
DatabaseSystems

15-445/645 FALL 2025

15- 445/645 FALL 2025
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Multi - Version ing
LECTURE # 20

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ADMINISTRIVIA

Project #3 is due Sunday Nov 16th @ 11:59pm
→ Recitation Video + Slides (see @235)
→ Saturday Office Hours Nov 5th @ 3:00-5:00pm (GHC 5207)

Homework #5 is due Sunday Nov 23rd @ 11:59pm

Project #4 is due Sunday Dec 7th @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/235

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LAST CLASS

Optimistic Concurrency Control (OCC) uses
timestamps, assigned during the validation phase, to
ensure serializability instead of locks.
→ Txns first write changes into private workspaces and then

attempt to install them into the database upon commit.

Phantom Reads occur when a txns re-reads a range of
data and finds new rows or missing rows.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions of a
single logical object in the database:
→ When a txn writes to an object, the DBMS creates a new

version of that object.
→ When a txn reads an object, it reads the newest version that

existed when the txn started.
→ Use timestamps to determine visibility.
→ Multi-versioning without garbage collection allows the DBMS

to support time-travel queries.

Writers do not block readers.
Readers do not block writers.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC HISTORY

dissertation

Jim Starkey

Oracle Rdb

InterBase Firebird

Protocol was first proposed in 1978 MIT PhD
dissertation.

First implementations was Rdb/VMS and InterBase at
DEC in early 1980s.
→ Both were by Jim Starkey, co-founder of NuoDB.
→ DEC Rdb/VMS is now “Oracle Rdb”.
→ InterBase was open-sourced as Firebird.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://en.wikipedia.org/wiki/Jim_Starkey
https://dbdb.io/db/rdbvms
https://www.embarcadero.com/products/interbase
https://firebirdsql.org/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E
begin-ts end-ts value

A0 0 - 123

MVCC: EXAMPLE #1

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

DatabaseVersion Number
Illustrative Only

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E
begin-ts end-ts value

A0 0 - 123

MVCC: EXAMPLE #1

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

Database

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E
begin-ts end-ts value

A0 0 - 123

MVCC: EXAMPLE #1

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

TS(T1)=1 Database

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E
begin-ts end-ts value

A0 0 - 123

MVCC: EXAMPLE #1

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

TS(T1)=1

TS(T2)=2

Database

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E
begin-ts end-ts value

A0 0 - 123

MVCC: EXAMPLE #1

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

-2 456A1

TS(T1)=1

TS(T2)=2

T2 creates version A1
and sets A0 End-TS.

Database

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

T2 2 Active

Txn Status Table

begin-ts end-ts value

A0 0 - 123

MVCC: EXAMPLE #1

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

-2 456A1

TS(T1)=1

TS(T2)=2

T2 creates version A1
and sets A0 End-TS.

Database

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

T2 2 Active

Txn Status Table

begin-ts end-ts value

A0 0 - 123

MVCC: EXAMPLE #1

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

T1 reads version A0.

-2 456A1

TS(T1)=1

TS(T2)=2

Database

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC: EXAMPLE #2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

TS(T1)=1

TS(T2)=2

Database

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC: EXAMPLE #2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

TS(T1)=1

TS(T2)=2

Database

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC: EXAMPLE #2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

-1 456A1

TS(T1)=1

TS(T2)=2

Database

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC: EXAMPLE #2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Database

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC: EXAMPLE #2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

Database

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC: EXAMPLE #2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

T2 detects there is an
uncommitted change.

Database

7

Aborted

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC: EXAMPLE #2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

T1 reads version A1 that
it wrote earlier.

Database

7

Aborted

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC: EXAMPLE #2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

Database

7

Aborted

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC: EXAMPLE #2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

Committed1T1

Database

7

Aborted

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNAPSHOT ISOLATION (SI)

When a txn starts, it sees a consistent snapshot of the
database that existed when that the txn started.
→ No torn writes from active txns.
→ If two txns update the same object, then last writer wins.

SI is susceptible to the Write Skew Anomaly.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WRITE SKEW ANOMALY

Txn #1
Change all white
marbles to black.

Txn #2
Change all black
marbles to white.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WRITE SKEW ANOMALY

Txn #1
Change all white
marbles to black.

Txn #2
Change all black
marbles to white.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WRITE SKEW ANOMALY

Txn #1
Change all white
marbles to black.

Txn #2
Change all black
marbles to white.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MULTI-VERSION CONCURRENCY CONTROL

MVCC is more than just a concurrency control
protocol. It completely affects how the DBMS manages
transactions and the database.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DESIGN DECISIONS

Concurrency Control Protocol

Version Storage

Garbage Collection

Index Management

Deletes

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
→ Assign txns timestamps that determine serial order.

Approach #2: Optimistic Concurrency Control
→ Three-phase protocol from last class.
→ Use private workspace for new versions.

Approach #3: Two-Phase Locking
→ Txns acquire appropriate lock on physical version before they

can read/write a logical tuple.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

TS(T1)=1

TS(T2)=2

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

-1 456A1

TS(T1)=1

TS(T2)=2

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

T2 reads version A0
because T1 has not

committed yet.

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

T2 stalls until T1
commits to acquire

write lock on A.

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

T1 reads version A1 that
it wrote earlier.

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

Committed1T1

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1 2

-2 789A2

TS(T1)=1

TS(T2)=2

Active2T2

Committed1T1Now T2 can create the
new version.

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a
version chain per logical tuple.
→ This allows the DBMS to find the version that is visible to a

particular txn at runtime.
→ Indexes always point to the “head” of the chain.

Different storage schemes determine where/what to
store for each version.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied into a

separate delta record space.

15

Common

Rare

Less Common

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied into a

separate delta record space.

15

Don't
Do This!

Common

Rare

Less Common

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/blog/2023/04/the-part-of-postgresql-we-hate-the-most.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

APPEND-ONLY STORAGE

All the physical versions of a logical
tuple are stored in the same table
space. The versions are inter-mixed.

On every update, append a new
version of the tuple into an empty
space in the table.

Main Table

value

A0 $111

pointer

A1 $222 Ø

B1 $10 Ø

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

APPEND-ONLY STORAGE

All the physical versions of a logical
tuple are stored in the same table
space. The versions are inter-mixed.

On every update, append a new
version of the tuple into an empty
space in the table.

Main Table

value

A0 $111

pointer

A1 $222 Ø

A2 $333 Ø

B1 $10 Ø

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

APPEND-ONLY STORAGE

All the physical versions of a logical
tuple are stored in the same table
space. The versions are inter-mixed.

On every update, append a new
version of the tuple into an empty
space in the table.

Main Table

value

A0 $111

pointer

A1 $222

A2 $333 Ø

B1 $10 Ø

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Approach #1: Oldest-to-Newest (O2N)
→ Append new version to end of the chain.
→ Must traverse chain on look-ups.

A1 A2 A3
RecordId

VERSION CHAIN ORDERING
17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Approach #1: Oldest-to-Newest (O2N)
→ Append new version to end of the chain.
→ Must traverse chain on look-ups.

A1 A2 A3
RecordId

VERSION CHAIN ORDERING
17

A4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Approach #1: Oldest-to-Newest (O2N)
→ Append new version to end of the chain.
→ Must traverse chain on look-ups.

A1 A2 A3
RecordId

VERSION CHAIN ORDERING
17

A4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Approach #1: Oldest-to-Newest (O2N)
→ Append new version to end of the chain.
→ Must traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N2O)
→ Must update index pointers for every new version.
→ Do not have to traverse chain on look-ups.
→ Better approach if most txns only want the newest version.

RecordId

A1 A2 A3
RecordId

VERSION CHAIN ORDERING
17

A3 A2 A1

A4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Approach #1: Oldest-to-Newest (O2N)
→ Append new version to end of the chain.
→ Must traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N2O)
→ Must update index pointers for every new version.
→ Do not have to traverse chain on look-ups.
→ Better approach if most txns only want the newest version.

RecordId

A1 A2 A3
RecordId

VERSION CHAIN ORDERING
17

A4 A3 A2 A1

A4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Approach #1: Oldest-to-Newest (O2N)
→ Append new version to end of the chain.
→ Must traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N2O)
→ Must update index pointers for every new version.
→ Do not have to traverse chain on look-ups.
→ Better approach if most txns only want the newest version.

RecordId

A1 A2 A3
RecordId

VERSION CHAIN ORDERING
17

A4 A3 A2 A1

A4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TIME-TRAVEL STORAGE
Main Table

value

A2 $222

pointer

B1 $10

Time-Travel Table

value

A1 $111

pointer

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TIME-TRAVEL STORAGE
Main Table

value

A2 $222

pointer

B1 $10

Time-Travel Table

value

A1 $111

pointer

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TIME-TRAVEL STORAGE

Overwrite master version in
the main table and update
pointers.

Main Table

value

A2 $222

pointer

B1 $10

Time-Travel Table

value

A1 $111

pointer

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TIME-TRAVEL STORAGE

Overwrite master version in
the main table and update
pointers.

Main Table

value

A2 $222

pointer

B1 $10

A3 $333

Time-Travel Table

value

A1 $111

pointer

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TIME-TRAVEL STORAGE

Overwrite master version in
the main table and update
pointers.

Main Table

value

A2 $222

pointer

B1 $10

A3 $333

Time-Travel Table

value

A1 $111

pointer

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TIME-TRAVEL STORAGE

Overwrite master version in
the main table and update
pointers.

Main Table

value

A2 $222

pointer

B1 $10

A3 $333

Time-Travel Table

value

A1 $111

pointer

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update pointers.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DELTA STORAGE
Main Table

value

A1 $111

pointer

B1 $10

Delta Storage Segment

On every update, copy only
the column values that were
modified to the delta storage
and overwrite the master
version.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DELTA STORAGE
Main Table

value

A1 $111

pointer

B1 $10

Delta Storage Segment

delta pointer

A1 (VALUE→$111) Ø

On every update, copy only
the column values that were
modified to the delta storage
and overwrite the master
version.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DELTA STORAGE
Main Table

value

A1 $111

pointer

B1 $10

Delta Storage Segment

delta pointer

A1 (VALUE→$111) ØA2 $222

On every update, copy only
the column values that were
modified to the delta storage
and overwrite the master
version.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DELTA STORAGE
Main Table

value

A1 $111

pointer

B1 $10

Delta Storage Segment

delta pointer

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222

On every update, copy only
the column values that were
modified to the delta storage
and overwrite the master
version.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DELTA STORAGE

Txns can recreate old
versions by applying the delta
in reverse order.

Main Table

value

A1 $111

pointer

B1 $10

Delta Storage Segment

delta pointer

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

On every update, copy only
the column values that were
modified to the delta storage
and overwrite the master
version.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical
versions from the database over time.
→ No active txn in the DBMS can “see” that version (SI).
→ The version was created by an aborted txn.

Two additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

GARBAGE COLLECTION

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does not

have to scan tuples to determine visibility.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

begin-ts end-ts

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

begin-ts end-ts

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

begin-ts end-ts

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

begin-ts end-ts

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

begin-ts end-ts

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

D
irty B

lock B
itM

ap

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

begin-ts end-ts

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

D
irty B

lock B
itM

ap

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:

Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:

Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:

Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:

Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:

Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Txn #1

TS=12

Txn #2

TS=25

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Cooperative Cleaning:

Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX

GET(A)

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

On commit/abort, the txn provides this information to
a centralized vacuum worker.

The DBMS periodically determines when all versions
created by a finished txn are no longer visible.

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION-LEVEL GC

Txn #1

UPDATE(A)
BEGIN TS=10

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION-LEVEL GC

Txn #1

UPDATE(A)
BEGIN TS=10

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

10

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION-LEVEL GC

Txn #1

UPDATE(A)
BEGIN TS=10

Old Versions

A2

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

10

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION-LEVEL GC

Txn #1

UPDATE(A)
BEGIN TS=10

Old Versions

A2

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

10

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION-LEVEL GC

UPDATE(B)

Txn #1

UPDATE(A)
BEGIN TS=10

Old Versions

A2

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

10

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION-LEVEL GC

UPDATE(B)

Txn #1

UPDATE(A)
BEGIN TS=10

Old Versions

A2

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

B7 10 ∞ -

10

10

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION-LEVEL GC

UPDATE(B)

Txn #1

UPDATE(A)
BEGIN TS=10

Old Versions

A2

B6

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

B7 10 ∞ -

10

10

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION-LEVEL GC

UPDATE(B)

Txn #1

UPDATE(A)
BEGIN TS=10

Old Versions

A2

B6

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

B7 10 ∞ -

10

10
COMMIT TS=15 10

10

10

10

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION-LEVEL GC

UPDATE(B)

Txn #1

UPDATE(A)
BEGIN TS=10

Vacuum

Old Versions

A2

B6

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

B7 10 ∞ -

10

10

TS<10

COMMIT TS=15 10

10

10

10

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INDEX MANAGEMENT

Primary key indexes point to version chain head.
→ How often the DBMS must update the pkey index depends on

whether the system creates new versions when a tuple is
updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is treated as
a DELETE followed by an INSERT.

Secondary indexes are more complicated…

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INDEX MANAGEMENT

Primary key indexes point to version chain head.
→ How often the DBMS must update the pkey index depends on

whether the system creates new versions when a tuple is
updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is treated as
a DELETE followed by an INSERT.

Secondary indexes are more complicated…

25

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://eng.uber.com/mysql-migration/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SECONDARY INDEXES

Approach #1: Logical Pointers
→ Use a fixed identifier per tuple that does not change.
→ Requires an extra indirection layer.
→ Primary Key vs. Tuple Id

Approach #2: Physical Pointers
→ Use the physical address to the version chain head.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INDEX POINTERS: APPEND-ONLY

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INDEX POINTERS: APPEND-ONLY

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1

GET(A)

Append-Only
Newest-to-Oldest

Record Id

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INDEX POINTERS: APPEND-ONLY

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

Record Id

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SECONDARY INDEX

SECONDARY INDEX

SECONDARY INDEX

INDEX POINTERS: APPEND-ONLY

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SECONDARY INDEX

SECONDARY INDEX

SECONDARY INDEX

INDEX POINTERS: APPEND-ONLY

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

INDEX POINTERS: APPEND-ONLY

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

Record Id

Primary
Key

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC INDEXES

MVCC DBMS indexes (usually) do not store version
information about tuples with their keys.
→ Exception: Index-organized tables (e.g., MySQL)

Every index must support duplicate keys from different
snapshots:
→ The same key may point to different logical tuples in different

snapshots.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DUPLICATE KEY PROBLEM

Index

A1

begin-ts end-ts

1 ∞
pointer

Ø

READ(A)

Txn #1
BEGIN TS=10

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DUPLICATE KEY PROBLEM

Index

Txn #2
BEGIN TS=20

A1

begin-ts end-ts

1 ∞
pointer

Ø

UPDATE(A)

A2 20 ∞ Ø

READ(A)

Txn #1
BEGIN TS=10

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DUPLICATE KEY PROBLEM

Index

DELETE(A)

Txn #2
BEGIN TS=20

A1

begin-ts end-ts

1 ∞
pointer

Ø

UPDATE(A)

A2 20 ∞ Ø

READ(A)

Txn #1
BEGIN TS=10

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DUPLICATE KEY PROBLEM

Index

DELETE(A)

Txn #2
BEGIN TS=20

A1

begin-ts end-ts

1 ∞
pointer

Ø

UPDATE(A)

A2 20 ∞ Ø

READ(A)

Txn #1
BEGIN TS=10

COMMIT TS=25

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DUPLICATE KEY PROBLEM

Index

DELETE(A)

Txn #2
BEGIN TS=20

A1

begin-ts end-ts

1 ∞
pointer

Ø

UPDATE(A)

A2 20 ∞ Ø

READ(A)

Txn #1
BEGIN TS=10

COMMIT TS=25

20 20

20

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DUPLICATE KEY PROBLEM

Index

DELETE(A)

Txn #2
BEGIN TS=20

INSERT(A)

Txn #3
BEGIN TS=30

A1

begin-ts end-ts

1 ∞
pointer

Ø

UPDATE(A)

A2 20 ∞ Ø

READ(A)

Txn #1
BEGIN TS=10

COMMIT TS=25

20 20

20

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DUPLICATE KEY PROBLEM

Index

DELETE(A)

Txn #2
BEGIN TS=20

INSERT(A)

Txn #3
BEGIN TS=30

A1

begin-ts end-ts

1 ∞
pointer

Ø

UPDATE(A)

A2 20 ∞ Ø

A3 30 ∞ Ø

READ(A)

Txn #1
BEGIN TS=10

COMMIT TS=25

20 20

20

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DUPLICATE KEY PROBLEM

Index

DELETE(A)

Txn #2
BEGIN TS=20

INSERT(A)

Txn #3
BEGIN TS=30

A1

begin-ts end-ts

1 ∞
pointer

Ø

UPDATE(A)

A2 20 ∞ Ø

A3 30 ∞ Ø

READ(A)

Txn #1
BEGIN TS=10

COMMIT TS=25

20 20

20

READ(A)

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC INDEXES

Each index’s underlying data structure must support the
storage of non-unique keys.

Use additional execution logic to perform conditional
inserts for pkey / unique indexes.
→ Atomically check whether the key exists and then insert.

Workers may get back multiple entries for a single
fetch. They then must follow the pointers to find the
proper physical version.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DELETES

The DBMS physically deletes a tuple from the database
only when all versions of a logically deleted tuple are
not visible.
→ If a tuple is deleted, then there cannot be a new version of that

tuple after the newest version.
→ No write-write conflicts / first-writer wins

We need a way to denote that tuple has been logically
delete at some point in time.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DELETES

Approach #1: Deleted Flag
→ Maintain a flag to indicate that the logical tuple has been

deleted after the newest physical version.
→ Can either be in tuple header or a separate column.

Approach #2: Tombstone Tuple
→ Create an empty physical version to indicate that a logical tuple

is deleted.
→ Use a separate pool for tombstone tuples with only a special bit

pattern in version chain pointer to reduce the storage overhead.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC IMPLEMENTATIONS
Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

MSSQL Hekaton MV-OCC Append-Only Cooperative Physical

SingleStore MV-OCC Delta Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

DuckDB MV-OCC Delta Txn-Level Logical

HyPer MV-OCC Delta Txn-level Logical

CockroachDB MV-2PL Delta (LSM) Compaction Logical

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

MVCC is the widely used scheme in DBMSs.
Even systems that do not support multi-statement txns
(e.g., NoSQL) use it.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

NEXT CLASS

Logging and recovery!

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Multi-Versioning
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS
	Slide 4: MULTI-VERSION CONCURRENCY CONTROL
	Slide 5: MVCC HISTORY
	Slide 6: MVCC: EXAMPLE #1
	Slide 7: MVCC: EXAMPLE #1
	Slide 8: MVCC: EXAMPLE #1
	Slide 9: MVCC: EXAMPLE #1
	Slide 10: MVCC: EXAMPLE #1
	Slide 11: MVCC: EXAMPLE #1
	Slide 12: MVCC: EXAMPLE #1
	Slide 13: MVCC: EXAMPLE #2
	Slide 14: MVCC: EXAMPLE #2
	Slide 15: MVCC: EXAMPLE #2
	Slide 16: MVCC: EXAMPLE #2
	Slide 17: MVCC: EXAMPLE #2
	Slide 18: MVCC: EXAMPLE #2
	Slide 19: MVCC: EXAMPLE #2
	Slide 20: MVCC: EXAMPLE #2
	Slide 21: MVCC: EXAMPLE #2
	Slide 22: SNAPSHOT ISOLATION (SI)
	Slide 23: WRITE SKEW ANOMALY
	Slide 24: WRITE SKEW ANOMALY
	Slide 25: WRITE SKEW ANOMALY
	Slide 26: MULTI-VERSION CONCURRENCY CONTROL
	Slide 27: MVCC DESIGN DECISIONS

	Concurrency Control
	Slide 28: CONCURRENCY CONTROL PROTOCOL
	Slide 29: MVCC WITH 2PL
	Slide 30: MVCC WITH 2PL
	Slide 31: MVCC WITH 2PL
	Slide 32: MVCC WITH 2PL
	Slide 33: MVCC WITH 2PL
	Slide 34: MVCC WITH 2PL
	Slide 35: MVCC WITH 2PL
	Slide 36: MVCC WITH 2PL

	Version Storage
	Slide 37: VERSION STORAGE
	Slide 38: VERSION STORAGE
	Slide 39: VERSION STORAGE
	Slide 40: APPEND-ONLY STORAGE
	Slide 41: APPEND-ONLY STORAGE
	Slide 42: APPEND-ONLY STORAGE
	Slide 43: VERSION CHAIN ORDERING
	Slide 44: VERSION CHAIN ORDERING
	Slide 45: VERSION CHAIN ORDERING
	Slide 46: VERSION CHAIN ORDERING
	Slide 47: VERSION CHAIN ORDERING
	Slide 48: VERSION CHAIN ORDERING
	Slide 49: TIME-TRAVEL STORAGE
	Slide 50: TIME-TRAVEL STORAGE
	Slide 51: TIME-TRAVEL STORAGE
	Slide 52: TIME-TRAVEL STORAGE
	Slide 53: TIME-TRAVEL STORAGE
	Slide 54: TIME-TRAVEL STORAGE
	Slide 55: DELTA STORAGE
	Slide 56: DELTA STORAGE
	Slide 57: DELTA STORAGE
	Slide 58: DELTA STORAGE
	Slide 59: DELTA STORAGE

	Garbage Collection
	Slide 60: GARBAGE COLLECTION
	Slide 61: GARBAGE COLLECTION
	Slide 62: TUPLE-LEVEL GC
	Slide 63: TUPLE-LEVEL GC
	Slide 64: TUPLE-LEVEL GC
	Slide 65: TUPLE-LEVEL GC
	Slide 66: TUPLE-LEVEL GC
	Slide 67: TUPLE-LEVEL GC
	Slide 68: TUPLE-LEVEL GC
	Slide 69: TUPLE-LEVEL GC
	Slide 70: TUPLE-LEVEL GC
	Slide 71: TUPLE-LEVEL GC
	Slide 72: TUPLE-LEVEL GC
	Slide 73: TUPLE-LEVEL GC
	Slide 74: TRANSACTION-LEVEL GC
	Slide 75: TRANSACTION-LEVEL GC
	Slide 76: TRANSACTION-LEVEL GC
	Slide 77: TRANSACTION-LEVEL GC
	Slide 78: TRANSACTION-LEVEL GC
	Slide 79: TRANSACTION-LEVEL GC
	Slide 80: TRANSACTION-LEVEL GC
	Slide 81: TRANSACTION-LEVEL GC
	Slide 82: TRANSACTION-LEVEL GC
	Slide 83: TRANSACTION-LEVEL GC

	Index Management
	Slide 84: INDEX MANAGEMENT
	Slide 85: INDEX MANAGEMENT
	Slide 86: SECONDARY INDEXES
	Slide 87: INDEX POINTERS: APPEND-ONLY
	Slide 88: INDEX POINTERS: APPEND-ONLY
	Slide 89: INDEX POINTERS: APPEND-ONLY
	Slide 90: INDEX POINTERS: APPEND-ONLY
	Slide 91: INDEX POINTERS: APPEND-ONLY
	Slide 92: INDEX POINTERS: APPEND-ONLY
	Slide 93: MVCC INDEXES
	Slide 94: MVCC DUPLICATE KEY PROBLEM
	Slide 95: MVCC DUPLICATE KEY PROBLEM
	Slide 96: MVCC DUPLICATE KEY PROBLEM
	Slide 97: MVCC DUPLICATE KEY PROBLEM
	Slide 98: MVCC DUPLICATE KEY PROBLEM
	Slide 99: MVCC DUPLICATE KEY PROBLEM
	Slide 100: MVCC DUPLICATE KEY PROBLEM
	Slide 101: MVCC DUPLICATE KEY PROBLEM
	Slide 102: MVCC INDEXES

	MVCC Deletes / Duplicate Key Problem
	Slide 103: MVCC DELETES
	Slide 104: MVCC DELETES

	Conclusion
	Slide 105: MVCC IMPLEMENTATIONS
	Slide 106: CONCLUSION
	Slide 107: NEXT CLASS

