
DatabaseSystems

15-445/645 FALL 2025

15- 445/645 FALL 2025
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Database Logging
LECTURE #21

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ADMINISTRIVIA

Homework #5 is due Sunday Nov 23rd @ 11:59pm

Project #4 is due Sunday Dec 7th @ 11:59pm
→ Recitation on Tuesday Nov 18th @ 8:00pm (@280)

Final Exam is on Thursday Dec 11th @ 1:00pm
→ Do not make travel plans before this date!

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/280

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

UPCOMING DATABASE TALKS

Firebolt (DB Seminar)
→ Monday Nov 17th @ 4:30pm
→ Zoom

Snowflake (DB Group)
→ Tuesday Nov 18th @ 12:00pm
→ GHC 8115

XTDB (DB Seminar)
→ Monday Nov 24th @ 12:00pm
→ Zoom

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/future-data-firebolt/
https://db.cs.cmu.edu/events/fall-2025-optimizing-the-table-scan-operator-i-o-minimization-and-runtime-adaptivity/
https://db.cs.cmu.edu/events/futuredata-reconstructing-history-with-xtdb/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LAST CLASS

We discussed multi-version concurrency control
(MVCC) and how it effects the design of the entire
DBMS architecture.

A DBMS's concurrency control protocol gives it
Atomicity + Consistency + Isolation.

We now need ensure Atomicity + Durability…

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E
MOTIVATION

BEGIN
R(A)
W(A)
 ⋮
COMMIT

Buffer Pool

A=1

P
age

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E
MOTIVATION

BEGIN
R(A)
W(A)
 ⋮
COMMIT

Buffer Pool

A=1

P
age

A=1

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E
MOTIVATION

BEGIN
R(A)
W(A)
 ⋮
COMMIT

Buffer Pool

A=1

P
age

A=1A=2

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E
MOTIVATION

BEGIN
R(A)
W(A)
 ⋮
COMMIT

Buffer Pool

A=1

P
age

A=1A=2

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E
MOTIVATION

BEGIN
R(A)
W(A)
 ⋮
COMMIT

Buffer Pool

A=1

P
age

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CRASH RECOVERY

Recovery algorithms are techniques to ensure database
consistency, transaction atomicity, and durability
despite failures.

Recovery algorithms have two parts:
→ Actions during normal txn processing to ensure that the

DBMS can recover from a failure.
→ Actions after a failure to recover the database to a state

that ensures atomicity, consistency, and durability.

Today

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TODAY’S AGENDA

Buffer Pool Policies

Shadow Paging

Write-Ahead Log

Logging Schemes

Checkpoints

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

The database’s primary storage location is on non-
volatile storage, but this is slower than volatile storage.
Use volatile memory for faster access:
→ First copy target record into memory.
→ Perform the writes in memory.
→ Write dirty records back to disk.

The DBMS needs to ensure the following:
→ The changes for any txn are durable once the DBMS has told

somebody that it committed.
→ No partial changes are durable if the txn aborted.

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

UNDO VS. REDO

Undo: The process of removing the effects of an
incomplete or aborted txn.

Redo: The process of re-applying the effects of a
committed txn for durability.

How the DBMS supports this functionality depends on
how it manages the buffer pool …

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=1 B=9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=1 B=9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=1 B=9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

Do we force T2’s changes
to be written to disk?

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

Do we force T2’s changes
to be written to disk?Is T1 allowed to overwrite A even

though it has not committed?

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

B=8A=3

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

B=8A=3

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

What happens when we
need to rollback T1?

B=8A=3

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

STEAL POLICY

Whether the DBMS can evict a dirty object in the
buffer pool modified by an uncommitted txn and
overwrite the most recent committed version of that
object in non-volatile storage.

STEAL: Eviction + overwriting is allowed.

NO-STEAL: Eviction + overwriting is not allowed.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

FORCE POLICY

Whether the DBMS requires that all updates made by a
txn are written back to non-volatile storage before the
txn can commit.

FORCE: Write-back is required.

NO-FORCE: Write-back is not required.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

NO-STEAL + FORCE

A=1 B=9 C=7

A=1 B=9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

NO-STEAL + FORCE

A=1 B=9 C=7

A=1 B=9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

NO-STEAL + FORCE

A=1 B=9 C=7

A=1 B=9 C=7

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

NO-STEAL + FORCE

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

NO-STEAL + FORCE

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

NO-STEAL means that T1 changes
cannot be written to disk yet.

FORCE means that T2
changes must be written

to disk at this point.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

NO-STEAL + FORCE

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

NO-STEAL means that T1 changes
cannot be written to disk yet.

B=8

A=1 B=8 C=7

Copy

FORCE means that T2
changes must be written

to disk at this point.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

NO-STEAL + FORCE

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

A=3

Now it’s trivial to
rollback T1

B=8

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

Buffer Pool

NO-STEAL + FORCE

A=1 B=9 C=7

A=1 B=9 C=7B=8

BEGIN
R(A)
W(A)

 ⋮
ROLLBACK

BEGIN
R(B)
W(B)
COMMIT

Now it’s trivial to
rollback T1

B=8

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

NO-STEAL + FORCE

This approach is the easiest to implement:
→ Never have to undo changes of an aborted txn because the

changes were not written to disk.
→ Never have to redo changes of a committed txn because all the

changes are guaranteed to be written to disk at commit time
(assuming atomic hardware writes).

Previous example cannot support write sets that
exceed the amount of physical memory available.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SHADOW PAGING

The system maintains two versions of the database:
→ Master: Contains only changes from committed txns.
→ Shadow: Temporary database with changes made from

uncommitted txns.

DBMS makes a copy of page before a txn modifies it.

To install updates when a txn commits, overwrite the
root so it points to the shadow, thereby swapping the
master and shadow.

Buffer Pool Policy: NO-STEAL + FORCE

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DiskMemory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer

Txn T1

Master Pointer

Txn T2

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DiskMemory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer 1

2
3
4

Txn T1

Master Pointer

Shadow
Page Table

Active modifying txn
updates shadow pages.

Txn T2

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DiskMemory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer 1

2
3
4

Txn T1
Update

Master Pointer

Shadow
Page Table

Txn T2

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DiskMemory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer 1

2
3
4

Txn T1
Update

Master Pointer

Shadow
Page Table

Txn T2

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DiskMemory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer 1

2
3
4

Txn T1

Master Pointer

Shadow
Page Table

Txn T2

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DiskMemory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer 1

2
3
4

Txn T1

Master Pointer

Shadow
Page Table

Txn T2

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DiskMemory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer 1

2
3
4

Txn T1

Master Pointer

Shadow
Page Table

Txn T2

Read-only txns access
the current master.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DiskMemory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer 1

2
3
4

Txn T1

Master Pointer

Shadow
Page Table

Txn T2

Read-only txns access
the current master.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Disk

COMMIT

Memory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer 1

2
3
4

Txn T1

Master Pointer

Shadow
Page Table

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Disk

COMMIT

Memory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer 1

2
3
4

Txn T1

Master Pointer
Update

Shadow
Page Table

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Disk

COMMIT

Memory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer 1

2
3
4

Txn T1

Master Pointer
Update

Master
Page Table

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Disk

COMMIT

Memory

SHADOW PAGING: EXAMPLE

Master
Page Table

1
2
3
4

Master
Pointer 1

2
3
4

Txn T1

Master Pointer
Update

Master
Page Table

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Disk

COMMIT

Memory

SHADOW PAGING: EXAMPLE

Master
Pointer 1

2
3
4

Txn T1

Master Pointer

Master
Page Table

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SHADOW PAGING: UNDO/REDO

Supporting rollbacks and recovery is easy with shadow
paging.

Undo: Remove the shadow pages. Leave the master and
the DB root pointer alone.

Redo: Not needed at all.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SHADOW PAGING: DISADVANTAGES

Copying the entire page table is expensive:
→ Use a page table structured like a B+tree (LMDB).
→ No need to copy entire tree, only need to copy paths in the tree

that lead to updated leaf nodes.

Commit overhead is high:
→ Flush every updated page, page table, and root.
→ Data gets fragmented (bad for sequential scans).
→ Need garbage collection.
→ Only supports one writer txn at a time or txns in a batch.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 1 Page 2 Page 3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 1 Page 2 Page 3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 1 Page 2 Page 3Page 2

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 1 Page 2 Page 3Page 2

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 1 Page 2 Page 3Page 2

Page 3

Page 3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 1 Page 2 Page 3Page 2

Page 3

Page 3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 1 Page 2 Page 3Page 2

Page 3

Page 3

Page 2

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 1 Page 2

Page 3

Page 3

Page 2

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 3

Page 2

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 2 Page 3

Page 3

Page 2

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 2 Page 3

Page 3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SQLITE (PRE-2010)

rollback mode

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.
→ Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Disk

Page 2Page 2

Page 1

Page 3

Page 5

Page 4

Page 6

Journal File

Page 2 Page 3

Page 3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

Shadowing page requires the DBMS to perform writes
to random non-contiguous pages on disk.

We need a way for the DBMS convert random writes
into sequential writes. It would also be nice to not have
to write entire pages each time they are modified.
→ CouchDB appends shadow pages to end of the database file, but

it writes out the entire page.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WRITE-AHEAD LOG (WAL)

Maintain a log file separate from data files that contains
the changes that txns make to database.
→ Assume that the log is on stable storage.
→ Log contains enough information to perform the necessary

undo and redo actions to restore the database.

DBMS must write to disk the log file records that
correspond to changes made to a database object before
it can flush that object to disk.

Buffer Pool Policy: STEAL + NO-FORCE

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BUFFER POOL + WAL

Desired

Trivial

YesNo
Steal

N
o

Y
esF

o
rc

e

No-Steal:
Low throughput

but works for
aborted txns.

Steal:
Flush unpinned dirty page even if updating txn is active.
To ensure atomicity if a flushed page is modified by an
uncommitted txn, record old value in log for UNDO.

Force:
On every update, flush the updated page to disk.
Poor response time but enforces durability of committed txns.

No-Force:
To recover after a crash before a page is flushed to disk, flush
summary/log @ commit for REDO.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL PROTOCOL

The DBMS stages all a txn’s log records in volatile
storage (usually backed by buffer pool).

All log records pertaining to an updated page are
written to non-volatile storage before the page itself is
over-written in non-volatile storage.

A txn is not considered committed until all its log
records have been written to stable storage.

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL PROTOCOL

Write a <BEGIN> record to the log for each txn to mark
its starting point.

Append a record every time a txn changes an object:
→ Transaction Id
→ Object Id
→ Before Value (UNDO)
→ After Value (REDO)

When a txn finishes, the DBMS appends a <COMMIT>
record to the log.
→ Make sure that all log records are flushed before it returns an

acknowledgement to application.

Not necessary if using
append-only MVCC

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E

Buffer Pool

A=1 B=5 C=7

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer

WAL EXAMPLE

<T1 BEGIN>

A=1 B=5 C=7

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E

Buffer Pool

A=1 B=5 C=7

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer

WAL EXAMPLE

<T1 BEGIN>
<T1, A, 1, 8>

A=1 B=5 C=7

1
Before After

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E

Buffer Pool

A=1 B=5 C=7A=8

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer

WAL EXAMPLE

<T1 BEGIN>
<T1, A, 1, 8>

A=1 B=5 C=7

1

2

Before After

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E

Buffer Pool

A=1 B=5 C=7A=8

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer

WAL EXAMPLE

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>

B=9

A=1 B=5 C=7

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E

Buffer Pool

A=1 B=5 C=7A=8

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer

WAL EXAMPLE

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

Txn result is now safe to
return to application.

B=9

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E

Buffer Pool

A=1 B=5 C=7A=8

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer

WAL EXAMPLE

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>
 ⋮

B=9

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1

T
IM

E

Buffer Pool

BEGIN
W(A)
W(B)
 ⋮

COMMIT

WAL Buffer

WAL EXAMPLE

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

Everything we need to
restore T1 is in the log!

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL IMPLEMENTATION

Flushing the log buffer to disk every time a txn commits
will become a bottleneck.

The DBMS can use the group commit optimization to
batch multiple log flushes together to amortize
overhead.
→ When the buffer is full, flush it to disk.
→ Or if there is a timeout (e.g., 5 ms).

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

WAL Buffers

WAL GROUP COMMIT

<T1 BEGIN>

BEGIN
W(A)
W(B)

 ⋮

COMMIT

BEGIN
W(C)
W(D)
 ⋮

COMMIT

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

WAL Buffers

WAL GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>

BEGIN
W(A)
W(B)

 ⋮

COMMIT

BEGIN
W(C)
W(D)
 ⋮

COMMIT

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

WAL Buffers

WAL GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>

BEGIN
W(A)
W(B)

 ⋮

COMMIT

BEGIN
W(C)
W(D)
 ⋮

COMMIT

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

WAL Buffers

WAL GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>

BEGIN
W(A)
W(B)

 ⋮

COMMIT

BEGIN
W(C)
W(D)
 ⋮

COMMIT

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

WAL Buffers

WAL GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

BEGIN
W(A)
W(B)

 ⋮

COMMIT

BEGIN
W(C)
W(D)
 ⋮

COMMIT

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

WAL Buffers

WAL GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

BEGIN
W(A)
W(B)

 ⋮

COMMIT

BEGIN
W(C)
W(D)
 ⋮

COMMIT

Flush the buffer
when it is full.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

WAL Buffers

WAL GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

BEGIN
W(A)
W(B)

 ⋮

COMMIT

BEGIN
W(C)
W(D)
 ⋮

COMMIT

<T2, D, 3, 4>

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

WAL Buffers

WAL GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

BEGIN
W(A)
W(B)

 ⋮

COMMIT

BEGIN
W(C)
W(D)
 ⋮

COMMIT

<T2, D, 3, 4>

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

WAL Buffers

WAL GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

BEGIN
W(A)
W(B)

 ⋮

COMMIT

BEGIN
W(C)
W(D)
 ⋮

COMMIT

<T2, D, 3, 4>

<T1 COMMIT>
<T2 COMMIT>

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

WAL Buffers

WAL GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

BEGIN
W(A)
W(B)

 ⋮

COMMIT

BEGIN
W(C)
W(D)
 ⋮

COMMIT

<T2, D, 3, 4>

<T1 COMMIT>
<T2 COMMIT>

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Schedule
T1 T2

T
IM

E

WAL Buffers

WAL GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

BEGIN
W(A)
W(B)

 ⋮

COMMIT

BEGIN
W(C)
W(D)
 ⋮

COMMIT

<T2, D, 3, 4>

<T2, D, 3, 4>
<T1 COMMIT>
<T2 COMMIT>

<T1 COMMIT>
<T2 COMMIT>

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LOG-STRUCTURED SYSTEMS

Log-structured DBMSs do not have dirty pages.
→ Any page retrieved from disk is immutable.

The DBMS buffers log records in in-memory pages
(MemTable). If this buffer is full, it must be flushed to
disk. But it may contain changes uncommitted txns.

These DBMSs still maintain a separate WAL to recreate
the MemTable on crash.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BUFFER POOL POLICIES

Almost every DBMS uses NO-FORCE + STEAL

Runtime Performance Recovery Performance

29

–

–

Fastest

Slowest

YesNo
Steal

N
o

Y
esF

o
rc

e –

–

Slowest

Fastest

YesNo
Steal

N
o

Y
esF

o
rc

e

Undo + Redo

No Undo + No Redo

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LOGGING SCHEMES

Physical Logging
→ Record the byte-level changes made to a specific page.
→ Example: git diff

Logical Logging
→ Record the high-level operations executed by txns.
→ Example: UPDATE, DELETE, and INSERT queries.

Physiological Logging
→ Physical-to-a-page, logical-within-a-page.
→ Hybrid approach with byte-level changes for a single tuple

identified by page id + slot number.
→ Does not specify organization of the page.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LOGGING SCHEMES
UPDATE foo SET val = XYZ WHERE id = 1;

Physical

<T1,
 Table=X,
 Page=99,
 Offset=1024,
 Before=ABC,
 After=XYZ>
<T1,
 Index=X_PKEY,
 Page=45,
 Offset=9,
 Key=(1,Record1)>

Logical

<T1,
 Query="UPDATE foo
 SET val=XYZ
 WHERE id=1">

Physiological

<T1,
 Table=X,
 Page=99,
 Slot=1,
 Before=ABC,
 After=XYZ>
<T1,
 Index=X_PKEY,
 IndexPage=45,
 Key=(1,Record1)>

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PHYSICAL VS. LOGICAL LOGGING

Logical logging requires less data written in each log
record than physical logging.

Difficult to implement recovery with logical logging if
the DBMS executes concurrent txns running at lower
isolation levels.
→ Hard to determine which parts of the database may have been

modified by a query before crash.
→ Recovery takes longer because DBMS re-executes every query

in the log again.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CHANGE DATA CAPTURE (CDC)

Extract Transform Load

Automatically propagate changes to
external sources to replicate and
synchronize database contents.
→ Extract Transform Load (ETL)
→ Some systems can do this automatically.

Others require third-party tools.

Approach #1: WAL

Approach #2: Triggers

Approach #3: Timestamps

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Extract,_transform,_load

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CHANGE DATA CAPTURE (CDC)

Extract Transform Load

Automatically propagate changes to
external sources to replicate and
synchronize database contents.
→ Extract Transform Load (ETL)
→ Some systems can do this automatically.

Others require third-party tools.

Approach #1: WAL

Approach #2: Triggers

Approach #3: Timestamps

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Extract,_transform,_load

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OBSERVATION

The DBMS's WAL will grow forever.

After a crash, the DBMS must replay the entire log,
which will take a long time.

The DBMS periodically takes a checkpoint where it
flushes all buffers out to disk.
→ This provides a hint on how far back it needs to replay the

WAL after a crash.
→ Truncate the WAL up to a certain safe point in time.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CHECKPOINTS

Blocking / Consistent Checkpoint Protocol:
→ Pause all queries.
→ Flush all WAL records in memory to disk.
→ Flush all modified pages in the buffer pool to disk.
→ Write a <CHECKPOINT> entry to WAL and flush to disk.
→ Resume queries.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL
<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2, B, 4, 5>
<T2 COMMIT>
<T3, A, 3, 4>

⋮

CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.

Any txn that committed before the
checkpoint is ignored (T1).

T2 + T3 did not commit before the last
checkpoint.
→ Need to redo T2 because it committed

after checkpoint.
→ Need to undo T3 because it did not

commit before the crash.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CHECKPOINTS: CHALLENGES

In this example, the DBMS must stall txns when it takes
a checkpoint to ensure a consistent snapshot.
→ We will see how to get around this problem next class.

Scanning the log to find uncommitted txns can take a
long time.
→ Unavoidable but we will add hints to the <CHECKPOINT> record

to speed things up next class.

How often the DBMS should take checkpoints depends
on many different factors…

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CHECKPOINTS: FREQUENCY

Checkpointing too often causes the runtime
performance to degrade.
→ System spends too much time flushing buffers.

But waiting a long time is just as bad:
→ The checkpoint will be large and slow.
→ Makes recovery time much longer.

Tunable option that depends on application recovery
time requirements.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

Write-Ahead Logging is (almost) always the best
approach to handle loss of volatile storage.

Use incremental updates (STEAL + NO-FORCE) with
checkpoints.

On Recovery: undo uncommitted txns + redo
committed txns.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

NEXT CLASS

Better Checkpoint Protocols.

Recovery with ARIES.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics

	Introduction
	Slide 1: Database Logging
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: MOTIVATION
	Slide 6: MOTIVATION
	Slide 7: MOTIVATION
	Slide 8: MOTIVATION
	Slide 9: MOTIVATION
	Slide 10: CRASH RECOVERY
	Slide 11: TODAY’S AGENDA
	Slide 12: OBSERVATION

	Buffer Pool Policies
	Slide 13: UNDO VS. REDO
	Slide 14: BUFFER POOL
	Slide 15: BUFFER POOL
	Slide 16: BUFFER POOL
	Slide 17: BUFFER POOL
	Slide 18: BUFFER POOL
	Slide 19: BUFFER POOL
	Slide 20: BUFFER POOL
	Slide 21: BUFFER POOL
	Slide 22: BUFFER POOL
	Slide 23: STEAL POLICY
	Slide 24: FORCE POLICY
	Slide 25: NO-STEAL + FORCE
	Slide 26: NO-STEAL + FORCE
	Slide 27: NO-STEAL + FORCE
	Slide 28: NO-STEAL + FORCE
	Slide 29: NO-STEAL + FORCE
	Slide 30: NO-STEAL + FORCE
	Slide 31: NO-STEAL + FORCE
	Slide 32: NO-STEAL + FORCE
	Slide 33: NO-STEAL + FORCE

	Shadow Paging
	Slide 34: SHADOW PAGING
	Slide 35: SHADOW PAGING: EXAMPLE
	Slide 36: SHADOW PAGING: EXAMPLE
	Slide 37: SHADOW PAGING: EXAMPLE
	Slide 38: SHADOW PAGING: EXAMPLE
	Slide 39: SHADOW PAGING: EXAMPLE
	Slide 40: SHADOW PAGING: EXAMPLE
	Slide 41: SHADOW PAGING: EXAMPLE
	Slide 42: SHADOW PAGING: EXAMPLE
	Slide 43: SHADOW PAGING: EXAMPLE
	Slide 44: SHADOW PAGING: EXAMPLE
	Slide 45: SHADOW PAGING: EXAMPLE
	Slide 46: SHADOW PAGING: EXAMPLE
	Slide 47: SHADOW PAGING: EXAMPLE
	Slide 48: SHADOW PAGING: UNDO/REDO
	Slide 49: SHADOW PAGING: DISADVANTAGES
	Slide 50: SQLITE (PRE-2010)
	Slide 51: SQLITE (PRE-2010)
	Slide 52: SQLITE (PRE-2010)
	Slide 53: SQLITE (PRE-2010)
	Slide 54: SQLITE (PRE-2010)
	Slide 55: SQLITE (PRE-2010)
	Slide 56: SQLITE (PRE-2010)
	Slide 57: SQLITE (PRE-2010)
	Slide 58: SQLITE (PRE-2010)
	Slide 59: SQLITE (PRE-2010)
	Slide 60: SQLITE (PRE-2010)
	Slide 61: SQLITE (PRE-2010)
	Slide 62: OBSERVATION

	Write-Ahead Logging
	Slide 63: WRITE-AHEAD LOG (WAL)
	Slide 64: BUFFER POOL + WAL
	Slide 65: WAL PROTOCOL
	Slide 66: WAL PROTOCOL
	Slide 67: WAL EXAMPLE
	Slide 68: WAL EXAMPLE
	Slide 69: WAL EXAMPLE
	Slide 70: WAL EXAMPLE
	Slide 71: WAL EXAMPLE
	Slide 72: WAL EXAMPLE
	Slide 73: WAL EXAMPLE
	Slide 74: WAL IMPLEMENTATION
	Slide 75: WAL GROUP COMMIT
	Slide 76: WAL GROUP COMMIT
	Slide 77: WAL GROUP COMMIT
	Slide 78: WAL GROUP COMMIT
	Slide 79: WAL GROUP COMMIT
	Slide 80: WAL GROUP COMMIT
	Slide 81: WAL GROUP COMMIT
	Slide 82: WAL GROUP COMMIT
	Slide 83: WAL GROUP COMMIT
	Slide 84: WAL GROUP COMMIT
	Slide 85: WAL GROUP COMMIT
	Slide 86: LOG-STRUCTURED SYSTEMS
	Slide 87: BUFFER POOL POLICIES

	Logging Schemes
	Slide 88: LOGGING SCHEMES
	Slide 89: LOGGING SCHEMES
	Slide 90: PHYSICAL VS. LOGICAL LOGGING

	CDC
	Slide 91: CHANGE DATA CAPTURE (CDC)
	Slide 92: CHANGE DATA CAPTURE (CDC)

	Checkpoints
	Slide 93: OBSERVATION
	Slide 94: CHECKPOINTS
	Slide 95: CHECKPOINTS
	Slide 96: CHECKPOINTS: CHALLENGES
	Slide 97: CHECKPOINTS: FREQUENCY

	Conclusion
	Slide 98: CONCLUSION
	Slide 99: NEXT CLASS

