
DatabaseSystems

15-445/645 FALL 2025

15- 445/645 FALL 2025
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Two - Phase Locking
LECTURE #18

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LAST CLASS

Conflict Serializable
→ Verify using dependency graphs.
→ Any DBMS that says that they support “serializable” isolation

does this.

View Serializable
→ No efficient way to verify.
→ No DBMS that supports this.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

We need a way to guarantee that all execution
schedules are correct (i.e., serializable) without knowing
the entire schedule ahead of time.

Solution: Use locks to protect database objects.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LOCKS VS. LATCHES

Locks Latches

Separate… Transactions Workers (threads, processes)

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update,
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure

Goetz Graefe

Source: Goetz Graefe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Lock Manager

EXECUTING WITH LOCKS
5

Granted (T1→A)

Denied!

Granted (T2→A)

Released (T1→A)

Released (T2→A)

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule
T1 T2

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TODAY'S AGENDA
Lock Types

Two-Phase Locking

Deadlock Detection + Prevention

Hierarchical Locking

DB Flash Talk: Firebolt

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.firebolt.io/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BASIC LOCK TYPES

S-LOCK: Shared locks for reads.

X-LOCK: Exclusive locks for writes.

7

Shared
S-LOCK

Exclusive
X-LOCK

Shared
S-LOCK ×

Exclusive
X-LOCK × ×

Compatibility Matrix

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BASIC LOCK TYPES

S-LOCK: Shared locks for reads.

X-LOCK: Exclusive locks for writes.

7

Shared
S-LOCK

Exclusive
X-LOCK

Shared
S-LOCK ×

Exclusive
X-LOCK × ×

Compatibility Matrix

Table

Description automatically generated

Table

Description automatically generated

Calendar

Description automatically generated

Table

Description automatically generated

Table

Description automatically generated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.ibm.com/docs/en/db2-for-zos/13?topic=locks-lock-modes-compatibility
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver16#lock_modes
https://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm#i5242
https://www.postgresql.org/docs/current/explicit-locking.html#LOCKING-TABLES
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html#innodb-intention-locks

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXECUTING WITH LOCKS

Transactions request locks (or upgrades).

Lock manager grants or blocks requests.

Transactions release locks.

Lock manager updates its internal lock-table.
→ It keeps track of what transactions hold what locks and what

transactions are waiting to acquire any locks.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS
9

Granted (T1→A)

T1 T2
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS
9

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS
9

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

T1 T2
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS
9

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS
9

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCURRENCY CONTROL PROTOCOL

Two-phase locking (2PL) is a concurrency control
protocol that determines whether a txn can access an
object in the database at runtime.

The protocol does not need to know all the queries that
a txn will execute ahead of time.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Two-phase_locking

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TWO-PHASE LOCKING

Phase #1: Growing
→ Each txn requests the locks that it needs from the DBMS’s lock

manager.
→ The lock manager grants/denies lock requests.

Phase #2: Shrinking
→ The txn is allowed to only release/downgrade locks that it

previously acquired. It cannot acquire new locks.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks after
the growing phase finishes.

12

o

f
L

o
ck

s

TIME

Growing Phase Shrinking Phase

Transaction Lifetime

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks after
the growing phase finishes.

13

TIME

Transaction Lifetime

o

f
L

o
ck

s

2PL Violation!

Growing Phase Shrinking Phase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

EXECUTING WITH 2PL
14

Granted (T1→A)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

EXECUTING WITH 2PL
14

Granted (T1→A)

Denied!

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

EXECUTING WITH 2PL
14

Granted (T1→A)

Denied!

Released (T1→A)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

EXECUTING WITH 2PL
14

Granted (T1→A)

Denied!

Released (T2→A)

Released (T1→A)

Granted (T2→A)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TWO-PHASE LOCKING

2PL on its own is sufficient to guarantee conflict
serializability because it generates schedules whose
precedence graph is acyclic.

But it is subject to cascading aborts.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

2PL: CASCADING ABORTS

16

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

ROLLBACK

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

2PL: CASCADING ABORTS

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.

16

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

ROLLBACK

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

2PL: CASCADING ABORTS

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.

Any information about T1 cannot
be “leaked” to the outside world.

Any computation performed must
be rolled back.

16

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

ROLLBACK

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

2PL: CASCADING ABORTS

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.

Any information about T1 cannot
be “leaked” to the outside world.

Any computation performed must
be rolled back.

16

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

Wasted work!

ROLLBACK

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

2PL OBSERVATIONS

There are potential schedules that are serializable but
would not be allowed by 2PL because locking limits
concurrency.
→ Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

STRONG STRICT TWO-PHASE LOCKING

The txn is only allowed to release locks after it has
ended (i.e., committed or aborted).

Allows only conflict serializable schedules, but it is
often stronger than needed for some apps.

18

TIME

o

f
L

o
ck

s

Release all locks at
end of txn.

Growing Phase Shrinking Phase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

STRONG STRICT TWO-PHASE LOCKING

A schedule is strict if a value written by a txn is not
read or overwritten by other txns until that txn finishes.

Advantages:
→ Does not incur cascading aborts.
→ Reverse changes of aborted txns by just restoring original

values of modified tuples.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLES

T1 – Move $100 from DJ Cache’s account (A) to his
bookie’s account (B).

T2 – Compute the total amount in all accounts and
return it to the application.

20

BEGIN
R(A)
A=A-100
W(A)
R(B)
B=B+100
W(B)
COMMIT

BEGIN
R(A)
R(B)
COMMIT
ret(A+B)

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

NON-2PL EXAMPLE
21

A=1000, B=1000

Initial Database State

A+B=1900

T2 Output

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)
R(B)

UNLOCK(B)
COMMIT
ret(A+B)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

2PL EXAMPLE
22

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
X-LOCK(B)
UNLOCK(A)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)

R(B)
UNLOCK(A)
UNLOCK(B)
COMMIT
ret(A+B)

A+B=2000

T2 Output

T
IM

E
A=1000, B=1000

Initial Database State

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

STRONG STRICT 2PL EXAMPLE
23

BEGIN
X-LOCK(A)
R(A)
A=A-100
W(A)
X-LOCK(B)
R(B)
B=B+100
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
UNLOCK(A)
UNLOCK(B)
COMMIT
ret(A+B)

T
IM

E
A=1000, B=1000

Initial Database State

A+B=2000

T2 Output

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

All Schedules

UNIVERSE OF SCHEDULES
24

View Serializable

Conflict Serializable

No Cascading
Aborts Strong Strict 2PL

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

2PL OBSERVATIONS

There are potential schedules that are serializable but
would not be allowed by 2PL because locking limits
concurrency.
→ Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

IT JUST GOT REAL
26

Granted (T1→A)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

IT JUST GOT REAL
26

Granted (T1→A)

Granted (T2→B)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

IT JUST GOT REAL
26

Granted (T1→A)

Denied!

Granted (T2→B)

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

IT JUST GOT REAL
26

Granted (T1→A)

Denied!

Granted (T2→B)

Denied!T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

2PL DEADLOCKS

A deadlock is a cycle of transactions waiting for locks
to be released by each other.

Two ways of dealing with deadlocks:
→ Approach #1: Deadlock Detection
→ Approach #2: Deadlock Prevention

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DEADLOCK DETECTION

The DBMS creates a waits-for graph to keep track of
what locks each txn is waiting to acquire:
→ Nodes are transactions
→ Edge from Ti to Tj if Ti is waiting for Tj to release a lock.

The system periodically checks for cycles in waits-for
graph and then decides how to break it.
→ Trade-off between breaking deadlocks fast versus spending

resources looking for them.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2 T3

DEADLOCK DETECTION
29

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

Waits-For Graph
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2 T3

DEADLOCK DETECTION
29

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

Waits-For Graph
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2 T3

DEADLOCK DETECTION
29

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

Waits-For Graph
T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DEADLOCK HANDLING

When the DBMS detects a deadlock, it will select a
“victim” txn to rollback to break the cycle.

The victim txn will either restart or abort (more
common) depending on how it was invoked.

There is a trade-off between the frequency of checking
for deadlocks and how long txns wait before deadlocks
are broken.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DEADLOCK HANDLING: VICTIM SELECTION

Selecting the proper victim depends on a lot of different
variables….
→ By age (lowest timestamp)
→ By progress (least/most queries executed)
→ By the # of items already locked
→ By the # of txns that we have to rollback with it

We also should consider the # of times a txn has been
restarted in the past to prevent starvation.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DEADLOCK HANDLING: ROLLBACK LENGTH

After selecting a victim txn to abort, the DBMS can also
decide on how far to rollback the txn's changes.

Approach #1: Completely
→ Rollback entire txn and tell the application it was aborted.

Approach #2: Partial (Savepoints)
→ DBMS rolls back a portion of a txn (to break deadlock) and

then attempts to re-execute the undone queries.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DEADLOCK PREVENTION

When a txn tries to acquire a lock that is held by
another txn, the DBMS kills one of them to prevent a
deadlock.

This approach does not require a waits-for graph or
detection algorithm.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DEADLOCK PREVENTION

Assign each txn a timestamp when they start and use
them to determine priorities.
→ For example, Older Timestamp = Higher Priority (e.g., T1 > T2)

Wait-Die (“Old Waits for Young”)
→ If requesting txn has higher priority than holding txn, then

requesting txn waits for holding txn.
→ Otherwise requesting txn aborts.

Wound-Wait (“Young Waits for Old”)
→ If requesting txn has higher priority than holding txn, then

holding txn aborts and releases lock.
→ Otherwise requesting txn waits.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DEADLOCK PREVENTION
35

BEGIN

X-LOCK(A)
 ⋮

BEGIN
X-LOCK(A)
 ⋮

BEGIN
X-LOCK(A)
 ⋮ BEGIN

X-LOCK(A)
 ⋮

Wait-Die

T1 waits

Wound-Wait

T2 aborts

Wait-Die

T2 aborts

Wound-Wait

T2 waits

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DEADLOCK PREVENTION

Why do these schemes guarantee no deadlocks?

Txns only wait for locks in one direction.

When a txn restarts, what is its (new) priority?

Its original timestamp to prevent it from getting starved
for resources like an old man at a corrupt senior center.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

All these examples have a one-to-one mapping from
database objects to locks.

If a txn wants to update one billion tuples, then it must
acquire one billion locks.

Acquiring locks is a more expensive operation than
acquiring a latch even if that lock is available.

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LOCK GRANULARITIES

When a txn wants to acquire a “lock”, the DBMS can
decide the granularity (i.e., scope) of that lock.
→ Attribute? Tuple? Page? Table?

The DBMS should ideally obtain fewest number of
locks that a txn needs.

Trade-off between parallelism versus overhead.
→ Fewer Locks, Larger Granularity vs.

More Locks, Smaller Granularity.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DATABASE LOCK HIERARCHY
39

Database

Table 1 Table 2

Attr 1 Attr 2 Attr n…

T1

Page 1 Page 2 Page 3 Page n…

Tuple 1 Tuple 2 Tuple n…Tuple 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DATABASE LOCK HIERARCHY
39

Database

Table 1 Table 2

Attr 1 Attr 2 Attr n…

T1

Page 1 Page 2 Page 3 Page n…

Tuple 1 Tuple 2 Tuple n…Tuple 3

Very Common

Slightly Rare

Common

Rare

Very Common

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INTENTION LOCKS

An intention lock allows a higher-level node to be
locked in shared or exclusive mode without having to
check all descendent nodes.

If a node is locked in an intention mode, then some txn
is doing explicit locking at a lower level in the tree.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INTENTION LOCKS

Intention-Shared (IS)
→ Indicates explicit locking at lower level with S locks.

→ Intent to get S lock(s) at finer granularity.

Intention-Exclusive (IX)
→ Indicates explicit locking at lower level with X locks.

→ Intent to get X lock(s) at finer granularity.

Shared+Intention-Exclusive (SIX)
→ The subtree rooted by that node is locked explicitly in S mode

and explicit locking is being done at a lower level with X locks.

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COMPATIBILITY MATRIX
42

IS IX S SIX X

IS ×

IX × × ×

S × × ×

SIX × × × ×

X × × × × ×

T
1 H

ol
ds

T2 Wants

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LOCKING PROTOCOL

Each txn obtains the appropriate lock at highest level of
the database hierarchy.

To get S or IS lock on a node, the txn must hold at least
IS on parent node.

To get X, IX, or SIX on a node, must hold at least IX on
parent node.

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE

T1 – Get the balance of DJ Cache’s bank account.

T2 – Increase bookie’s account balance by 1%.

What locks should these txns obtain?
→ Explicit Exclusive + Shared locks for leaf nodes of lock tree.
→ Special Intention locks for higher levels.

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: TWO-LEVEL HIERARCHY
45

Table R

Tuple 2Tuple 1 Tuple n…

T1

Read

Read DJ Cache’s record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: TWO-LEVEL HIERARCHY
45

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

Read

Read DJ Cache’s record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: TWO-LEVEL HIERARCHY
45

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

T2

Write

Update bookie’s record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: TWO-LEVEL HIERARCHY
45

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

T2

X
T2IX

T2

Write

Update bookie’s record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: THREE TXNS

Assume three txns execute at same time:
→ T1 – Scan all tuples in R and update one tuple.
→ T2 – Read a single tuple in R.
→ T3 – Scan all tuples in R.

46

Table R

Tuple 2Tuple 1 Tuple n…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

Read Read+Write

Tuple 2

Read

Scan all tuples in R and
update one tuple.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

Tuple 2

Scan all tuples in R and
update one tuple.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1

Read

Tuple 2

Read a single tuple in R.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Tuple 2

Read a single tuple in R.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Read

T3

Tuple 2

Read Read

Scan all tuples in R.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

T3

Tuple 2

Scan all tuples in R.

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

T3

Tuple 2

Scan all tuples in R.

S

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

T3

Tuple 2

Scan all tuples in R.

S

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

EXAMPLE: THREE TXNS
47

Table R

Tuple 1 Tuple n

T3

Tuple 2

Scan all tuples in R.

S
T3

…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LOCK ESCALATION

The DBMS can automatically switch to coarser-grained
locks when a txn acquires too many low-level locks.

This reduces the number of requests that the lock
manager must process.

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LOCKING IN PRACTICE

Applications typically do not acquire a txn's locks
manually (i.e., explicit SQL commands).

Sometimes you need to provide the DBMS with hints
to help it to improve concurrency.
→ Update a tuple after reading it.
→ Skip any tuple that is locked.

Explicit locks are also useful when doing major changes
to the database.

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT...FOR UPDATE

Perform a SELECT and then sets an
exclusive lock on the matching tuples.

Can also set shared locks:
→ Postgres: FOR SHARE
→ MySQL: LOCK IN SHARE MODE

50

SELECT * FROM <table>
 WHERE <qualification> FOR UPDATE;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT...SKIP LOCKED

Perform a SELECT and automatically ignore any tuples
that are already locked in an incompatible mode.
→ Useful for maintaining queues inside of a DBMS.

51

SELECT * FROM <table>
 WHERE <qualification> SKIP LOCKED;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

2PL is used in almost every DBMS.

Automatically generates correct interleaving:
→ Locks + protocol (2PL, SS2PL ...)
→ Deadlock detection + handling
→ Deadlock prevention

Many more things not discussed…
→ Nested Transactions
→ Savepoints

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Two-Phase Locking
	Slide 2: LAST CLASS
	Slide 3: OBSERVATION
	Slide 4: LOCKS VS. LATCHES
	Slide 5: EXECUTING WITH LOCKS
	Slide 6: TODAY'S AGENDA

	Lock Types
	Slide 7: BASIC LOCK TYPES
	Slide 8: BASIC LOCK TYPES
	Slide 9: EXECUTING WITH LOCKS
	Slide 10: EXECUTING WITH LOCKS
	Slide 11: EXECUTING WITH LOCKS
	Slide 12: EXECUTING WITH LOCKS
	Slide 13: EXECUTING WITH LOCKS
	Slide 14: EXECUTING WITH LOCKS

	Two-Phase Locking
	Slide 15: CONCURRENCY CONTROL PROTOCOL
	Slide 16: TWO-PHASE LOCKING
	Slide 17: TWO-PHASE LOCKING
	Slide 18: TWO-PHASE LOCKING
	Slide 19: EXECUTING WITH 2PL
	Slide 20: EXECUTING WITH 2PL
	Slide 21: EXECUTING WITH 2PL
	Slide 22: EXECUTING WITH 2PL
	Slide 23: TWO-PHASE LOCKING
	Slide 24: 2PL: CASCADING ABORTS
	Slide 25: 2PL: CASCADING ABORTS
	Slide 26: 2PL: CASCADING ABORTS
	Slide 27: 2PL: CASCADING ABORTS
	Slide 28: 2PL OBSERVATIONS
	Slide 29: STRONG STRICT TWO-PHASE LOCKING
	Slide 30: STRONG STRICT TWO-PHASE LOCKING
	Slide 31: EXAMPLES
	Slide 32: NON-2PL EXAMPLE
	Slide 33: 2PL EXAMPLE
	Slide 34: STRONG STRICT 2PL EXAMPLE
	Slide 35: UNIVERSE OF SCHEDULES
	Slide 36: 2PL OBSERVATIONS

	Deadlocks
	Slide 37: IT JUST GOT REAL
	Slide 38: IT JUST GOT REAL
	Slide 39: IT JUST GOT REAL
	Slide 40: IT JUST GOT REAL
	Slide 41: 2PL DEADLOCKS
	Slide 42: DEADLOCK DETECTION
	Slide 43: DEADLOCK DETECTION
	Slide 44: DEADLOCK DETECTION
	Slide 45: DEADLOCK DETECTION
	Slide 46: DEADLOCK HANDLING
	Slide 47: DEADLOCK HANDLING: VICTIM SELECTION
	Slide 48: DEADLOCK HANDLING: ROLLBACK LENGTH
	Slide 49: DEADLOCK PREVENTION
	Slide 50: DEADLOCK PREVENTION
	Slide 51: DEADLOCK PREVENTION
	Slide 52: DEADLOCK PREVENTION
	Slide 53: OBSERVATION

	Lock Granularities
	Slide 54: LOCK GRANULARITIES
	Slide 55: DATABASE LOCK HIERARCHY
	Slide 56: DATABASE LOCK HIERARCHY
	Slide 57: INTENTION LOCKS
	Slide 58: INTENTION LOCKS
	Slide 59: COMPATIBILITY MATRIX
	Slide 60: LOCKING PROTOCOL
	Slide 61: EXAMPLE
	Slide 62: EXAMPLE: TWO-LEVEL HIERARCHY
	Slide 63: EXAMPLE: TWO-LEVEL HIERARCHY
	Slide 64: EXAMPLE: TWO-LEVEL HIERARCHY
	Slide 65: EXAMPLE: TWO-LEVEL HIERARCHY
	Slide 66: EXAMPLE: THREE TXNS
	Slide 67: EXAMPLE: THREE TXNS
	Slide 68: EXAMPLE: THREE TXNS
	Slide 69: EXAMPLE: THREE TXNS
	Slide 70: EXAMPLE: THREE TXNS
	Slide 71: EXAMPLE: THREE TXNS
	Slide 72: EXAMPLE: THREE TXNS
	Slide 73: EXAMPLE: THREE TXNS
	Slide 74: EXAMPLE: THREE TXNS
	Slide 75: EXAMPLE: THREE TXNS
	Slide 76: LOCK ESCALATION

	Locking in Pratice
	Slide 77: LOCKING IN PRACTICE
	Slide 78: SELECT...FOR UPDATE
	Slide 79: SELECT...SKIP LOCKED

	Conclusion
	Slide 80: CONCLUSION

