Carnegie Mellon University

DATABASE
GYSTEMS

Timestamp Ordermg :

LECTURE #19)) 15-445/645 FALL 2025)) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #3 is due Sunday Nov 16™ @ 11:59pm

— Recitation Video + Slides (see @235)
— Saturday Office Hours Nov 15%" @ 3:00-5:00pm (GHC 5207)

Homework #5 is due Sunday Nov 23 @ 11:59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/235

UPCOMING DATABASE TALKS 5

Mooncake (DB Seminar) mooncake
— Monday Nov 10% @ 4:30pm
— Zoom

dbt (DB Meeting)
— Tuesday Nov 11% @ 12:00pm “ d bt

— GHC 8115
— Info Session @ 2:30pm (@260)

Firebolt (DB Seminar) F I R EBGLT

— Monday Nov 17% @ 4:30pm
— Zoom

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/futuredata-mooncake/
https://db.cs.cmu.edu/events/fall-2025-open-data-infrastructure-with-iceberg-and-dbt/
https://piazza.com/class/me9159rcdhm69w/post/260
https://db.cs.cmu.edu/events/future-data-firebolt/

LAST CLASS

We discussed concurrency control protocols for
generating conflict serializable schedules without
needing to know what queries a txn will execute.

Two-phase locking (2PL) is a pessimistic protocol
requires txns to acquire locks on database objects before
they are allowed to access them.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

[f you assume that conflicts between txns are rare and
that most txns are short-lived, then forcing txns to
acquire locks adds unnecessary overhead.

A better concurrency control protocol could be one that
is optimized for the no-conflict case...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

1/0 CONCURRENCY CONTROL

The DBMS uses timestamps to determine the
serializability order of txns.

[fTS(T;) < TS(T;), then the DBMS must ensure that
the execution schedule is equivalent to the serial
schedule where T; appears before T;.

Each database object (e.g., tuple) will include additional
fields to keep track of timestamp(s) of the txns that last
accessed/modified them.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TIMESTAMP ALLOCATION

Each txn T, is assigned a unique fixed timestamp that is

monotonically increasing.

— Let TS(T,) be the timestamp allocated to txn T;.
— Different concurrency control protocols assign timestamps at
different times during the txn.

Multiple implementation strategies:
— System/Wall Clock (e.g., CPU clock, RDTSC, external clocks).

— Logical Counter.
— Hybrid.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.felixcloutier.com/x86/rdtsc

TODAY’S AGENDA

Optimistic Concurrency Control
Phantom Reads
[solation Levels

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OPTIMISTIC CONCURRENCY CONTROL (OCC)

T/O protocol where DBMS creates a

private workspace for each txn.
— Any object read is copied into workspace.
— Modifications are applied to workspace.

When a txn commits, the DBMS
compares workspace write set to see
whether it conflicts with other txns.

If there are no conflicts, the write set
is installed into the “global” database.

On Optimistic Methods for Concurrency
Control

H.T. KUNG and JOHN T. ROBINSON
Carnegie-Mellon University

Most current approaches to concurrency control in database systems rely on locking of data objects
as a control h In this paper, families of nonlocking y s presented.
‘The methods used are “optimistic” in the sense that they rely mainly on transaction backup as a
control mechanism, “hoping” that conflicts between transactions will not occur. Applications for
which these methods should be more efficient than locking are discussed.

Key Words and Phrases: databases, concurrency controls, transaction processing

CR Categories: 4.32,4.33

1. INTRODUCTION

Consider the problem of providing shared access to a database organized as a
collection of objects. We assume that certain distinguished objects, called the
roots, are always present and access to any object other than a root is gained only
by first accessing a root and then following pointers to that object. Any sequence
of accesses to the database that preserves the integrity constraints of the data is
called a transaction (see, e.g., [4]).

If our goal is to maximize the throughput of accesses to the database, then
there are at least two cases where highly concurrent access is desirable.

(1) The amount of data is sufficiently great that at any given time only a fraction
of the database can be present in primary memory, so that it is necessary to
swap parts of the database from secondary memory as needed.

(2) Even if the entire database can be present in primary memory, there may be
multiple processors.

In both cases the hardware will be underutilized if the degree of concurrency
is too low.

However, as is well known, unrestricted concurrent access to a shared database
will, in general, cause the integrity of the database to be lost. Most current

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

This research was supparted in part by the National Science Foundation under Grant MCS 78-236.76
and the Office of Naval Research under Contract NOOOI4-76-C-0370,

Authors' address: Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA
16213,

© 1981 ACM 0362-5915/81/0600-0213 $00.75

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981, Pages 213-226

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/citation.cfm?id=319567

OCC PHASES

Phase #1: Read

— Track the read/write sets of txns and store their writes in a
private workspace.

— DBMS copies every tuple that the txn accesses from the shared
database to its workspace ensure repeatable reads.

Phase #2: Validation

— Assign the txn a unique timestamp (TS) and then check
whether it conflicts with other txns.

Phase #3: Write

— If validation succeeds, set the write timestamp (W-TS) to all
modified objects in private workspace and install them into the
global database. Otherwise abort txn.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

Database

Schedule

(
<¢BE'G'I'N\ : Object Value W-TS
I
RECTA I
I
I

\

I

I

12 I
3 0 |

I

1

1| >

——————————————————

W(A)

\VALIDATE)

RITE
Co

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

Schedule

. . Database
1 2 [T ————————— 1
BEGIN : Object Value W-TS :
A 123 0 I
BEGIN : 5 - 3 :
READ - !
R(A) e o
VALIDATE
WRITE T, Workspace
COMMIT If """"")
W(A) i ObJect Value W-TS "
R(A) I - _ _ I
VALIDATE o N G G
WRITE S ——————— -
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

Schedule
. . Database
1 2 [T ————————— 1

BEGIN : Object Value W-TS :

READ I (A 123 0 I

R(A) BEGIN : 5 - 3 :
READ | ,
R(A) S ot
VALIDATE
WRITE T, Workspace
COMMIT If """"")

W(A) i ObJect Value W-TS "

R(A) (I N N l

VALIDATE o N G G

WRITE S ————— -

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

COMMIT

Schedule
T 1 T2

BEGIN

READ

R(A) BEGIN
READ
RCA)
VALIDATE
WRITE
COMMIT

W(A)

R(A)

VALIDATE

WRITE

Database

A 123 |0

-—— e . .

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

Schedule
. . Database
1 2 [T ————————— 1
BEGIN : Object Value W-TS :
READ 1 (A 123 0 !
R(A) ‘BEGIN I - - !
READ " ,
R(A) o e e -
VALIDATE
WRITE T, W/orkspace T, Workspace
COMMIT f """"" \ f """"" \
WCA) : 1o :
R(A) 1 (A 123 |0 1 1 |- - - 1
VALIDATE o3 S R - N SO :
WRITE e ——————— - e——————=r -
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

Schedule
Database
T1 T2 p]
BEGIN | |
READ in - . |
R(A) BEGIN | :
READ ,]
R(A) _
VALIDATE
WRITE Workspace
COMMIT VY pEm === \
W(A) I I I I
R(A) 1 |A 123 |0 I 1 |A 123 |0 i
VALIDATE : - - - : : _ _ _ :
WRITE G —————————— - - - -
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

Schedule
. . Database
1 2 [T ————————— 1
BEGIN : Object Value W-TS :
READ I (A 123 0 I
R(A) BEGIN : 5 - 3 :
el LD | R S—— |
» VALIDATEYT
WRITE T, W/orkspace T, Workspace
COMMIT oo v pEmm——— A
WCA) : 1o :
R(A) 1 |A 123 0 1 1 |A 123 (0 1
VALIDATE o3 S R - N SO :
WRITE Smmmmm————— - eme—————cEE =
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

Schedule
Database
T, T, bt — ,
BEGIN : Object Value W-TS :
READ I 1A 123 0 I
R(A) BEGIN | : - - : :
READ
R(A) l TS(T,)=1 e _,'
VALIDATEYT
» WRITE T, \Vorkspace
COMMIT f """"" \
WCA) ! |
VALIDATE : - - - :
WRITE QS ———— -
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

Schedule
Database
T1 T2 [e e e \
BEGIN : Object Value W-TS :
READ I 1A 123 0 I
R(A) BEGIN | : - - : :
READ
R(A) l TS(T,)=1 e _,'
VALIDATEYT
WRITE T, Workspace
COMMIT f """"" \
W(A) [l Object Value W-TS :
VALIDATE : - - - :
WRITE QS ———— -
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

Schedule
Database
T1 T2 [e e e \
BEGIN : Object Value W-TS :
READ I 1A 123 0 I
R(A) BEGIN | : - - : :
READ
R(A) l TS(T,)=1 e _,'
VALIDATEYT
WRITE T, Workspace
COMMIT f """"" \
W(A) [l Object Value W-TS :
VALIDATE : - - - :
WRITE QS ———— -
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

Schedule Datab
atavase
T1 T2 [e e
\
BEGIN : Object Value W-TS :
READ I A 123 0 I
R(A) BEGIN | : - - : :
READ
R(A) l TS(T,)=1 e _,'
VALIDATEVT
WRITE T, \Vorkspace
COMMIT f """"" \
WCA) ! |
R(A) ETS(T1)=2 Ve ase [» |
VALIDATI : - - _ :
WRITE S ——
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC EXAMPLE

Schedule
Database
T1 T2 [e e e \
BEGIN : Object Value W-TS :
READ ! 456 2 i
R(A) BEGIN | : - - - :
READ
R(A) l TS(T,)=1 COR _,'
VALIDATEY
WRITE T, Workspace
COMMIT (A E——— \
W(A) [l Object Value W-TS :
R(A TS(T1)=2 A 456 |2 I
VALIDATEY : - - _ :
WRITE S p——————
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: READ PHASE

Track the read/write sets of txns and store their writes
in a private workspace.

The DBMS copies every tuple that the txn accesses
from the shared database to its workspace ensure

repeatable reads.
— We are ignoring for now what happens if a txn reads/writes
tuples via indexes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: VALIDATION PHASE

When txn T, invokes COMMIT, the DBMS checks if it

conflicts with other txns.

— Original OCC algorithm uses serial validation.
— Parallel validation requires each txn check read/write sets of
other txns trying to validate at the same time.

DBMS needs to guarantee only serializable schedules

are permitted.
— Approach #1: Backward Validation
— Approach #2: Forward Validation

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: VALIDATION PHASE 5

Forward Validation: Check whether the committing
txn intersects its read/write sets with any active txns
that have not yet committed.

Backward Validation: Check whether the « More Common
committing txn intersects its read/write sets with those
of any txns that have already committed.

| monetdb Mimer /(g rirebird

\ -\/
Aurors bsqL el CouchDB & elasticsearch

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: VALIDATION PHASE 5

Forward Validation: Check whether the committing

txn intersects its read/write sets with any active txns
that have not yet committed.

Backward Validation: Check whether the « More Common
committing txn intersects its read/write sets with those
of any txns that have already committed.

?y man‘etdb Mimer fﬂk @ Firebird

\ -\/
Aurors bsqL el CouchDB & elasticsearch

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION

The DBMS assigns the txn a unique timestamp at the
beginning of the validation phase.

Check the timestamp ordering of the committing txn

with all other active txns.
— An active txn is one that has not committed yet.

[f TS(T,) < TS(T,), then one of the following three
conditions must hold...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #1 %

Schedule

Example: T, wants to commit.

T T
BEGI,\: 2 If (T, < T,), check if T, completes
READ its Write phase before T, begins
|V:AL TDATE | its Read phase.
WRITE |
comT zi-jZN No conflict as all T,'s actions
: happen before T,'s.
I ;’;g.? £ I — This j}lst means that there is serial
COMMIT ordering.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #1

Schedule
T, T,
BEGIN
READ
VALIDATE |
WRITE |
COMMIT BEGIN
READ
[VALIDATE |
WRITE |

COMMIT

Example: T, wants to commit.

If (T, < T,), check if T, completes
its Write phase before T, begins
its Read phase.

No conflict as all T,'s actions
happen before T,'s.

— This just means that there is serial
ordering.

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #2 %

Example: T, wants to commit.

If (T, < T,), check if T, completes its Write phase
before T, starts its Write phase and T, does not modify

to any object read by T,.

— The intersection of T,'s WriteSet with T,'s ReadSet is empty:
WriteSet(T,) N ReadSet(T,) =0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #2 %

Schedule

. . Database
1 2 [—— 1
| |
g/(;:)p : A 123 0 :
WCA BEGIN . !
READ || == Smmmmmmmememeeee————
R(A
[VALIDATE] <) T, Workspace
|VALIDATE | C TEEET—— \
WRITE | : Object Value W-TS :
COMMIT [— |
i !

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #1

Schedule
T, T,

BEGIN

READ

R(A)

W(A) BEGIN
READ
R(A)

\VALIDATE |
\VALIDATE |
WRITE |

COMMIT

Database

W-TS

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #2 %

Schedule
Database
T1 T2 [T ————————— 1

BEGIN : :
READ 1 (A 123 0 !
R(A) I |
W(A) BEGIN I -

READ

R(A)
\VALIDATE |

|\VALIDATE |

WRITE |

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #2 %

Schedule
Database
T1 T2 r ----------------- \

BEGIN I |

READ I (A 123 0 I

R(A) - |

W(A) BEGIN . ,

READ || == Smmmmmemeemeeee————
R(A)

[VALIDATE | T, Workspace T, Workspace
\VALIDATE | (EEETEEE—— \ f """"" \
DT e | | [
COMMIT 1 |A 456 |« 11 - - I

I 1 I
[—— (N — i

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #2 %

Schedule
Database

T1 T2 [T ————————— 1
BEGIN | |
READ 1 (A 123 0 !
R(h) ')
W(A) BEGIN . :

READ

R(A)

COMMIT

e
|WRI7'E | i Object Value W-TS

1 |A 456 |

|

I

|

|

A 123 |0 1
- |

1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #2 %

Schedule
. . Database
1 2 [T ————————— 1
BEGIN I I
READ LA 123 0 !
RCA) 1 |- I
W(A) BEGIN i -
READ || ~ ~ Smmmmmssssssseeees
R(A)
(VAL IDATE | T, Workspace
\VALIDATE | [prre—
T, must abort even though T, |éyg|f|_,ﬁT | i [o__l4s6 |-
did not modif’y the database. Il : :

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #2 %

Schedule

. . Database
1 2 [T ————————— 1
| ESSTE
READ 1 [A 123 0 I
°() 1: :
W(A) BEGIN . ,
READ |l @2 Smmmmmmmmmmmmmmmee
R(A)
VALIDATE
[VALIDATE |
WRITE |
COMMIT |[WRITE |
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #1

Schedule
Database
T, T, b \
BEGIN | i
READ An |
R(A) i - K "
W(A) BEGIN : - | |
READ o el - -
R(A)
VALIDATE 7:1 Workspace
(VALIDATE | (o= ———— \
WRITE] ! |
COMMIT |[WRITE | pla 23 Je |
COMMIT : - - _ :

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #1

Schedule
Database
T1 T2 p \
BEGIN | i
READ | B !
RCA) ' - - I
W(A) BEGIN : - | :
READ S el -
R(A)
VALIDATE 7:1 Workspace
[VALIDATE | (=== == \
WRITE | ll Object Value W-TS :
COMMIT WRITE | A 456 |w ,
COMMIT : - - _ :

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #2 %

Schedule
. . Database
1 2 [T ————————— 1
BEGIN : Object Value W-TS :
READ I [A 123 0 I
(A !
W(A) BEGIN . ,
READ S — e N
R(A)
VALIDATE T, Workspace T, W/orkspace

|
|
COMMIT WRITE | A 456 |- i
COMMIT - :

|\VALIDATE | If :

|WR_[7'E | I ObJect Value W-TS
1
1
I-

'---\

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #2 %

Schedule
Database
T1 T2 (\
BEGIN ! |
READ : A 123 0 I
R(A) | :
W(A) BEGIN , !
READ -
R(A)
VALIDATE Workspace

[VALIDATE | |
WRITE] I
COMMIT |[WRITE] | |A (456 |
COMMIT :

<
i
i
i
i
I-

|
|
A 123 |0 1
- |
1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #2 %

Schedule
Database
T1 T2 [e e e \
BEGIN : Object Value W-TS :
READ An - , i
\F;Eﬁ% BEGIN Safe to commit because T, - i
finishesbeforeT;, Jommmmmeeax P,
T, Workspace T, Workspace
RITE o |
ec alue - ec alue -
WRITE] B e .
COMMIT (WRITE] ! A 456 |- : : A 123 |0 :
COMMIT S O B |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #2 %

Schedule

Database
T1 T2 [e e e \
| |
READ I A 123 0 I
R(A) : - - - :
W(A) BEGIN , :
READ e
R(A)
VALIDATE T, \Vorkspace T, Workspace
WALIDATE || | e \ r ---------- \
i ;
1 |A 123 |0 1
i - I
I i

cd

] !
WR. I I
\{WR ITE | : A 456 = :
Safe to commit T, because T, i_———L !
commits logically before T,

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #3 %

Example: T, wants to commit.

If (T, < T,), check if T, completes its Read phase before
T, completes its Read phase and T, does not modify any

object either read or written by T,:
— WriteSet(T,) N ReadSet(T,) =0
— WriteSet(T,) NWriteSet(T,) =0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #3 %

Schedule
Database
T1 T2 (T —— — - 1

BEGIN I |

|] v o
I |B XYZ 7] |

W(A) | TS(T1)=1 - | I

T o/
VALIDATE |
WRITE | T, Workspace T, Workspace
----------) ----------\

COMMIT R(A) { ‘
VALIDATE I ObJeCt Value W-TS

1

1

|

|

|

WRITE | A 456 |~ :
- I

I
B |Xxyz |o :
COMMIT !

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #3 %

\WRITE |
COMMIT

Schedule
Database
T1 T2 [e e e e e e \
: :
x| pean o fes o |
I [B XYZ 7] |
W(A) !TS(TI)=1 L _________________ 1
VI\\IJ/
\VALIDATE |
WRITE | T, Workspace
R 75 ' e
VALIDATE il Obje
1
1
|

I
B XYz |o :
I
I

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #3 %

Schedule
Database
T1 T2 [e e e e e e \
BEGIN : Object Value W-TS :
READ : A 456 1 :
R(A) BEGIN
| XYZ 7] |
W(A) l TS(TI)=1 N 1
<o

\VALIDATE |
WRITE |

2 §

(<) I [
s i
®

COMMIT R(A) Ir ““ ----- sl
VALIDATE " ObJ ct Va W-TS :
WRITE | 1 B XYZ [0 I
COMMIT : :

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #3 %

Schedule
Database
T1 T2

BEGIN

READ

R(A) BEGIN

W(A) READ
R(B)

\VALIDATE |

WRITE

coﬁﬂ R(A)
VALIDATE
WRITE |
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION CASE #3 %

Schedule
Database
T1 T2 [e e e e e e \
| T
READ : A 456 1 :
R(A) BEGIN
W(A) READ e Xz |0 !
RB) || 2 Nemmemmmmeeeeeeea———
|\VALIDATE |
PRITE] TS(T,)=2 T, Workspace _
N iR ' e
‘VALIDAT o 03¢ |
WRITE | 1 |B XYZ |0 I
COMMIT : A 456 |1 :

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not yet
committed.

M‘

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not yet
committed.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

M‘

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: WRITE PHASE

Propagate changes in the txn’s write set to database to
make them visible to other txns.

Serial Commuits:

— Use a global latch to limit a single txn to be in the
Validation/Write phases at a time.

Parallel Commits:

— Use fine-grained write latches to support parallel
Validation/Write phases.

— Txns acquire latches in a sequential key order to avoid

deadlocks.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OCC: OBSERVATIONS

OCC works well when the number of conflicts is low:
— All txns are read-only (ideal).
— T'xns access disjoint subsets of data.

But OCC has its own problem:s:

— High overhead for copying data locally.

— Validation/Write phase bottlenecks.

— Aborts are more wasteful than in 2PL because they only occur
after a txn has already executed.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

We have only dealt with transactions that read and
update existing objects in the database.

But now if txns perform insertions, updates, and
deletions, we have new problems...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

THE PHANTOM PROBLEM

Schedule

T

T,

=

BEGIN

SELECT COUNT(*) AS cnt
FROM people
WHERE status='paid';

cnt=99

BEGIN

CREATE TABLE people (

id SERIAL,
name VARCHAR,
status VARCHAR

);

INSERT INTO people
VALUES
(101, 'DJCache', 'paid');

SELECT COUNT(*) AS cnt
FROM people
WHERE status='paid';

COMMIT

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

THE PHANTOM PROBLEM 5

Schedule
T, T, CREATE TABLE people (
BEGIN BEGIN id SERIAL,
SELECT COUNT(*) AS cnt name VARCHAR,
FROM people status VARCHAR
WHERE status='paid';);
cnt=99 NSERT INTO people
VALUES
(101, 'DJCache', 'paid');
COMMIT

SELECT COUNT(*) AS cnt
FROM people
WHERE status='paid';

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

THE PHANTOM PROBLEM 5

CREATE TABLE people (

Schedule
1} .TZ

BEGIN

SELECT COUNT(*) AS cnt
FROM people
WHERE status='paid';

cnt=99

BEGIN

id SERIAL,
name VARCHAR,
status VARCHAR

);

INSERT INTO people
VALUES
(101, 'DJCache', 'paid');

SELECT COUNT(*) AS cnt
FROM people
WHERE status='paid';

cnt=100
COMMIT

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

THE PHANTOM PROBLEM 5

Schedule
T, T, CREATE TABLE people (
BEGIN BEGIN id SERIAL,
SELECT COUNT(*) AS cnt name VARCHAR,
FROM people status VARCHAR
WHERE status='paid';) ;
cnt=99 INSERT INTO people
VALUES
(101, 'DICache', 'paid');
COMMIT

SELECT COUNE(*) AS cnt
et O e @

cnt=100
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

00P5?

How did this happen?

— Because T, locked only existing records and not ones that other
txns are adding to the database!

Conflict serializability on reads and writes of individual
items guarantees serializability only if the database's set
of objects is fixed.

This is known as a phantom read.

— A txn scans a range more than once and another txn

inserts/removes tuples that fall within that range in between
the scans.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Phantom_reads

SOLUTIONS TO THE PHANTOM PROBLEM

Approach #1: Lock Everything! « Less Common

— Entire table or every page.

Approach #2: Re-Execute Scans « Rare

— Run queries again at commit to see whether they produce a
different result to identify missed changes.

Approach #3: Predicate Locking « Rare

— Logically determine the overlap of predicates before queries
start running.

Approach #4: Index Locking « Common

— Use keys in indexes to protect ranges.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

RE-EXECUTE SCANS

The DBMS tracks the WHERE clause for all queries that

the txn executes.
— Retain the scan set for every range query in a txn.

Upon commit, re-execute just the scan portion of each

query and check whether it generates the same result.

— Example: Run the scan for an UPDATE query but do not modify
matching tuples.

,stggm gmazon. Y fauna

Microsoft®
SQL Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PREDICATE LOCKING

Proposed locking scheme from System R.

— Acquire a Shared lock on the predicate in a WHERE clause of a
SELECT query.

— Acquire an Exclusive lock on the predicate in a WHERE clause
of any UPDATE, INSERT, or DELETE query.

Some systems approximate it via precision locking.
4—& HyPer (8 UMBRA @ CedarDB

Others do it via index locking...
PostgreSQL. *.” yugabyteDB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
http://www-db.in.tum.de/~muehlbau/papers/mvcc.pdf

PREDICATE LOCKING

SELECT COUNT(*) AS cnt

M people

FR DEO[
WHERE status='paid'

INSERT INTO people VALUES
(101, 'DJCache', 'paid');

Records in Table "people"

astatus='paid'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PREDICATE LOCKING

SELECT COUNT(*) AS cnt

M people INSERT INTO people VALUES

FROM peor
WHERE status='paid' (101, 'DJCache', 'paid'

Records in Table "people"

astatus='paid'

name='DJCache'A
status='paid'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INDEX LOCKING

Special case of predicate locking that acquires locks

on key ranges in indexes.

— [f there is an index on the status attribute then the txn locks
index page containing the data with status="paid"'.

— If there are no records with status="'paid’, the txn locks the
index page where such a data entry would be, if it existed.

Different approaches:
— Key-Value Locks

— Gap Locks

— Key-Range Locks

— Hierarchical Locking

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

KEY-VALUE LOCKS

Locks that cover a single key-value in an index.

Need “virtual keys” for non-existent values.

B+Tree Leaf Node

10 12 14 16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

KEY-VALUE LOCKS

Locks that cover a single key-value in an index.

Need “virtual keys” for non-existent values.

B+Tree Leaf Node

Key
[14,14]

o] |1 16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Each txn acquires a key-value lock on the single key that
it wants to access. Then get a gap lock on the next key

gap-

B+Tree Leaf Node

10

{Gap}

bAP LOCKS

12

{Gap}

14

{Gap}

16

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Each txn acquires a key-value lock on the single key that
it wants to access. Then get a gap lock on the next key

gap-

B+Tree Leaf Node

10

{Gap}

bAP LOCKS

12

{Gap}

14 - 16

Gap
(14, 16)

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Locks that cover a key value and the gap to the next key

KEY-RANGE LOCKS

value in a single index.
— Need “virtual keys” for artificial values (infinity)

B+Tree Leaf Node

10

{Gap}

12

Next Key [14, 16)

{Gap} m 16

>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Locks that cover a key value and the gap to the next key

KEY-RANGE LOCKS

value in a single index.
— Need “virtual keys” for artificial values (infinity)

B+Tree Leaf Node

10

{Gap}

12 [Pia | cor

Prior Key (12, 14

16

>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with

different locking modes.
— Reduces the number of visits to lock manager.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with

different locking modes.
— Reduces the number of visits to lock manager.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with

different locking modes.
— Reduces the number of visits to lock manager.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WEAKER LEVELS OF ISOLATION

Serializability is useful because it allows programmers
to 1gnore concurrency issues.

But enforcing it may allow too little concurrency and
limit performance.

The DBMS may want to use a weaker level of
consistency to improve parallelism opportunities.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ISOLATION LEVELS

Controls the extent that a txn is exposed to the actions
of other concurrent txns.

Provides for greater concurrency at the cost of exposing

txns to uncommitted changes:
— Dirty Reads

— Unrepeatable Reads

— Lost Updates

— Phantom Reads

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ISOLATION LEVELS

SERIALIZABLE: No phantoms, all reads repeatable, no
dirty reads.

REPEATABLE READS: Phantoms may happen.

READ COMMITTED: Phantoms, unrepeatable reads, and
lost updates may happen.

Isolation (High—Low)

READ UNCOMMITTED: All anomalies may happen.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ISOLATION LEVELS

SERIALIZABLE: No phantoms, all reads repeatable, no
dirty reads.

REPEATABLE READS: Phantoms may happen.

READ COMMITTED: Phantoms, unrepeatable reads, and
lost updates may happen.

Isolation (High—Low)

READ UNCOMMITTED: All anomalies may happen.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ISOLATION LEVELS

Dirty Unrepeatable Lost
Read Read Updates Phantom
SERIALIZABLE No No No No
REPEATABLE
reap| NO No No Maybe
READ COMMITTED| No Maybe Maybe Maybe
READ Maybe Maybe Maybe Maybe

UNCOMMITTED

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ISOLATION LEVELS

SERIALIZABLE: Strong Strict 2PL with phantom
protection (e.g., index locks).

REPEATABLE READS: Same as above, but without
phantom protection.

READ COMMITTED: Same as above, but S locks are
released immediately.

READ UNCOMMITTED: Same as above but allows dirty
reads (no S locks).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

S0L-92 ISOLATION LEVELS 5

The application can set a txn’s
isolation level before it executes any
queries in that txn.

Not all DBMS support all isolation

levels in all execution scenarios
— Replicated Environments

The default depends on
implementation...

SET TRANSACTION ISOLATION LEVEL
<isolation-level>;

BEGIN TRANSACTION ISOLATION LEVEL
<isolation-level>;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Actian Ingres
IBM DB2
CockroachDB
Google Spanner
MSFT SQL Server
MySQL

Oracle
PostgreSQL
SAP HANA
VoltDB
YugaByte

ISOLATION LEVELS

Default

SERIALIZABLE
CURSOR STABILITY
SERIALIZABLE

STRICT SERIALIZABLE

READ COMMITTED
REPEATABLE READS
READ COMMITTED
READ COMMITTED
READ COMMITTED
SERIALIZABLE
SNAPSHOT ISOLATION

Maximum

SERIALIZABLE
SERIALIZABLE
SERIALIZABLE
STRICT SERIALIZABLE
SERIALIZABLE
SERIALIZABLE
SNAPSHOT ISOLATION
SERIALIZABLE
SERIALIZABLE
SERIALIZABLE
SERIALIZABLE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

STRICT SERIALIZABLE

SERIALIZABLE

REPEATABLE READS SNAPSHOT ISOLATION

CURSOR STABILITY

READ COMMITTED

READ UNCOMMITTED

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Strict Serializability (PL-SS)

/.

Snapshot Isolation (PL-SI)

T

/ Full Serializability (PL-3)

Update Serializability (PL-3U)

Forward Consistent View (PL-FCV)
RE P E AT AB Repeatable Read (PL-2.99)

Monotonic Snapshot
Reads (P'L MSR)

Consistcm View (PL-2+)

\ T
|
f Cursor Stablllty (PL- CS} Monotomc View (PL-2L)

B PL 2

T

PL-1
Figure 4-1: A partial order to relate various isolation levels.

Source: Atul Adya
1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-786.pdf

DATABASE ADMIN SURVEY

What isolation level do transactions execute at on this
DBMS?

of Responses
—
S

B None

26

10

Read Uncommitted

12

2

22

Read Committed

B Few

Most

H All

Cursor Stability

Repeatable Read

Snapshot Isolation

Serializable

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

50L-92 ACCESS MODES

The application can provide hints to
the DBMS about whether a txn will
modify the database during its
lifetime.

Only two possible modes:

— READ WRITE (Default)
— READ ONLY

Not all DBMSs will optimize

execution when a txn is in READ ONLY
mode.

SET TRANSACTION <access-mode>;

BEGIN TRANSACTION <access-mode>;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCLUSION

Every concurrency control protocol can be broken
down into the basic concepts that have been described

in the last two lectures.
— Pessimistic: Locking
— Optimistic: Timestamps

There is no one protocol that is always better than all
others...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NEXT CLASS

Multi-Version Concurrency Control

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Timestamp Ordering
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: OBSERVATION
	Slide 6: T/O CONCURRENCY CONTROL
	Slide 7: TIMESTAMP ALLOCATION
	Slide 8: TODAY’S AGENDA

	Optimistic Concurrency Control
	Slide 9: OPTIMISTIC CONCURRENCY CONTROL (OCC)
	Slide 10: OCC PHASES
	Slide 11: OCC EXAMPLE
	Slide 12: OCC EXAMPLE
	Slide 13: OCC EXAMPLE
	Slide 14: OCC EXAMPLE
	Slide 15: OCC EXAMPLE
	Slide 16: OCC EXAMPLE
	Slide 17: OCC EXAMPLE
	Slide 18: OCC EXAMPLE
	Slide 19: OCC EXAMPLE
	Slide 20: OCC EXAMPLE
	Slide 21: OCC EXAMPLE
	Slide 22: OCC EXAMPLE
	Slide 23: OCC: READ PHASE
	Slide 24: OCC: VALIDATION PHASE
	Slide 25: OCC: VALIDATION PHASE
	Slide 26: OCC: VALIDATION PHASE
	Slide 27: OCC: FORWARD VALIDATION
	Slide 28: OCC: FORWARD VALIDATION CASE #1
	Slide 29: OCC: FORWARD VALIDATION CASE #1
	Slide 30: OCC: FORWARD VALIDATION CASE #2
	Slide 31: OCC: FORWARD VALIDATION CASE #2
	Slide 32: OCC: FORWARD VALIDATION CASE #2
	Slide 33: OCC: FORWARD VALIDATION CASE #2
	Slide 34: OCC: FORWARD VALIDATION CASE #2
	Slide 35: OCC: FORWARD VALIDATION CASE #2
	Slide 36: OCC: FORWARD VALIDATION CASE #2
	Slide 37: OCC: FORWARD VALIDATION CASE #2
	Slide 38: OCC: FORWARD VALIDATION CASE #2
	Slide 39: OCC: FORWARD VALIDATION CASE #2
	Slide 40: OCC: FORWARD VALIDATION CASE #2
	Slide 41: OCC: FORWARD VALIDATION CASE #2
	Slide 42: OCC: FORWARD VALIDATION CASE #2
	Slide 43: OCC: FORWARD VALIDATION CASE #2
	Slide 44: OCC: FORWARD VALIDATION CASE #3
	Slide 45: OCC: FORWARD VALIDATION CASE #3
	Slide 46: OCC: FORWARD VALIDATION CASE #3
	Slide 47: OCC: FORWARD VALIDATION CASE #3
	Slide 48: OCC: FORWARD VALIDATION CASE #3
	Slide 49: OCC: FORWARD VALIDATION CASE #3
	Slide 50: OCC: FORWARD VALIDATION
	Slide 51: OCC: FORWARD VALIDATION
	Slide 52: OCC: BACKWARD VALIDATION
	Slide 53: OCC: BACKWARD VALIDATION
	Slide 54: OCC: WRITE PHASE
	Slide 55: OCC: OBSERVATIONS

	Phantoms
	Slide 56: OBSERVATION
	Slide 57: THE PHANTOM PROBLEM
	Slide 58: THE PHANTOM PROBLEM
	Slide 59: THE PHANTOM PROBLEM
	Slide 60: THE PHANTOM PROBLEM
	Slide 61: OOPS?
	Slide 62: SOLUTIONS TO THE PHANTOM PROBLEM
	Slide 63: RE-EXECUTE SCANS
	Slide 64: PREDICATE LOCKING
	Slide 65: PREDICATE LOCKING
	Slide 66: PREDICATE LOCKING
	Slide 67: INDEX LOCKING
	Slide 68: KEY-VALUE LOCKS
	Slide 69: KEY-VALUE LOCKS
	Slide 70: GAP LOCKS
	Slide 71: GAP LOCKS
	Slide 72: KEY-RANGE LOCKS
	Slide 73: KEY-RANGE LOCKS
	Slide 74: HIERARCHICAL LOCKING
	Slide 75: HIERARCHICAL LOCKING
	Slide 76: HIERARCHICAL LOCKING

	Isolation Levels
	Slide 77: WEAKER LEVELS OF ISOLATION
	Slide 78: ISOLATION LEVELS
	Slide 79: ISOLATION LEVELS
	Slide 80: ISOLATION LEVELS
	Slide 81: ISOLATION LEVELS
	Slide 82: ISOLATION LEVELS
	Slide 83: SQL-92 ISOLATION LEVELS
	Slide 84: ISOLATION LEVELS
	Slide 85
	Slide 86
	Slide 87: DATABASE ADMIN SURVEY
	Slide 88: SQL-92 ACCESS MODES

	Conclusion
	Slide 89: CONCLUSION
	Slide 90: NEXT CLASS

