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ADMINISTRIVIA

Project #3 is due Sunday Nov 16th @ 11:59pm
→ Recitation Video + Slides (see @235)
→ Saturday Office Hours Nov 5th @ 3:00-5:00pm (GHC 5207)

Homework #5 is due Sunday Nov 23rd @ 11:59pm

Project #4 is due Sunday Dec 7th @ 11:59pm
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LAST CLASS

Optimistic Concurrency Control (OCC) uses 
timestamps, assigned during the validation phase, to 
ensure serializability instead of locks.
→ Txns first write changes into private workspaces and then 

attempt to install them into the database upon commit.

Phantom Reads occur when a txns re-reads a range of 
data and finds new rows or missing rows.
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MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions of a 
single logical object in the database:
→ When a txn writes to an object, the DBMS creates a new 

version of that object. 
→ When a txn reads an object, it reads the newest version that 

existed when the txn started.
→ Use timestamps to determine visibility.
→ Multi-versioning without garbage collection allows the DBMS 

to support time-travel queries.

Writers do not block readers.
Readers do not block writers.
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MVCC HISTORY

dissertation

Jim Starkey

Oracle Rdb

InterBase Firebird

Protocol was first proposed in 1978 MIT PhD 
dissertation.

First implementations was Rdb/VMS and InterBase at 
DEC in early 1980s. 
→ Both were by Jim Starkey, co-founder of NuoDB.
→ DEC Rdb/VMS is now “Oracle Rdb”.
→ InterBase was open-sourced as Firebird.
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Schedule
T1 T2

T
IM

E
begin-ts end-ts value

A0 0 - 123

MVCC: EXAMPLE #1

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

DatabaseVersion Number
Illustrative Only
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SNAPSHOT ISOLATION (SI)

When a txn starts, it sees a consistent snapshot of the 
database that existed when that the txn started.
→ No torn writes from active txns.
→ If two txns update the same object, then last writer wins.

SI is susceptible to the Write Skew Anomaly.
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WRITE SKEW ANOMALY

Txn #1
Change all white 
marbles to black.

Txn #2
Change all black 
marbles to white.
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MULTI-VERSION CONCURRENCY CONTROL

MVCC is more than just a concurrency control 
protocol. It completely affects how the DBMS manages 
transactions and the database.
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MVCC DESIGN DECISIONS

Concurrency Control Protocol

Version Storage

Garbage Collection

Index Management

Deletes
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CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
→ Assign txns timestamps that determine serial order.

Approach #2: Optimistic Concurrency Control
→ Three-phase protocol from last class.
→ Use private workspace for new versions.

Approach #3: Two-Phase Locking
→ Txns acquire appropriate lock on physical version before they 

can read/write a logical tuple.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
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VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a 
version chain per logical tuple.
→ This allows the DBMS to find the version that is visible to a 

particular txn at runtime.
→ Indexes always point to the “head” of the chain.

Different storage schemes determine where/what to 
store for each version.
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VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied into a 

separate delta record space.
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VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied into a 

separate delta record space.

15

Don't
Do This!

Common

Rare

Less Common
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APPEND-ONLY STORAGE

All the physical versions of a logical 
tuple are stored in the same table 
space. The versions are inter-mixed.

On every update, append a new 
version of the tuple into an empty 
space in the table.

Main Table

value

A0 $111

pointer

A1 $222 Ø

B1 $10 Ø
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Approach #1: Oldest-to-Newest (O2N)
→ Append new version to end of the chain.
→ Must traverse chain on look-ups. 

                                    
                                                  
                                            
                                                           

A1 A2 A3
RecordId

VERSION CHAIN ORDERING
17
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Approach #1: Oldest-to-Newest (O2N)
→ Append new version to end of the chain.
→ Must traverse chain on look-ups. 

Approach #2: Newest-to-Oldest (N2O)
→ Must update index pointers for every new version.
→ Do not have to traverse chain on look-ups. 
→ Better approach if most txns only want the newest version.

RecordId

A1 A2 A3
RecordId

VERSION CHAIN ORDERING
17

A3 A2 A1

A4
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→ Must update index pointers for every new version.
→ Do not have to traverse chain on look-ups. 
→ Better approach if most txns only want the newest version.

RecordId

A1 A2 A3
RecordId

VERSION CHAIN ORDERING
17
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TIME-TRAVEL STORAGE
Main Table

value

A2 $222

pointer

B1 $10

Time-Travel Table

value

A1 $111

pointer

Ø

On every update, copy the 
current version to the time-
travel table. Update pointers.

18
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TIME-TRAVEL STORAGE

Overwrite master version in 
the main table and update 
pointers.
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TIME-TRAVEL STORAGE

Overwrite master version in 
the main table and update 
pointers.

Main Table

value

A2 $222

pointer

B1 $10

A3 $333

Time-Travel Table

value

A1 $111

pointer

A2 $222

Ø

On every update, copy the 
current version to the time-
travel table. Update pointers.
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TIME-TRAVEL STORAGE

Overwrite master version in 
the main table and update 
pointers.
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value
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B1 $10
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value
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Ø

On every update, copy the 
current version to the time-
travel table. Update pointers.
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travel table. Update pointers.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DELTA STORAGE
Main Table

value

A1 $111

pointer

B1 $10

Delta Storage Segment

On every update, copy only 
the column values that were 
modified to the delta storage 
and overwrite the master 
version.
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and overwrite the master 
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DELTA STORAGE

Txns can recreate old 
versions by applying the delta 
in reverse order.

Main Table

value

A1 $111

pointer

B1 $10

Delta Storage Segment

delta pointer

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

On every update, copy only 
the column values that were 
modified to the delta storage 
and overwrite the master 
version.

19
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GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical 
versions from the database over time.
→ No active txn in the DBMS can “see” that version (SI).
→ The version was created by an aborted txn.

Two additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?

20
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GARBAGE COLLECTION

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does not 

have to scan tuples to determine visibility.

21
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Txn #1

TS=12

Txn #2

TS=25

begin-ts end-ts

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Vacuum

22
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TUPLE-LEVEL GC
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Txn #1

TS=12

Txn #2

TS=25

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Cooperative Cleaning:

Worker threads identify 
reclaimable versions as they 
traverse version chain. Only 
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX
A0 A1
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TS=25

TUPLE-LEVEL GC

Background Vacuuming:
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scan the table and look for 
reclaimable versions. Works 
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Txn #1

TS=12

Txn #2

TS=25

TUPLE-LEVEL GC

Background Vacuuming:

Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Cooperative Cleaning:

Worker threads identify 
reclaimable versions as they 
traverse version chain. Only 
works with O2N.

A2 A3

B0 B1 B2 B3

INDEX

GET(A)
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TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

On commit/abort, the txn provides this information to 
a centralized vacuum worker. 

The DBMS periodically determines when all versions 
created by a finished txn are no longer visible.

23
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TRANSACTION-LEVEL GC

Txn #1

UPDATE(A)
BEGIN TS=10

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

24
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TRANSACTION-LEVEL GC

Txn #1

UPDATE(A)
BEGIN TS=10

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

10

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION-LEVEL GC

Txn #1

UPDATE(A)
BEGIN TS=10

Old Versions

A2

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

10
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TRANSACTION-LEVEL GC

UPDATE(B)

Txn #1

UPDATE(A)
BEGIN TS=10

Old Versions

A2

A2

B6

begin-ts end-ts
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-
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TRANSACTION-LEVEL GC

UPDATE(B)

Txn #1

UPDATE(A)
BEGIN TS=10

Old Versions

A2

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-
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B7 10 ∞ -
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10
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TRANSACTION-LEVEL GC

UPDATE(B)

Txn #1

UPDATE(A)
BEGIN TS=10

Old Versions
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TRANSACTION-LEVEL GC

UPDATE(B)

Txn #1

UPDATE(A)
BEGIN TS=10

Old Versions

A2

B6

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

B7 10 ∞ -

10

10
COMMIT TS=15 10

10

10

10
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TRANSACTION-LEVEL GC

UPDATE(B)

Txn #1

UPDATE(A)
BEGIN TS=10

Vacuum

Old Versions

A2

B6

A2

B6

begin-ts end-ts

1 ∞
8 ∞

value

-

-

A3 10 ∞ -

B7 10 ∞ -

10

10

TS<10

COMMIT TS=15 10

10

10

10
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INDEX MANAGEMENT

Primary key indexes point to version chain head.
→ How often the DBMS must update the pkey index depends on 

whether the system creates new versions when a tuple is 
updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is treated as 
a DELETE followed by an INSERT.

Secondary indexes are more complicated…

25
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→ How often the DBMS must update the pkey index depends on 

whether the system creates new versions when a tuple is 
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a DELETE followed by an INSERT.

Secondary indexes are more complicated…
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SECONDARY INDEXES

Approach #1: Logical Pointers
→ Use a fixed identifier per tuple that does not change.
→ Requires an extra indirection layer.
→ Primary Key vs. Tuple Id

Approach #2: Physical Pointers
→ Use the physical address to the version chain head.

26
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INDEX POINTERS: APPEND-ONLY

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

27
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INDEX POINTERS: APPEND-ONLY

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1

GET(A)

Append-Only
Newest-to-Oldest

Record Id
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INDEX POINTERS: APPEND-ONLY
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MVCC INDEXES

MVCC DBMS indexes (usually) do not store version 
information about tuples with their keys.
→ Exception: Index-organized tables (e.g., MySQL)

Every index must support duplicate keys from different 
snapshots:
→ The same key may point to different logical tuples in different 

snapshots.

28
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MVCC DUPLICATE KEY PROBLEM

Index

A1

begin-ts end-ts

1 ∞
pointer

Ø

READ(A)

Txn #1
BEGIN TS=10
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MVCC DUPLICATE KEY PROBLEM

Index

Txn #2
BEGIN TS=20

A1

begin-ts end-ts

1 ∞
pointer

Ø

UPDATE(A)

A2 20 ∞ Ø

READ(A)

Txn #1
BEGIN TS=10
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MVCC DUPLICATE KEY PROBLEM

Index

DELETE(A)

Txn #2
BEGIN TS=20

INSERT(A)

Txn #3
BEGIN TS=30

A1

begin-ts end-ts

1 ∞
pointer

Ø

UPDATE(A)

A2 20 ∞ Ø

A3 30 ∞ Ø
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MVCC INDEXES

Each index’s underlying data structure must support the 
storage of non-unique keys. 

Use additional execution logic to perform conditional 
inserts for pkey / unique indexes.
→ Atomically check whether the key exists and then insert.

Workers may get back multiple entries for a single 
fetch. They then must follow the pointers to find the 
proper physical version.
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MVCC DELETES

The DBMS physically deletes a tuple from the database 
only when all versions of a logically deleted tuple are 
not visible.
→ If a tuple is deleted, then there cannot be a new version of that 

tuple after the newest version.
→ No write-write conflicts / first-writer wins

We need a way to denote that tuple has been logically 
delete at some point in time.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

MVCC DELETES

Approach #1: Deleted Flag
→ Maintain a flag to indicate that the logical tuple has been 

deleted after the newest physical version.
→ Can either be in tuple header or a separate column.

Approach #2: Tombstone Tuple
→ Create an empty physical version to indicate that a logical tuple 

is deleted.
→ Use a separate pool for tombstone tuples with only a special bit 

pattern in version chain pointer to reduce the storage overhead.
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MVCC IMPLEMENTATIONS
Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

MSSQL Hekaton MV-OCC Append-Only Cooperative Physical

SingleStore MV-OCC Delta Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

DuckDB MV-OCC Delta Txn-Level Logical

HyPer MV-OCC Delta Txn-level Logical

CockroachDB MV-2PL Delta (LSM) Compaction Logical
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CONCLUSION

MVCC is the widely used scheme in DBMSs.
Even systems that do not support multi-statement txns 
(e.g., NoSQL) use it.
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NEXT CLASS

Logging and recovery!
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