Carnegie Mellon University

DATABASE
GYSTEMS

Multi-Versioning

LECTURE #20 )) 15-445/645 FALL 2025 )») PROF. ANDY PAVLO



https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #3 is due Sunday Nov 16™ @ 11:59pm

— Recitation Video + Slides (see @235)
— Saturday Office Hours Nov 5® @ 3:00-5:00pm (GHC 5207)

Homework #5 is due Sunday Nov 23 @ 11:59pm

Project #4 is due Sunday Dec 7" @ 11:59pm



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/235

LAST CLASS

Optimistic Concurrency Control (OCC) uses
timestamps, assigned during the validation phase, to

ensure serializability instead of locks.
— Txns first write changes into private workspaces and then
attempt to install them into the database upon commit.

Phantom Reads occur when a txns re-reads a range of
data and finds new rows or missing rows.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions of a
single logical object in the database:

— When a txn writes to an object, the DBMS creates a new
version of that object.

— When a txn reads an object, it reads the newest version that
existed when the txn started.

— Use timestamps to determine visibility.

— Multi-versioning without garbage collection allows the DBMS
to support time-travel queries.

Writers do not block readers.
Readers do not block writers.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC RISTORY

Protocol was first proposed in 1978 MIT PhD
dissertation.

First implementations was Rdb/VMS and InterBase at

DEC in early 1980s.

— Both were by Jim Starkey, co-founder of NuoDB.
— DEC Rdb/VMS is now “Oracle Rdb”.
— InterBase was open-sourced as Firebird.

& Rrab/vms
\ 4 ¥

@) Firebird Oracle Radb
the Database for HP
OpenVMS Platform



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://en.wikipedia.org/wiki/Jim_Starkey
https://dbdb.io/db/rdbvms
https://www.embarcadero.com/products/interbase
https://firebirdsql.org/

Schedule
T 1

MVCC: EXAMPLE #1

BEGIN
RCA)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

- [Version Number Jatabase
2\ Illustrative Only



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #1

Schedule
T1 T2

BEGIN

R(A)
BEGIN
WCA)

R(A)

COMMIT

COMMIT

Database



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #1

Schedule "
TS(T,)-1 T, Database
EGIN

R(A)
BEGIN
W(A)

R(A)

COMMIT

COMMIT



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #1

Schedule "
TS(T,)-1 T, Database
PBEGIN |
e Lﬁ”z)ﬂ
»BEGIN
W(A)
R(A)
COMMIT

COMMIT



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #1

Schedule "
TS(T)-1 T, Joadase B \
Seom = '
R(A) LHTZ)_Z VI o - 123 i
SE%N ql A |2 - 456 |
R(A) i !
\ )

Tz creates version A 1 TTTTTTTTTTTTTTTTT
and sets A, End-TS.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #1

Schedule
TS(T)-1 T, Database = ____

< . ( )
EGIN L’I\ﬂTZ)=2 : DE g end alue I

1 |A, 0 2 123 :

: 2 i

1 |

1 |

\ !

R(A)
BEGIN
W(A)

R(A)

T, creates version A,
and sets A, End-TS.

txnid timestamp status

f/
|
|
: T, 1 Active
|
|
|
|

T, 2 Active



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #1

Schedule

Database
T2 -------------------
. ( \I
I — _
saoz) .
L\/ 2 mp Ao 2 123 :
BEGIN I [a, 2 - 456 .
W(A) " I
| 1
S Y
T, reads version A, COMMIT
Txn Status Table
I, ----------------- \
- |
: T, 1 Active :
I, 2 Active |
i I
i I
I [


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #2

Schedule Datab
TS(T)-1 T, e \
FoEGIn ' | e
=2 egin-ts end-ts value
R(A) TS(Tz) : A 0 ~ 123 :
W(A) BEGIN i |
R(A) : I
W(A) i -
R(A) e ———— !
COMMIT
COMMIT Txn Status Table
pmmTmmEEEEE—_—_—————— \
| 1
- |
: T, 1 Active :
| 1
| 1
| |
I [


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #2

Schedule Datab
TS(T)-1 T, e \
EGIN | I o - I
=
R(A) TS(Tz) #I A 0 ~ 123 :
W(A) BEGIN g |
R(A) : I
W(A) i -
R(A) e ———— !
COMMIT
COMMIT Txn Status Table
pmmTmmEEEEE—_—_—————— \
| |
| .
: T, 1 Active :
| |
| |
| |
| )


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #2

Schedule Datab
TS(T)-1 T, e \
Sean ' - '
REAg ) TS(T)=2 L o - 123 i
W(A BEGIN
A, 1 E 456
R(A) q, |
W(A) i -
R(A) e ———— !
COMMIT
COMMIT Txn Status Table
pmmTmmEEEEE—_—_—————— \
| |
| i
: T, 1 Active :
| |
| |
| |
| )


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #2

Schedule Datab
TS(T)-1 T, e \
SBEGIN ' I I
TS(T,)=2 I
&Eﬁ% BEGIN L | a : 1 123 :
| -
R(A) : A, 1 456 :
W(A) i -
R(A) e ———— !
COMMIT
COMMIT Txn Status Table
T —_—_—_—_———— \
| |
| .
: T, 1 Active :
| |
| |
| |
| ]


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #2

Schedule Datab
e
TS(T)-1 T, e \
Seon sz ) :
RCA) # Ay 0 1 123 :
W(A) BEGIN an 1 - e |
W(A) I I
R(A) e ———— !
COMMIT
COMMIT Txn Status Table
II ----------------- \
| :
: T, 1 Active :
I, 2 Active |
| |
| |
I !


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #2

Schedule

TS(T)-1 Database |18
( \
SecTn : :
RCA) 1A, o 1 123 I
W(A) Lla, | - 456 :
] | |
R(A) V- <

COMMIT

txnid timestamp status

T, 1 Active
T, 2 Aborted

l—---.
----l


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #2

Schedule Datab
TS(T)-=1 T, e \
Seon stz] ! :
Rgﬁg SECT 1 |A, 0 1 123 :
W =
A 1 - 456 1
R(A) im I
W(A) i -
\ PR \ o o o o o T !
oo}
COMMIT Txn Status Table
g —— \
: i
T, reads version A, that | ET———— !
it wrote earlier. L Active :
I, 2 Aborted I
I I
I I
I [


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #2

Schedule
TS(T,)=1 T,
SBEGIN |
e TS(T,)=2
W(A) BEGIN
RCA)
30"
R(A)
COMMIT ,Q,
COMMIT

Database

{ -------------------
i

1A, 0 123

DA 1 456

|

|

N\ o o o o o e e e
Txn Status Table

txnid timestamp status

Active

Aborted

----I



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC: EXAMPLE #2

Schedule
TS(T,)=1 g Dasabase _______ 4 \
SBEGIN | ] : |
Sz | [—
R(A) 2 1la, o 1 123 |
W(A) BEGIN | 1 - e |
W(A) i -
R(A) *at S Y
COMMIT ,Q,
COMMIT Txn Status Table
II ----------------- \
| :
: T, 1 Committed :
I, 2 Aborted I
| 1
| |
I !


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SNAPSHOT ISOLATION (S1)

When a txn starts, it sees a consistent snapshot of the

database that existed when that the txn started.
— No torn writes from active txns.
— If two txns update the same object, then last writer wins.

SI is susceptible to the Write Skew Anomaly.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITE SKEW ANOMALY

Txn #1

Change all white
marbles to black.

00 —

Y —

Change all black
marbles to white.

&8


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITE SKEW ANOMALY

Txn #1
Change all white
marbles to black.

oo — ™ 00
o0

Txn#z\A %—8' —

Change all black
ma bl to white.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITE SKEW ANOMALY

Txn #1

Change all white
marbles to black.

7 MY | e
00 @0 OO

Change all black
marbles to white.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MULTI-VERSION CONCURRENCY CONTROL ™

MVCC is more than just a concurrency control
protocol. It completely affects how the DBMS manages
transactions and the database.

‘I BJEC'TE:O;(ugabYteDB ﬁ'qux | r. ") druid @DB » pouchdli E 1D| L
"N AL TIBASE A\ DELTA LAKE Yellowbrick €@ Q puckos NEON E)'GSO'. 4 ICEBERG(D uror3 BsQ
- v & Timescale (N)neTEZZA INGR=S S snowflake »-ﬁ N SNCOR

Q{tr‘emEDB NUO )'fauna W olanetscale “:LREdDTIGER eSfOOkJ qutgle Polar™2B

e (3 UMBRA y CUBRID IM_DB s 1;JHVPGI' s vectorwise

HEI(ATON

@ i AlloyDB QCouchbase $)& SingleStore SoLsever SIZITZIF InfiniDB ¢ ScyIIaDB @

. Wi, @ ArangoDB  ¥affodil, ,4 MariaDB E‘::’HANA ||Ce
Clustrix &7 0 S o orACLe SRASE Mus [

RavenDB y HBRASE .QStchOCks —= = FOUNDATIONDB =3 actorpB M| FeatureBase
mTiDB S @CedarDB ¢ CockroachDB 'realm e

WMySQL. * RethinkDB HRSE  eted wTrafodAip;:;



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC DESIGN DECISIONS

Concurrency Control Protocol
Version Storage

Garbage Collection

Index Management

Deletes


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
— Assign txns timestamps that determine serial order.

Approach #2: Optimistic Concurrency Control

— Three-phase protocol from last class.
— Use private workspace for new versions.

Approach #3: Two-Phase Locking

— Txns acquire appropriate lock on physical version before they
can read/write a logical tuple.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule "

TS(T)-1 T, Joadase B \
R(A) TS(Tz) 2 ‘ AO 2 ~ 123 :
W(A) BEGIN q i

R(A) ! |
W(A) I I
R(A) Ve ——————— /
COMMIT
Txn Status Table
COMMIT | e e



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule Datab
TS(T)-=1 T, e \
TBEGIN ' - |
=2 egin-ts end-ts value
ERN IS e o o e
A, 1 - 456
R(A) q, :
W(A) I I
R(A) N e e e e e e )
COMMIT
Txn Status Table
COMMIT e \
i |
: T, 1 Active :
I I
I I
I I
! !


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule Datab
TS(T)-=1 T, e \
SBEGIN ' ] i
TS(T,)=2 I
m% BEGIN L : A : L 123 :
I -
R(A) : A, 456 :
W(A) I I
R(A) N e ——————— )
COMMIT
Txn Status Table
COMMIT PR —— \
| :
: T, 1 Active :
I I
I I
I I
I !



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule
TS(T)=1 2 Dasabase _______ 4 \
e e |
R(A) mp A 0 1 123 I
W(A) BEGIN A 1 - " i
1A I
»Ru\) ! .
W(A) I I
R(A) Ve —————— /
, a
COMMLT T, reads version A, Tabl
because T hasnot [I1Us 1 avle
COMMIT Rall Rbtetdi N PR ———
committed yet.
T, 1 Active

T, 2 Active

l—---
----l


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule "

TS(T)-1 T, Joadase B \
SSEoin ' - |

TS(T.)=2 begin-ts end-ts value
&Eﬁ% BEGIN L | a : 1 123 i
RCA) i A, 1 - 456 :
»wm i ]
R(A) m N e !

COMMIT m N

M T, stalls until T, tus Table

COMMIT , 1 o o om o \
commits to acquire I

write lock on A. : I

T Active |

I

| T, 2 Active |

| |

1 |

i ]


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule Datab
TS(T)-1 T, e \
Seon saz) ! :
m% BEGIN q' Bl : = :
A 1 - 456 1
W(A) i -
[ | L —— !
s X
v Txn Status Table
COMMIT [ e \
: i
T, reads version A, that | ——
it wrote earlier. L Active :
I, 2 Active |
I i
I i
I [


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule Datab
TS(T)-1 T, e \
Seon sz b :
R(A) 2 1la, o 1 123 I
W(A) BEGIN i 1 - yen |
R(A) : I
W(A) I |
R(A) m N e o o e e Y
COMMIT = g
v Txn Status Table

COMMIT PRyt —— \

| 1

| -

: T, 1 Committed :

I, 2 Active |

| 1

| |

| )


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

new version.

Active

Schedule Datab
TS(T,)-1 T, e
B ' -
TS(T.)=2 begin-ts end-ts value
R(A) (1) : A, 0 123
W(A) BEGIN an ] 5 456
RCA) :
W(AY »I A, 2 - 789
R(A) A N ——————
COMMIT i g
» v Txn Status Table
COM i o
Now T, can create the Commi tted

----l



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a

version chain per logical tuple.

— This allows the DBMS to find the version that is visible to a
particular txn at runtime.

— Indexes always point to the “head” of the chain.

Different storage schemes determine where/what to
store for each version.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VERSION STORAGE

Approach #1: Append-Only Storage « Less Common

— New versions are appended to the same table space.

Approach #2: Time-Travel Storage « Rare
— Old versions are copied to separate table space.

Approach #3: Delta Storage « Common

— The original values of the modified attributes are copied into a
separate delta record space.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

\ g 4

Jool

Don't
Do This!

VERSION

Approach #1: Append-Onl

— New versions are appended to

Approach #2: Time-Trav

— OlId versions are copied to sep

Approach #3: Delta Stora
— The original values of the mo
separate delta record space.

Andy Pavlo

The Part of PostgreSQL
We Hate the Most

Posted on April 26, 2023

This article was written in collaboration with Bohan Zhang and originally
appeared on the OtterTune website,

darling DBMS. And for good reasons! It's dependable, feature-rich, extensible,
and well-suited for most operational workloads.

But as much as we love PostgreSQL at OtterTune, certain aspects of it are
Not great. So instead of writing yet another blog article like éveryone else
touting the awesomeness of €veryone's favorite elephant-themed DBMS, we
want to discuss the one major thing that sucks: how PostgresqQL implements
multi-version concurrency control| (Mvce). our research at Carnegie
Mellon University and experience optimizing PostgreSQL database instances
on Amazon RDS have shown that its MvVCc implementation is the worst



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/blog/2023/04/the-part-of-postgresql-we-hate-the-most.html

APPEND-ONLY STORAGE

All the physical versions of a logical Main Table
tuple are stored in the same table
space. The versions are inter-mixed.

A, $111

On every update, append a new » A $227
. ° 1

version of the tuple into an empty - $10
1

space in the table.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

APPEND-ONLY STORAGE

All the physical versions of a logical Main Table
tuple are stored in the same table
space. The versions are inter-mixed.

A, $111

On every update, append a new » A $222
. ° 1

version of the tuple into an empty - $10
space in the table. 1

A, $333



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

APPEND-ONLY STORAGE

All the physical versions of a logical Main Table
tuple are stored in the same table
space. The versions are inter-mixed.

A, | $111 O
On every update, append a new » A 5220 P
version of the tuple into an empty " 10 p
space in the table. : b |
A, | $333 0



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Append new version to end of the chain.
— Must traverse chain on look-ups.

RecordId A1 +_> A2 +_’ A3



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Append new version to end of the chain.
— Must traverse chain on look-ups.

RecordId A1 +_> A2 +_’ A3 +_> A4
2 )



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Append new version to end of the chain.
— Must traverse chain on look-ups.

RecordId A1 +_> A2 +_’ A3 +_> A4
)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Append new version to end of the chain.
— Must traverse chain on look-ups.

RecordId A1 +_> A2 +_> A3 +_> A4

Approach #2: Newest-to-Oldest (N20)

— Must update index pointers for every new version.
— Do not have to traverse chain on look-ups.
— Better approach if most txns only want the newest version.

RecordId A3 +_> A2 +_> A1



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Append new version to end of the chain.
— Must traverse chain on look-ups.

RecordId A1 +_> A2 +_> A3 +_> A4

Approach #2: Newest-to-Oldest (N20)

— Must update index pointers for every new version.
— Do not have to traverse chain on look-ups.
— Better approach if most txns only want the newest version.

RecordId A4 +_’ A3 +_> A2 +_> A1



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Append new version to end of the chain.
— Must traverse chain on look-ups.

RecordId A1 +_> A2 +_> A3 +_> A4

Approach #2: Newest-to-Oldest (N20)

— Must update index pointers for every new version.
— Do not have to traverse chain on look-ups.
— Better approach if most txns only want the newest version.

RecordId A4 +_’ A3 +_> A2 +_> A1
2 )



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TIME-TRAVEL STORAGE

Main Table Time-Travel Table

» A, | 522 | e

B, $10

On every update, copy the
current version to the time-
travel table. Update pointers.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TIME-TRAVEL STORAGE

Main Table Time-Travel Table

value pointer
|90 e
B, $10 A | 520 | e—

On every update, copy the
current version to the time-
travel table. Update pointers.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TIME-TRAVEL STORAGE

Main Table

value pointer

Time-Travel Table

A $111 ]

[ o | o—
B1

On every update, copy the
current version to the time-

travel table. Update pointers.

1
A, | $222 o

Overwrite master version in
the main table and update
pointers.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TIME-TRAVEL STORAGE

Main Table

value pointer

Time-Travel Table

A $111 ]

W[ | —
B1

On every update, copy the
current version to the time-

travel table. Update pointers.

1
A, | $222 o

Overwrite master version in
the main table and update
pointers.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TIME-TRAVEL STORAGE

Main Table Time-Travel Table
» _— NN
B, $10 A, | $222 O
On every update, copy the Overwrite master version in
current version to the time- the main table and update

travel table. Update pointers. pointers.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TIME-TRAVEL STORAGE

Main Table Time-Travel Table
» A, | $333 o A, $111 0
B, $10 A, | $222 O
On every update, copy the Overwrite master version in
current version to the time- the main table and update

travel table. Update pointers. pointers.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DELTA STORAGE

Main Table

» A, | s

B, $10

On every update, copy only
the column values that were
modified to the delta storage
and overwrite the master
version.

Delta Storage Segment



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DELTA STORAGE

Main Table Delta Storage Segment

value pointer

A, (VALUE»$111) 0

On every update, copy only
the column values that were
modified to the delta storage
and overwrite the master
version.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DELTA STORAGE

Main Table Delta Storage Segment

value pointer delta pointer

>| A | cvacuessiin| o

On every update, copy only
the column values that were
modified to the delta storage
and overwrite the master
version.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DELTA STORAGE 5

Main Table Delta Storage Segment

» $222 A, | (vaLuessiin)| @

A, | (vALUE»$222)| @

On every update, copy only
the column values that were
modified to the delta storage
and overwrite the master
version.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DELTA STORAGE

Main Table Delta Storage Segment

value pointer delta DO

A | cvacuessiiny| e

B, A, | (vALUE»$222)| @
On every update, copy only Txns can recreate old
the column values that were versions by applying the delta
modified to the delta storage in reverse order.

and overwrite the master
version.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

bARBAGE COLLECTION

The DBMS needs to remove reclaimable physical

versions from the database over time.
— No active txn in the DBMS can “see” that version (SI).
— The version was created by an aborted txn.

Two additional design decisions:
— How to look for expired versions?
— How to decide when it is safe to reclaim memory?



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

bARBAGE COLLECTION

Approach #1: Tuple-level

— Find old versions by examining tuples directly.
— Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level

— Txns keep track of their old versions so the DBMS does not
have to scan tuples to determine visibility.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C

Txn #1

Vacuum
Txn #2 ‘ )
Ts=25 =¥ O

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

3

begin-ts end-ts

Aioo 7 9
B1go / 9
B,y 10 20



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C

Txn #1 Vacuum
Txn #2 ‘ )
Ts=25 =¥ O

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

»

3

begin-ts end-ts

Aioo 7 9
B1go / 9
B,y 10 20



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C

Txn #1 Vacuum
Txn #2 ‘ >
1s-25 =% O
Background Vacuuming: »

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

A1 00

B100
B101

begin-ts end-ts



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C

Txn #1 Vacuum
Txn #2 ‘ >
1s-25 =% O
Background Vacuuming: »

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

3

begin-ts end-ts

B101

19

29



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C

Txn #1 Vacuum

Txn #2 ‘
1s=25 =% O
Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

»

(N BN BN N
doprng 3001 A140q

begin-ts end-ts

B101

19

29



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C

Txn #1 Vacuum

Txn #2 ‘
1s=25 =% O
Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

¥

(N BN BN N
doprng 3001 A140q

3

begin-ts end-ts

B101

10

29



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C

Txn #1
TS=12 A, PPl A, PPl A, PP OA,
5 INDEX
Txn #2 s, b 8 b 8, b B,
TS=25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C
Txn #1 ‘

TS=12 o GET(A) | A, P A P A, P A
Txn #2

B, ™ B, | B, M B,

TS=25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C
Txn #1 ‘

TS=12 GET(A) A, P A, P oA,
A INDEX
Txn #2 s, b 8 b 8, b B,
TS=25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C
Txn #1 ‘

TS=12 o GET(A) »'ZI—» A, P A, P oA,
Txn #2

B, ™ B ™ B2 ™ Bs

TS=25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C

Txn #1

TS=12 « GET(A) _,|Z|..:Z}. A b
Txn #2

TS=25

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

BQ—PB_I—PBZ—P

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they

traverse version chain. Only
works with O2N.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TUPLE-LEVEL 6C
Txn #1 ‘

TS=12 GET(A) A, P A,
Txn #2

B, ™ B, | B, M B,

TS=25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically Worker threads identify
scan the table and look for reclaimable versions as they
reclaimable versions. Works traverse version chain. Only

with any storage. works with O2N.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION-LEVEL 6C

Each txn keeps track of its read/write set.

On commit/abort, the txn provides this information to
a centralized vacuum worker.

The DBMS periodically determines when all versions
created by a finished txn are no longer visible.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION-LEVEL 6C

Txn #1
BEGIN TS=10

8



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Txn #1
BEGIN TS=10

UPDATE(A)

TRANSACTION-LEVEL 6C

=

begin-ts end-ts value

A, 1 10 -
A, 10 00 -



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Txn #1

BEGIN TS=10

Old Versions

TRANSACTION-LEVEL 6C

UPDATE(A)

=

begin-ts end-ts value

A, 1 10 -
A, 10 0o -



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Txn #1
BEGIN TS=10

Old Versions

TRANSACTION-LEVEL 6C

begin-ts end-ts value
A 1 10 -

UPDATE(A)

2

=

B

8

(00)

As

10

(00)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Txn #1

BEGIN TS=10

TRANSACTION-LEVEL 6C

\\
UPDATE(A)

OId Versions
UPDATE(B)

»

=

begin-ts end-ts value

A, 1 10 -
A, 10 0o -



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION-LEVEL 6C 5
Tl;:zx#g TS=10

Az 1 1 @ -

OId Versions » Be 3 10 -
UPDATE(B) Ay 10 00 -

B, 10 00 -



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION-LEVEL 6C 5
Zﬁzﬂ TS=10

A, 1 10 -
— _
Old Versions B 8 10
UPDATE(B) A, 10 00 -
B7 10 (00] -


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION-LEVEL 6C 5

len #1 #
BEGIN TS=10 SPOTE (A
_ e A 1 10 -
COMMIT TS=15 2
: N B 8 10 -
Old Versions l '
e o
A2 UPDATE(B)
B, 10 00 -



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION-LEVEL 6C 5

BEGIN TS=10 UPDATE(A) A 1 10 ~
COMMIT TS=15 2
: N B 8 10 -
Old Versions E/'
A, 10 0o -
UPDATE(B)
B, 10 oo -

Vacuum

TS<10{ :: (;‘\-



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INDEX MANAGEMENT

Primary key indexes point to version chain head.

— How often the DBMS must update the pkey index depends on
whether the system creates new versions when a tuple is
updated.

— If a txn updates a tuple’s pkey attribute(s), then this is treated as
a DELETE followed by an INSERT.

Secondary indexes are more complicated...



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Primary key inde
— How often the [
whether the sys
updated.
— [f a txn updates
a DELETE folloy

Secondary inde


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://eng.uber.com/mysql-migration/

SECONDARY INDEXES

Approach #1: Logical Pointers

— Use a fixed identifier per tuple that does not change.
— Requires an extra indirection layer.
— Primary Key vs. Tuple Id

Approach #2: Physical Pointers

— Use the physical address to the version chain head.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INDEX POINTERS: APPEND-ONLY 5

Append-Only
Ay +" As +" Ay +" A } Newest-to-Oldest


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INDEX POINTERS: APPEND-ONLY 5

GET(A) @
A2 PRIMARY INDEX A SECONDARY INDEX

Record Id

A d-Onl
M }szuz';t-wfz%dest


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INDEX POINTERS: APPEND-ONLY 5
$ GET(A)

A2 PRIMARY INDEX A SECONDARY INDEX

Record 1d

Append-Only
Ay +" As +" Ay +" A } Newest-to-Oldest


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INDEX POINTERS: APPEND-ONLY 5
$ GET(A)

A2 PRIMARY INDEX A SECONDARY INDEX

5 SECONDARY INDEX

A SECONDARY INDEX

A SECONDARY INDEX

Append-Only
Ay +" As +" Ay +" A } Newest-to-Oldest


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INDEX POINTERS: APPEND-ONLY 5
$ GET(A)

A2 PRIMARY INDEX A SECONDARY INDEX

SECONDARY INDEX

SECONDARY INDEX

A SECONDARY INDEX

vvvv}» Append-Only
A P A P A B A } Newest-to-Oldest


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

INDEX POINTERS: APPEND-ONLY 5

$ GET(A)
A2 PRIMARY INDEX A SECONDARY INDEX
Primary
Key

Record Id

A d-Onl
M }szuz';t-wfz%dm


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC INDEXES

MVCC DBMS indexes (usually) do not store version

information about tuples with their keys.
— Exception: Index-organized tables (e.g., MySQL)

Every index must support duplicate keys from different

snapshots:
— The same key may point to different logical tuples in different
snapshots.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC DUPLICATE KEY PROBLEM

Txn #1 Index

BEGIN TS=10 66
READ(A) v v



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC DUPLICATE KEY PROBLEM 5

ikl Index
BEGIN TS=10 66
READ(A) ; ]
Txn #2 " I

BEGIN TS=20 |2| TJ

UPDATE(A)

begin-ts end-ts pointer
A, 7 oo o—:|
A, 20 oo o



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC DUPLICATE KEY PROBLEM 5

ikl Index
BEGIN TS=10 66
READ(A) ; ]
Txn #2 " I

TJ

begin-ts end-ts pointer

BEGIN TS=20 |2| x
UPDATE(A) DELETE(A)

A1 / oo .-:I

_z 20 0o @



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Txn #1
BEGIN TS=10

Txn #2
BEGIN TS=20
COMMIT TS=25

MVCC DUPLICATE KEY PROBLEM

4§ X
UPDATE(A) DELETE(A)

=

Index

+_I_+

v

+_|_+

TJ

begin-ts

7/

end-ts pointer

oo

e

20

(00

]



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Txn #1
BEGIN TS=10

Txn #2
BEGIN TS=20
COMMIT TS=25

MVCC DUPLICATE KEY PROBLEM

4§ X
UPDATE(A) DELETE(A)

=

Index

+_I_+

v

+_|_+

TJ

begin-ts

7/

end-ts pointer

20

e

20

20

]



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Txn #1
BEGIN TS=10

Txn #2
BEGIN TS=20
COMMIT TS=25

Txn #3
BEGIN TS=30

MVCC DUPLICATE KEY PROBLEM

4§ X
UPDATE(A) DELETE(A)

=

Index

+_I_+

v

+_|_+

TJ

begin-ts

7/

end-ts pointer

20

e

20

20

]



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Txn #1
BEGIN TS=10

Txn #2
BEGIN TS=20
COMMIT TS=25

Txn #3
BEGIN TS=30

MVCC DUPLICATE KEY PROBLEM

4§ X
UPDATE(A) DELETE(A)

Index

+_I_+

=

+_|_+

HTJ

begin-ts

end-ts pointer

A, 7 20 o—:l
Z 20 20 0
A, 30 co 0



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Txn #1
BEGIN TS=10

Txn #2
BEGIN TS=20
COMMIT TS=25

Txn #3
BEGIN TS=30

MVCC DUPLICATE KEY PROBLEM

|||||||||| ||||||||||
READ(A) READ(A)

@ X
UPDATE(A) DELETE(A)
|!l!!!!!!!|

Index

+_I_+

=

+_|_+

HTJ

begin-ts

end-ts pointer

A, 7 20 o—:l
Z 20 20 0
A, 30 co 0



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC INDEXES

Each index’s underlying data structure must support the
storage of non-unique keys.

Use additional execution logic to perform conditional

inserts for pkey / unique indexes.
— Atomically check whether the key exists and then insert.

Workers may get back multiple entries for a single
fetch. They then must follow the pointers to find the
proper physical version.

=


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC DELETES

The DBMS physically deletes a tuple from the database
only when all versions of a logically deleted tuple are

not visible,

— If a tuple is deleted, then there cannot be a new version of that
tuple after the newest version.

— No write-write conflicts / first-writer wins

We need a way to denote that tuple has been logically
delete at some point in time.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC DELETES

Approach #1: Deleted Flag

— Maintain a flag to indicate that the logical tuple has been
deleted after the newest physical version.

— Can either be in tuple header or a separate column.

Approach #2: Tombstone Tuple

— Create an empty physical version to indicate that a logical tuple
is deleted.

— Use a separate pool for tombstone tuples with only a special bit
pattern in version chain pointer to reduce the storage overhead.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC IMPLEMENTATIONS

=

Protocol Version Storage  Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical
Postgres MV-2PL/MV-TO Append-Only Vacuum Physical
MySQL-InnoDB MV-2PL Delta Vacuum Logical
MSSQL Hekaton MV-0CC Append-Only Cooperative Physical
SingleStore MV-0CC Delta Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical
DuckDB MV-0CC Delta Txn-Level Logical

HyPer MV-0CC Delta Txn-level Logical
CockroachDB MV-2PL Delta (LSM) Compaction Logical


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCLUSION

MVCC is the widely used scheme in DBMSs.
Even systems that do not support multi-statement txns
(e.g., NoSQL) use it.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NEXT CLASS

Logging and recovery!


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Multi-Versioning
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS
	Slide 4: MULTI-VERSION CONCURRENCY CONTROL
	Slide 5: MVCC HISTORY
	Slide 6: MVCC: EXAMPLE #1
	Slide 7: MVCC: EXAMPLE #1
	Slide 8: MVCC: EXAMPLE #1
	Slide 9: MVCC: EXAMPLE #1
	Slide 10: MVCC: EXAMPLE #1
	Slide 11: MVCC: EXAMPLE #1
	Slide 12: MVCC: EXAMPLE #1
	Slide 13: MVCC: EXAMPLE #2
	Slide 14: MVCC: EXAMPLE #2
	Slide 15: MVCC: EXAMPLE #2
	Slide 16: MVCC: EXAMPLE #2
	Slide 17: MVCC: EXAMPLE #2
	Slide 18: MVCC: EXAMPLE #2
	Slide 19: MVCC: EXAMPLE #2
	Slide 20: MVCC: EXAMPLE #2
	Slide 21: MVCC: EXAMPLE #2
	Slide 22: SNAPSHOT ISOLATION (SI)
	Slide 23: WRITE SKEW ANOMALY
	Slide 24: WRITE SKEW ANOMALY
	Slide 25: WRITE SKEW ANOMALY
	Slide 26: MULTI-VERSION CONCURRENCY CONTROL
	Slide 27: MVCC DESIGN DECISIONS

	Concurrency Control
	Slide 28: CONCURRENCY CONTROL PROTOCOL
	Slide 29: MVCC WITH 2PL
	Slide 30: MVCC WITH 2PL
	Slide 31: MVCC WITH 2PL
	Slide 32: MVCC WITH 2PL
	Slide 33: MVCC WITH 2PL
	Slide 34: MVCC WITH 2PL
	Slide 35: MVCC WITH 2PL
	Slide 36: MVCC WITH 2PL

	Version Storage
	Slide 37: VERSION STORAGE
	Slide 38: VERSION STORAGE
	Slide 39: VERSION STORAGE
	Slide 40: APPEND-ONLY STORAGE
	Slide 41: APPEND-ONLY STORAGE
	Slide 42: APPEND-ONLY STORAGE
	Slide 43: VERSION CHAIN ORDERING
	Slide 44: VERSION CHAIN ORDERING
	Slide 45: VERSION CHAIN ORDERING
	Slide 46: VERSION CHAIN ORDERING
	Slide 47: VERSION CHAIN ORDERING
	Slide 48: VERSION CHAIN ORDERING
	Slide 49: TIME-TRAVEL STORAGE
	Slide 50: TIME-TRAVEL STORAGE
	Slide 51: TIME-TRAVEL STORAGE
	Slide 52: TIME-TRAVEL STORAGE
	Slide 53: TIME-TRAVEL STORAGE
	Slide 54: TIME-TRAVEL STORAGE
	Slide 55: DELTA STORAGE
	Slide 56: DELTA STORAGE
	Slide 57: DELTA STORAGE
	Slide 58: DELTA STORAGE
	Slide 59: DELTA STORAGE

	Garbage Collection
	Slide 60: GARBAGE COLLECTION
	Slide 61: GARBAGE COLLECTION
	Slide 62: TUPLE-LEVEL GC
	Slide 63: TUPLE-LEVEL GC
	Slide 64: TUPLE-LEVEL GC
	Slide 65: TUPLE-LEVEL GC
	Slide 66: TUPLE-LEVEL GC
	Slide 67: TUPLE-LEVEL GC
	Slide 68: TUPLE-LEVEL GC
	Slide 69: TUPLE-LEVEL GC
	Slide 70: TUPLE-LEVEL GC
	Slide 71: TUPLE-LEVEL GC
	Slide 72: TUPLE-LEVEL GC
	Slide 73: TUPLE-LEVEL GC
	Slide 74: TRANSACTION-LEVEL GC
	Slide 75: TRANSACTION-LEVEL GC
	Slide 76: TRANSACTION-LEVEL GC
	Slide 77: TRANSACTION-LEVEL GC
	Slide 78: TRANSACTION-LEVEL GC
	Slide 79: TRANSACTION-LEVEL GC
	Slide 80: TRANSACTION-LEVEL GC
	Slide 81: TRANSACTION-LEVEL GC
	Slide 82: TRANSACTION-LEVEL GC
	Slide 83: TRANSACTION-LEVEL GC

	Index Management
	Slide 84: INDEX MANAGEMENT
	Slide 85: INDEX MANAGEMENT
	Slide 86: SECONDARY INDEXES
	Slide 87: INDEX POINTERS: APPEND-ONLY
	Slide 88: INDEX POINTERS: APPEND-ONLY
	Slide 89: INDEX POINTERS: APPEND-ONLY
	Slide 90: INDEX POINTERS: APPEND-ONLY
	Slide 91: INDEX POINTERS: APPEND-ONLY
	Slide 92: INDEX POINTERS: APPEND-ONLY
	Slide 93: MVCC INDEXES
	Slide 94: MVCC DUPLICATE KEY PROBLEM
	Slide 95: MVCC DUPLICATE KEY PROBLEM
	Slide 96: MVCC DUPLICATE KEY PROBLEM
	Slide 97: MVCC DUPLICATE KEY PROBLEM
	Slide 98: MVCC DUPLICATE KEY PROBLEM
	Slide 99: MVCC DUPLICATE KEY PROBLEM
	Slide 100: MVCC DUPLICATE KEY PROBLEM
	Slide 101: MVCC DUPLICATE KEY PROBLEM
	Slide 102: MVCC INDEXES

	MVCC Deletes / Duplicate Key Problem
	Slide 103: MVCC DELETES
	Slide 104: MVCC DELETES

	Conclusion
	Slide 105: MVCC IMPLEMENTATIONS
	Slide 106: CONCLUSION
	Slide 107: NEXT CLASS


