
DatabaseSystems

15-445/645 FALL 2025

15- 445/645 FALL 2025
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Timestamp Ordering
LECTURE #19

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ADMINISTRIVIA

Project #3 is due Sunday Nov 16th @ 11:59pm
→ Recitation Video + Slides (see @235)
→ Saturday Office Hours Nov 15th @ 3:00-5:00pm (GHC 5207)

Homework #5 is due Sunday Nov 23rd @ 11:59

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/235

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

UPCOMING DATABASE TALKS

Mooncake (DB Seminar)
→ Monday Nov 10th @ 4:30pm
→ Zoom

dbt (DB Meeting)
→ Tuesday Nov 11th @ 12:00pm
→ GHC 8115
→ Info Session @ 2:30pm (@260)

Firebolt (DB Seminar)
→ Monday Nov 17th @ 4:30pm
→ Zoom

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/futuredata-mooncake/
https://db.cs.cmu.edu/events/fall-2025-open-data-infrastructure-with-iceberg-and-dbt/
https://piazza.com/class/me9159rcdhm69w/post/260
https://db.cs.cmu.edu/events/future-data-firebolt/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LAST CLASS

We discussed concurrency control protocols for
generating conflict serializable schedules without
needing to know what queries a txn will execute.

Two-phase locking (2PL) is a pessimistic protocol
requires txns to acquire locks on database objects before
they are allowed to access them.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

If you assume that conflicts between txns are rare and
that most txns are short-lived, then forcing txns to
acquire locks adds unnecessary overhead.

A better concurrency control protocol could be one that
is optimized for the no-conflict case…

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

T/O CONCURRENCY CONTROL

The DBMS uses timestamps to determine the
serializability order of txns.

If TS(Ti) < TS(Tj), then the DBMS must ensure that
the execution schedule is equivalent to the serial
schedule where Ti appears before Tj.

Each database object (e.g., tuple) will include additional
fields to keep track of timestamp(s) of the txns that last
accessed/modified them.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TIMESTAMP ALLOCATION

Each txn Ti is assigned a unique fixed timestamp that is
monotonically increasing.
→ Let TS(Ti) be the timestamp allocated to txn Ti.
→ Different concurrency control protocols assign timestamps at

different times during the txn.

Multiple implementation strategies:
→ System/Wall Clock (e.g., CPU clock, RDTSC, external clocks).
→ Logical Counter.
→ Hybrid.

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.felixcloutier.com/x86/rdtsc

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TODAY’S AGENDA

Optimistic Concurrency Control

Phantom Reads

Isolation Levels

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OPTIMISTIC CONCURRENCY CONTROL (OCC)

T/O protocol where DBMS creates a
private workspace for each txn.
→ Any object read is copied into workspace.
→ Modifications are applied to workspace.

When a txn commits, the DBMS
compares workspace write set to see
whether it conflicts with other txns.

If there are no conflicts, the write set
is installed into the “global” database.

6

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/citation.cfm?id=319567

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC PHASES

Phase #1: Read
→ Track the read/write sets of txns and store their writes in a

private workspace.
→ DBMS copies every tuple that the txn accesses from the shared

database to its workspace ensure repeatable reads.

Phase #2: Validation
→ Assign the txn a unique timestamp (TS) and then check

whether it conflicts with other txns.

Phase #3: Write
→ If validation succeeds, set the write timestamp (W-TS) to all

modified objects in private workspace and install them into the
global database. Otherwise abort txn.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

T
IM

E

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

T
IM

E

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

T
IM

E

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

123 0A

T
IM

E

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

T2 Workspace

123 0A

T
IM

E

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

T2 Workspace

123 0A 123 0A

T
IM

E

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

T2 Workspace

123 0A 123 0A

TS(T2)=1

T
IM

E

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

123 0A

TS(T2)=1

T
IM

E

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

456 1123 0A 456 ∞

TS(T2)=1

T
IM

E

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

456 1123 0A 456 ∞

TS(T2)=1

T
IM

E

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

456 1123 0A 456 ∞

TS(T2)=1

TS(T1)=2

T
IM

E

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Database

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS

A 123 0

- - -

Schedule
T1 T2

OCC EXAMPLE

BEGIN
READ
R(A)

W(A)
R(A)
VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

456 1

456 2

123 0A 456 ∞

TS(T2)=1

TS(T1)=2

T
IM

E

2

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: READ PHASE

Track the read/write sets of txns and store their writes
in a private workspace.

The DBMS copies every tuple that the txn accesses
from the shared database to its workspace ensure
repeatable reads.
→ We are ignoring for now what happens if a txn reads/writes

tuples via indexes.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: VALIDATION PHASE

When txn Ti invokes COMMIT, the DBMS checks if it
conflicts with other txns.
→ Original OCC algorithm uses serial validation.
→ Parallel validation requires each txn check read/write sets of

other txns trying to validate at the same time.

DBMS needs to guarantee only serializable schedules
are permitted.
→ Approach #1: Backward Validation
→ Approach #2: Forward Validation

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: VALIDATION PHASE

Forward Validation: Check whether the committing
txn intersects its read/write sets with any active txns
that have not yet committed.

Backward Validation: Check whether the
committing txn intersects its read/write sets with those
of any txns that have already committed.

14

More Common

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: VALIDATION PHASE

Forward Validation: Check whether the committing
txn intersects its read/write sets with any active txns
that have not yet committed.

Backward Validation: Check whether the
committing txn intersects its read/write sets with those
of any txns that have already committed.

14

More Common

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: FORWARD VALIDATION

The DBMS assigns the txn a unique timestamp at the
beginning of the validation phase.

Check the timestamp ordering of the committing txn
with all other active txns.
→ An active txn is one that has not committed yet.

If TS(T1) < TS(T2), then one of the following three
conditions must hold…

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

OCC: FORWARD VALIDATION CASE #1

Example: T1 wants to commit.

If (T1 < T2), check if T1 completes
its Write phase before T2 begins
its Read phase.

No conflict as all T1's actions
happen before T2's.
→ This just means that there is serial

ordering.

BEGIN
READ
 ⋮
VALIDATE
WRITE
COMMIT BEGIN

READ
 ⋮
VALIDATE
WRITE
COMMIT

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

OCC: FORWARD VALIDATION CASE #1

Example: T1 wants to commit.

If (T1 < T2), check if T1 completes
its Write phase before T2 begins
its Read phase.

No conflict as all T1's actions
happen before T2's.
→ This just means that there is serial

ordering.

BEGIN
READ
 ⋮
VALIDATE
WRITE
COMMIT BEGIN

READ
 ⋮
VALIDATE
WRITE
COMMIT

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: FORWARD VALIDATION CASE #2

Example: T1 wants to commit.

If (T1 < T2), check if T1 completes its Write phase
before T2 starts its Write phase and T1 does not modify
to any object read by T2.
→ The intersection of T1's WriteSet with T2's ReadSet is empty:

WriteSet(T1) ∩ ReadSet(T2) = Ø

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

BEGIN
READ
R(A)
W(A)

VALIDATE

BEGIN
READ
R(A)

VALIDATE
WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

BEGIN
READ
R(A)
W(A)

VALIDATE

BEGIN
READ
R(A)

VALIDATE
WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace

123 0A

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

BEGIN
READ
R(A)
W(A)

VALIDATE

BEGIN
READ
R(A)

VALIDATE
WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace

123 0A 456 ∞

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

BEGIN
READ
R(A)
W(A)

VALIDATE

BEGIN
READ
R(A)

VALIDATE
WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace T2 Workspace

123 0A 456 ∞

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

123 0A

BEGIN
READ
R(A)
W(A)

VALIDATE

BEGIN
READ
R(A)

VALIDATE
WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace T2 Workspace

123 0A 456 ∞

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

123 0A

BEGIN
READ
R(A)
W(A)

VALIDATE

BEGIN
READ
R(A)

VALIDATE
WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace T2 Workspace

123 0A 456 ∞

18

T1 must abort even though T2
did not modify the database.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

OCC: FORWARD VALIDATION CASE #2

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE

WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE

WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace

123 0A

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE

WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace

123 0A 456 ∞

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE

WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace T2 Workspace

123 0A 456 ∞

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

123 0A

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE

WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace T2 Workspace

123 0A 456 ∞

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

123 0A

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE

WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace T2 Workspace

123 0A 456 ∞

Safe to commit because T2
finishes before T1

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

OCC: FORWARD VALIDATION CASE #2

123 0A

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(A)
VALIDATE

WRITE
COMMIT

Object Value W-TS

A 123 0

- - -

Database

T1 Workspace T2 Workspace

123 0A 456 ∞

Safe to commit T1 because T2
commits logically before T1

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: FORWARD VALIDATION CASE #3

Example: T1 wants to commit.

If (T1 < T2), check if T1 completes its Read phase before
T2 completes its Read phase and T1 does not modify any
object either read or written by T2:
→ WriteSet(T1) ∩ ReadSet(T2) = Ø
→ WriteSet(T1) ∩ WriteSet(T2) = Ø

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

Database

T1 Workspace T2 WorkspaceT
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

Object Value W-TS

A 123 0

B XYZ 0

OCC: FORWARD VALIDATION CASE #3

123 0A XYZ 0B456 ∞

TS(T1)=1

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

Database

T1 Workspace T2 WorkspaceT
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

Object Value W-TS

A 123 0

B XYZ 0

OCC: FORWARD VALIDATION CASE #3

123 0A XYZ 0B456 ∞

TS(T1)=1

1

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

Database

T1 Workspace T2 WorkspaceT
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

Object Value W-TS

A 123 0

B XYZ 0

OCC: FORWARD VALIDATION CASE #3

123 0A XYZ 0B456 ∞

456 1

TS(T1)=1

1

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

Database

T2 WorkspaceT
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

A 123 0

B XYZ 0

OCC: FORWARD VALIDATION CASE #3

XYZ 0B

456 1A

456 1

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN
READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

Database

T2 WorkspaceT
IM

E

Object Value W-TS

- - -

- - -

Object Value W-TS

A 123 0

B XYZ 0

OCC: FORWARD VALIDATION CASE #3

XYZ 0B

456 1A

456 1

TS(T2)=2

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not yet
committed.

T4 C
O
M
M
I
T

T3 C
O
M
M
I
T

T2 C
O
M
M
I
T

T I M E

22

T1 C
O
M
M
I
T

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not yet
committed.

T4 C
O
M
M
I
T

T3 C
O
M
M
I
T

T2 C
O
M
M
I
T

Validation Scope

T I M E

22

T1 C
O
M
M
I
T

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

23

T4 C
O
M
M
I
T

T3 C
O
M
M
I
T

T2 C
O
M
M
I
T

T I M E

T1 C
O
M
M
I
T

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

23

T4 C
O
M
M
I
T

T3 C
O
M
M
I
T

T2 C
O
M
M
I
T

Validation Scope

T I M E

T1 C
O
M
M
I
T

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: WRITE PHASE

Propagate changes in the txn’s write set to database to
make them visible to other txns.

Serial Commits:
→ Use a global latch to limit a single txn to be in the

Validation/Write phases at a time.

Parallel Commits:
→ Use fine-grained write latches to support parallel

Validation/Write phases.
→ Txns acquire latches in a sequential key order to avoid

deadlocks.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OCC: OBSERVATIONS

OCC works well when the number of conflicts is low:
→ All txns are read-only (ideal).
→ Txns access disjoint subsets of data.

But OCC has its own problems:
→ High overhead for copying data locally.
→ Validation/Write phase bottlenecks.
→ Aborts are more wasteful than in 2PL because they only occur

after a txn has already executed.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

We have only dealt with transactions that read and
update existing objects in the database.

But now if txns perform insertions, updates, and
deletions, we have new problems…

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

THE PHANTOM PROBLEM

BEGIN

COMMIT

BEGIN

COMMIT

INSERT INTO people
VALUES
(101,'DJCache','paid');

cnt=99

Schedule
T1 T2

SELECT COUNT(*) AS cnt
 FROM people
 WHERE status='paid';

CREATE TABLE people (
 id SERIAL,
 name VARCHAR,
 status VARCHAR
);

SELECT COUNT(*) AS cnt
 FROM people
 WHERE status='paid';

T
IM

E

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

THE PHANTOM PROBLEM

BEGIN

COMMIT

BEGIN

COMMIT

INSERT INTO people
VALUES
(101,'DJCache','paid');

cnt=99

Schedule
T1 T2

SELECT COUNT(*) AS cnt
 FROM people
 WHERE status='paid';

CREATE TABLE people (
 id SERIAL,
 name VARCHAR,
 status VARCHAR
);

SELECT COUNT(*) AS cnt
 FROM people
 WHERE status='paid';

T
IM

E

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

THE PHANTOM PROBLEM

BEGIN

COMMIT

BEGIN

COMMIT

INSERT INTO people
VALUES
(101,'DJCache','paid');

cnt=99

cnt=100

Schedule
T1 T2

SELECT COUNT(*) AS cnt
 FROM people
 WHERE status='paid';

CREATE TABLE people (
 id SERIAL,
 name VARCHAR,
 status VARCHAR
);

SELECT COUNT(*) AS cnt
 FROM people
 WHERE status='paid';

T
IM

E

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

THE PHANTOM PROBLEM

BEGIN

COMMIT

BEGIN

COMMIT

INSERT INTO people
VALUES
(101,'DJCache','paid');

cnt=99

cnt=100

Schedule
T1 T2

SELECT COUNT(*) AS cnt
 FROM people
 WHERE status='paid';

CREATE TABLE people (
 id SERIAL,
 name VARCHAR,
 status VARCHAR
);

SELECT COUNT(*) AS cnt
 FROM people
 WHERE status='paid';

T
IM

E

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OOPS?

phantom rea

How did this happen?
→ Because T1 locked only existing records and not ones that other

txns are adding to the database!

Conflict serializability on reads and writes of individual
items guarantees serializability only if the database's set
of objects is fixed.

This is known as a phantom read.
→ A txn scans a range more than once and another txn

inserts/removes tuples that fall within that range in between
the scans.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Phantom_reads

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SOLUTIONS TO THE PHANTOM PROBLEM

Approach #1: Lock Everything!
→ Entire table or every page.

Approach #2: Re-Execute Scans
→ Run queries again at commit to see whether they produce a

different result to identify missed changes.

Approach #3: Predicate Locking
→ Logically determine the overlap of predicates before queries

start running.

Approach #4: Index Locking
→ Use keys in indexes to protect ranges.

Common

Rare

Rare

Less Common

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

RE-EXECUTE SCANS

The DBMS tracks the WHERE clause for all queries that
the txn executes.
→ Retain the scan set for every range query in a txn.

Upon commit, re-execute just the scan portion of each
query and check whether it generates the same result.
→ Example: Run the scan for an UPDATE query but do not modify

matching tuples.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PREDICATE LOCKING

Proposed locking scheme from System R.
→ Acquire a Shared lock on the predicate in a WHERE clause of a

SELECT query.
→ Acquire an Exclusive lock on the predicate in a WHERE clause

of any UPDATE, INSERT, or DELETE query.

Some systems approximate it via precision locking.

Others do it via index locking…

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
http://www-db.in.tum.de/~muehlbau/papers/mvcc.pdf

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PREDICATE LOCKING

SELECT COUNT(*) AS cnt
 FROM people
 WHERE status='paid';

INSERT INTO people VALUES
 (101,'DJCache','paid');

status='paid'

Records in Table "people"

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PREDICATE LOCKING

SELECT COUNT(*) AS cnt
 FROM people
 WHERE status='paid';

INSERT INTO people VALUES
 (101,'DJCache','paid');

status='paid'

name='DJCache'∧
status='paid'

Records in Table "people"

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INDEX LOCKING

Special case of predicate locking that acquires locks
on key ranges in indexes.
→ If there is an index on the status attribute then the txn locks

index page containing the data with status='paid'.
→ If there are no records with status='paid', the txn locks the

index page where such a data entry would be, if it existed.

Different approaches:
→ Key-Value Locks
→ Gap Locks
→ Key-Range Locks
→ Hierarchical Locking

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

KEY-VALUE LOCKS

Locks that cover a single key-value in an index.

Need “virtual keys” for non-existent values.

10 12 14 16

B+Tree Leaf Node

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

KEY-VALUE LOCKS

Locks that cover a single key-value in an index.

Need “virtual keys” for non-existent values.

10 12 14 16

B+Tree Leaf Node
Key

[14, 14]

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

GAP LOCKS

Each txn acquires a key-value lock on the single key that
it wants to access. Then get a gap lock on the next key
gap.

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

GAP LOCKS

Each txn acquires a key-value lock on the single key that
it wants to access. Then get a gap lock on the next key
gap.

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node

Gap
(14, 16)

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

KEY-RANGE LOCKS

Locks that cover a key value and the gap to the next key
value in a single index.
→ Need “virtual keys” for artificial values (infinity)

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node

Next Key [14, 16)

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

KEY-RANGE LOCKS

Locks that cover a key value and the gap to the next key
value in a single index.
→ Need “virtual keys” for artificial values (infinity)

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node

Prior Key (12, 14]

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with
different locking modes.
→ Reduces the number of visits to lock manager.

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf NodeIX

[10, 16)

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with
different locking modes.
→ Reduces the number of visits to lock manager.

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf NodeIX

[10, 16)

[14, 16)X

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with
different locking modes.
→ Reduces the number of visits to lock manager.

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf NodeIX

[10, 16)

[14, 16)X
IX [12, 12]X

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WEAKER LEVELS OF ISOLATION

Serializability is useful because it allows programmers
to ignore concurrency issues.

But enforcing it may allow too little concurrency and
limit performance.

The DBMS may want to use a weaker level of
consistency to improve parallelism opportunities.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ISOLATION LEVELS

Controls the extent that a txn is exposed to the actions
of other concurrent txns.

Provides for greater concurrency at the cost of exposing
txns to uncommitted changes:
→ Dirty Reads
→ Unrepeatable Reads
→ Lost Updates
→ Phantom Reads

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ISOLATION LEVELS

SERIALIZABLE: No phantoms, all reads repeatable, no
dirty reads.

REPEATABLE READS: Phantoms may happen.

READ COMMITTED: Phantoms, unrepeatable reads, and
lost updates may happen.

READ UNCOMMITTED: All anomalies may happen.Is
o

la
ti

o
n

 (
H

ig
h
→

L
o

w
)

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ISOLATION LEVELS

SERIALIZABLE: No phantoms, all reads repeatable, no
dirty reads.

REPEATABLE READS: Phantoms may happen.

READ COMMITTED: Phantoms, unrepeatable reads, and
lost updates may happen.

READ UNCOMMITTED: All anomalies may happen.Is
o

la
ti

o
n

 (
H

ig
h
→

L
o

w
)

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ISOLATION LEVELS
Dirty
Read

Unrepeatable
Read

Lost
Updates Phantom

SERIALIZABLE No No No No

REPEATABLE
READ

No No No Maybe

READ COMMITTED No Maybe Maybe Maybe

READ
UNCOMMITTED

Maybe Maybe Maybe Maybe

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ISOLATION LEVELS

SERIALIZABLE: Strong Strict 2PL with phantom
protection (e.g., index locks).

REPEATABLE READS: Same as above, but without
phantom protection.

READ COMMITTED: Same as above, but S locks are
released immediately.

READ UNCOMMITTED: Same as above but allows dirty
reads (no S locks).

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQL-92 ISOLATION LEVELS

The application can set a txn’s
isolation level before it executes any
queries in that txn.

Not all DBMS support all isolation
levels in all execution scenarios
→ Replicated Environments

The default depends on
implementation…

SET TRANSACTION ISOLATION LEVEL
 <isolation-level>;

BEGIN TRANSACTION ISOLATION LEVEL
 <isolation-level>;

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ISOLATION LEVELS
Default Maximum

Actian Ingres SERIALIZABLE SERIALIZABLE

IBM DB2 CURSOR STABILITY SERIALIZABLE

CockroachDB SERIALIZABLE SERIALIZABLE

Google Spanner STRICT SERIALIZABLE STRICT SERIALIZABLE

MSFT SQL Server READ COMMITTED SERIALIZABLE

MySQL REPEATABLE READS SERIALIZABLE

Oracle READ COMMITTED SNAPSHOT ISOLATION

PostgreSQL READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

VoltDB SERIALIZABLE SERIALIZABLE

YugaByte SNAPSHOT ISOLATION SERIALIZABLE

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

SERIALIZABLE

READ COMMITTED

CURSOR STABILITY

STRICT SERIALIZABLE
45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

SERIALIZABLE

READ COMMITTED

CURSOR STABILITY

STRICT SERIALIZABLE
45

Atul Adya

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-786.pdf

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DATABASE ADMIN SURVEY

What isolation level do transactions execute at on this
DBMS?

10

2

12
10 11

8

12

6

10
12

3

11
8

26

1

5
3 2

4

22

1 2
5

0
0

10

20

30

Read Uncommitted Read Committed Cursor Stability Repeatable Read Snapshot Isolation Serializable

o

f
R

es
p

o
n

se
s

None Few Most All

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQL-92 ACCESS MODES

The application can provide hints to
the DBMS about whether a txn will
modify the database during its
lifetime.

Only two possible modes:
→ READ WRITE (Default)
→ READ ONLY

Not all DBMSs will optimize
execution when a txn is in READ ONLY
mode.

SET TRANSACTION <access-mode>;

BEGIN TRANSACTION <access-mode>;

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

Every concurrency control protocol can be broken
down into the basic concepts that have been described
in the last two lectures.
→ Pessimistic: Locking
→ Optimistic: Timestamps

There is no one protocol that is always better than all
others…

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

NEXT CLASS

Multi-Version Concurrency Control

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Timestamp Ordering
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: OBSERVATION
	Slide 6: T/O CONCURRENCY CONTROL
	Slide 7: TIMESTAMP ALLOCATION
	Slide 8: TODAY’S AGENDA

	Optimistic Concurrency Control
	Slide 9: OPTIMISTIC CONCURRENCY CONTROL (OCC)
	Slide 10: OCC PHASES
	Slide 11: OCC EXAMPLE
	Slide 12: OCC EXAMPLE
	Slide 13: OCC EXAMPLE
	Slide 14: OCC EXAMPLE
	Slide 15: OCC EXAMPLE
	Slide 16: OCC EXAMPLE
	Slide 17: OCC EXAMPLE
	Slide 18: OCC EXAMPLE
	Slide 19: OCC EXAMPLE
	Slide 20: OCC EXAMPLE
	Slide 21: OCC EXAMPLE
	Slide 22: OCC EXAMPLE
	Slide 23: OCC: READ PHASE
	Slide 24: OCC: VALIDATION PHASE
	Slide 25: OCC: VALIDATION PHASE
	Slide 26: OCC: VALIDATION PHASE
	Slide 27: OCC: FORWARD VALIDATION
	Slide 28: OCC: FORWARD VALIDATION CASE #1
	Slide 29: OCC: FORWARD VALIDATION CASE #1
	Slide 30: OCC: FORWARD VALIDATION CASE #2
	Slide 31: OCC: FORWARD VALIDATION CASE #2
	Slide 32: OCC: FORWARD VALIDATION CASE #2
	Slide 33: OCC: FORWARD VALIDATION CASE #2
	Slide 34: OCC: FORWARD VALIDATION CASE #2
	Slide 35: OCC: FORWARD VALIDATION CASE #2
	Slide 36: OCC: FORWARD VALIDATION CASE #2
	Slide 37: OCC: FORWARD VALIDATION CASE #2
	Slide 38: OCC: FORWARD VALIDATION CASE #2
	Slide 39: OCC: FORWARD VALIDATION CASE #2
	Slide 40: OCC: FORWARD VALIDATION CASE #2
	Slide 41: OCC: FORWARD VALIDATION CASE #2
	Slide 42: OCC: FORWARD VALIDATION CASE #2
	Slide 43: OCC: FORWARD VALIDATION CASE #2
	Slide 44: OCC: FORWARD VALIDATION CASE #3
	Slide 45: OCC: FORWARD VALIDATION CASE #3
	Slide 46: OCC: FORWARD VALIDATION CASE #3
	Slide 47: OCC: FORWARD VALIDATION CASE #3
	Slide 48: OCC: FORWARD VALIDATION CASE #3
	Slide 49: OCC: FORWARD VALIDATION CASE #3
	Slide 50: OCC: FORWARD VALIDATION
	Slide 51: OCC: FORWARD VALIDATION
	Slide 52: OCC: BACKWARD VALIDATION
	Slide 53: OCC: BACKWARD VALIDATION
	Slide 54: OCC: WRITE PHASE
	Slide 55: OCC: OBSERVATIONS

	Phantoms
	Slide 56: OBSERVATION
	Slide 57: THE PHANTOM PROBLEM
	Slide 58: THE PHANTOM PROBLEM
	Slide 59: THE PHANTOM PROBLEM
	Slide 60: THE PHANTOM PROBLEM
	Slide 61: OOPS?
	Slide 62: SOLUTIONS TO THE PHANTOM PROBLEM
	Slide 63: RE-EXECUTE SCANS
	Slide 64: PREDICATE LOCKING
	Slide 65: PREDICATE LOCKING
	Slide 66: PREDICATE LOCKING
	Slide 67: INDEX LOCKING
	Slide 68: KEY-VALUE LOCKS
	Slide 69: KEY-VALUE LOCKS
	Slide 70: GAP LOCKS
	Slide 71: GAP LOCKS
	Slide 72: KEY-RANGE LOCKS
	Slide 73: KEY-RANGE LOCKS
	Slide 74: HIERARCHICAL LOCKING
	Slide 75: HIERARCHICAL LOCKING
	Slide 76: HIERARCHICAL LOCKING

	Isolation Levels
	Slide 77: WEAKER LEVELS OF ISOLATION
	Slide 78: ISOLATION LEVELS
	Slide 79: ISOLATION LEVELS
	Slide 80: ISOLATION LEVELS
	Slide 81: ISOLATION LEVELS
	Slide 82: ISOLATION LEVELS
	Slide 83: SQL-92 ISOLATION LEVELS
	Slide 84: ISOLATION LEVELS
	Slide 85
	Slide 86
	Slide 87: DATABASE ADMIN SURVEY
	Slide 88: SQL-92 ACCESS MODES

	Conclusion
	Slide 89: CONCLUSION
	Slide 90: NEXT CLASS

