLES
	Slide 32: NON-2PL EXAMPLE
	Slide 33: 2PL EXAMPLE
	Slide 34: STRONG STRICT 2PL EXAMPLE
	Slide 35: UNIVERSE OF SCHEDULES
	Slide 36: 2PL OBSERVATIONS

	Deadlocks
	Slide 37: IT JUST GOT REAL
	Slide 38: IT JUST GOT REAL
	Slide 39: IT JUST GOT REAL
	Slide 40: IT JUST GOT REAL
	Slide 41: 2PL DEADLOCKS
	Slide 42: DEADLOCK DETECTION
	Slide 43: DEADLOCK DETECTION
	Slide 44: DEADLOCK DETECTION
	Slide 45: DEADLOCK DETECTION
	Slide 46: DEADLOCK HANDLING
	Slide 47: DEADLOCK HANDLING: VICTIM SELECTION
	Slide 48: DEADLOCK HANDLING: ROLLBACK LENGTH
	Slide 49: DEADLOCK PREVENTION
	Slide 50: DEADLOCK PREVENTION
	Slide 51: DEADLOCK PREVENTION
	Slide 52: DEADLOCK PREVENTION
	Slide 53: OBSERVATION

	Lock Granularities
	Slide 54: LOCK GRANULARITIES
	Slide 55: DATABASE LOCK HIERARCHY
	Slide 56: DATABASE LOCK HIERARCHY
	Slide 57: INTENTION LOCKS
	Slide 58: INTENTION LOCKS
	Slide 59: COMPATIBILITY MATRIX
	Slide 60: LOCKING PROTOCOL
	Slide 61: EXAMPLE
	Slide 62: EXAMPLE: TWO-LEVEL HIERARCHY
	Slide 63: EXAMPLE: TWO-LEVEL HIERARCHY
	Slide 64: EXAMPLE: TWO-LEVEL HIERARCHY
	Slide 65: EXAMPLE: TWO-LEVEL HIERARCHY
	Slide 66: EXAMPLE: THREE TXNS
	Slide 67: EXAMPLE: THREE TXNS
	Slide 68: EXAMPLE: THREE TXNS
	Slide 69: EXAMPLE: THREE TXNS
	Slide 70: EXAMPLE: THREE TXNS
	Slide 71: EXAMPLE: THREE TXNS
	Slide 72: EXAMPLE: THREE TXNS
	Slide 73: EXAMPLE: THREE TXNS
	Slide 74: EXAMPLE: THREE TXNS
	Slide 75: EXAMPLE: THREE TXNS
	Slide 76: LOCK ESCALATION

	Locking in Pratice
	Slide 77: LOCKING IN PRACTICE
	Slide 78: SELECT...FOR UPDATE
	Slide 79: SELECT...SKIP LOCKED

	Conclusion
	Slide 80: CONCLUSION

