Carnegie Mellon University

DATABASE
GYSTEMS 7%

Database Loggmg

LECTURE #21)) 15-445/645 FALL 2025)») PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Homework #5 is due Sunday Nov 23" @ 11:59pm

Project #4 is due Sunday Dec 7" @ 11:59pm
— Recitation on Tuesday Nov 18% @ 8:00pm (@280)

Final Exam is on Thursday Dec 11" @ 1:00pm

— Do not make travel plans before this date!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/280

UPCOMING DATABASE TALKS 5

Firebolt (DB Seminar) mooncake
— Monday Nov 17% @ 4:30pm
— Zoom

N
Snowflake (DB Group) 90L& SnOWﬂ(]ke
— Tuesday Nov 18™ @ 12:00pm r
— GHC 8115

XTDB (DB Seminar)
— Monday Nov 24" @ 12:00pm @ XTDB

— Zoom

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/future-data-firebolt/
https://db.cs.cmu.edu/events/fall-2025-optimizing-the-table-scan-operator-i-o-minimization-and-runtime-adaptivity/
https://db.cs.cmu.edu/events/futuredata-reconstructing-history-with-xtdb/

LAST CLASS

We discussed multi-version concurrency control

(MVCC) and how it effects the design of the entire
DBMS architecture.

A DBMS's concurrency control protocol gives it
Atomicity + Consistency + Isolation.

We now need ensure Atomicity + Durability...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MOTIVATION

Schedule
T 1

BEGIN

R(A r N
WE A% Buffer Pool

COMMIT

agng

)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T 1

BEGIN
R(A)
W(A)

COMMIT

MOTIVATION

r N
Buffer Pool

A=1

A

agng

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T 1

BEGIN
RCA)

W.(A)\

COMMIT

MOTIVATION

r N
Buffer Pool

T A=2

A

agng

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T 1

BEGIN
RCA)

W.(A)\

COMMIT

MOTIVATION

r N
Buffer Pool

T A=2

A

agng

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T 1

BEGIN
RCA)

W.(A)\

COMMIT

r N
Buffer/ ol

L Al

agng

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CRASH RECOVERY

Recovery algorithms are techniques to ensure database
consistency, transaction atomicity, and durability
despite failures.

Recovery algorithms have two parts:

— Actions during normal txn processing to ensure that the d
DBMS can recover from a failure. TO ay

— Actions after a failure to recover the database to a state
that ensures atomicity, consistency, and durability.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TODAY’S AGENDA

Bufter Pool Policies
Shadow Paging
Write-Ahead Log
Logging Schemes
Checkpoints

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

The database’s primary storage location is on non-
volatile storage, but this is slower than volatile storage.

Use volatile memory for faster access:
— First copy target record into memory.

— Perform the writes in memory.

— Write dirty records back to disk.

The DBMS needs to ensure the following:

— The changes for any txn are durable once the DBMS has told
somebody that it committed.

— No partial changes are durable if the txn aborted.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

UNDO V5. REDO

Undo: The process of removing the effects of an
incomplete or aborted txn.

Redo: The process of re-applying the effects of a
committed txn for durability.

How the DBMS supports this functionality depends on
how it manages the buffer pool ...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule

T1 T2

BEGIN

RCA)

W(A)
BEGIN
R(B)
W(B)
COMMIT

ROLLBACK

BUFFER POOL

r N
Buffer Pool

A=1|B=9|C=7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T, T,
BEGIN
R(A)
W(A)
BEGIN
R(B)
W(B)
COMMIT
ROLLBACK

BUFFER POOL

r N
Buffer Pool

A=3|B=9|C=7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUFFER POOL

Schedule
T1 T2
BEGIN - N
R(A)
Wens Buffer Pool
BEGIN —2ln=al =
»R(B) A=3|B=9|C=7
W(B)
COMMIT
ROLLBACK
\

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUFFER POOL

Schedule
T1 T2
BEGIN p ~
R(A)
Wens Buffer Pool
BEGIN T ol
R(B) A=3|B=8]C=7
»W
COMMIT
ROLLBACK
_

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUFFER POOL

Schedule
T1 T2 ~ :]
BEGIN Do we force T, s changes
R(A) (to be written to disk?
Buffér— :
W(A) 7
BEGIN _ £ _
R (B) 3|858|c=7
W(B)
» COMMIT
ROLLBACK
\. J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUFFER POOL

Schedule |
T, T, - —
: N\ |Do we force T, s changes
Is T, allowed to overwrite Aeven [T tobe written to disk?
though it has not committed? —
BEGIN Y oy P 4>
A=3|B=8]C=7
R(B)
W(B)
» COMMIT
ROLLBACK
\ J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUFFER POOL

Schedule
T1 T2
BEGIN - N
R(A)
Wens Buffer Pool
BEGIN —a|r=alc=
R(B) A=3|B=8]C=7
W(B)
»COMMIT
ROLLBACK
.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule
T, T,

BEGIN

R(A)

W(A)
BEGIN
R(B)
W(B)
COMMIT

ROLLBACK

BUFFER POOL

r N
Buffer Pool

A=3|B=8|C=7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUFFER POOL

Schedule
T1 T2

BEGIN p N

R(A) B P

Wens uffer Pool
BEGIN N N PN
R(B) A=3|B=8|C=7
W(B)
COMMIT

ROLLBACK

W hat happens when we m
need to rollback T;? ~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

STEAL POLICY

Whether the DBMS can evict a dirty object in the
buffer pool modified by an uncommitted txn and
overwrite the most recent committed version of that
object in non-volatile storage.

STEAL: Eviction + overwriting is allowed.
NO-STEAL: Eviction + overwriting is not allowed.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FORCE POLICY

Whether the DBMS requires that all updates made by a
txn are written back to non-volatile storage before the
txn can commit.

FORCE: Write-back is required.
NO-FORCE: Write-back is not required.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NO-STEAL + FORCE

Schedule

T, T,
BEGIN
R(A) r N
WCAY Buffer Pool
BEGIN
R(B) A=1]B=9|C=7
W(B)
COMMIT
ROLLBACK
\

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NO-STEAL + FORCE

Schedule

T1 T2
BEGIN
n) (Buffer Pool |
W(A) m—mr ujjer 1 oo
BEGIN™—
R(B) A=3|B=9|C=7
W(B)
COMMIT
ROLLBACK
-

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NO-STEAL + FORCE

Schedule
T1 T2
BEGIN
R(A) r N
WCAY Buffer Pool
BEGIN
»R(m A=3|B=9|C=7
W(B)
COMMIT
ROLLBACK
.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NO-STEAL + FORCE

Schedule
T, T,
BEGIN
R(A) e “
WCA) Buffer Pool
BEGIN
R(B) __—1"|A=3|B=8|C=7
»WB)/
COMMIT
ROLLBACK
-

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NO-STEAL + FORCE

Schedule
T, T, :
BEGIN NO-STEAL means that T, changes]
R(A) cannot be written to disk yet.
W(A) ;
BEGIN
R(B)

W(B)

FORCE means that T,
changes must be written
to disk at this point.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NO-STEAL + FORCE

Schedule
T, T, :
BEGIN NO-STEAL means that T, changes]
R(A) cannot be written to disk yet.
W(A) ;
BEGIN
R(B)

W(B)

FORCE means that T,
changes must be written
to disk at this point.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NO-STEAL + FORCE

Schedule
T1 T2

BEGIN

R(CA ()

WE Ag Buffer Pool
BEGIN
R(B) A=3|B=8]C=7
W(B)
COMMIT

RO.LBACK
Q J
Now its trivial to
rollback T, m

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NO-STEAL + FORCE

Schedule
T1 T2

BEGIN

R(CA ()

WE Ag Buffer Pool
BEGIN
R(B) A=1|B=8]C=7
W(B)
COMMIT

RO.LBACK
Q J
Now its trivial to
rollback T, m

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NO-STEAL + FORCE

This approach is the easiest to implement:

— Never have to undo changes of an aborted txn because the
changes were not written to disk.

— Never have to redo changes of a committed txn because all the
changes are guaranteed to be written to disk at commit time
(assuming atomic hardware writes).

Previous example cannot support write sets that
exceed the amount of physical memory available.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHADOW PAGING

The system maintains two versions of the database:

— Master: Contains only changes from committed txns.

— Shadow: Temporary database with changes made from
uncommitted txns.

DBMS makes a copy of page before a txn modifies it.

To install updates when a txn commits, overwrite the
root so it points to the shadow, thereby swapping the
master and shadow.

Bufter Pool Policy: NO-STEAL + FORCE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TxnT,

SHADOW PAGING: EXAMPLE

r

Memory Disk
1
T
4 —\—»
Master
-/ Page Table \ >
Master D
Pointer
L J __

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TxnT,

r

\,

Master
Pointer /

SHADOW PAGING:

Memory

1
2
3

4
Master
Page Table

W N =

EXAMPLE

Disk

t1 1y

Shadow

[

Page T able
Active modifying txn
updates shadow pages.

(

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TxnT,

r

SHADOW PAGING: EXAMPLE

Memory

W N =

Master
Page Table

Master

Update

W N =

Shadow

Page Table
8)

i

Disk
Ll
e
|l
= g
-

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TxnT,

r

SHADOW PAGING: EXAMPLE

Memory

W N =

Master
Page Table

Master

Update

W N =

Shadow

Page Table
8)

i

Disk
[l
>
—p "
_

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TxnT, —

r

_

1
2
\3
4

Page Table
8)

SHADOW PAGING: EXAMPLE

Memory

W N =

Master
Page Table

Master

Pointer

Shadow

i

Disk
[l
=g
—> ‘:
__

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHADOW PAGING: EXAMPLE

é (.)
Memory Disk
1
2
3
4
Master |
-/ Page Table
Master
Pointer 1 >
TxnT, > O
3 —
4 — &
Shadow
Page Table
- i - y

i

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Read-only txns access

TxnT,

TxnT,

SHADOW PAGING: EXAMPLE

i

) (
the current master. Jemory Disk
1
2
3
4
Master |
‘b-/ Page Table
quter
Pointer 1 >
> 2 =
3 —
4 —
Shadow
Page Table
- i -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Read-only txns access

TxnT,

TxnT,

SHADOW PAGING: EXAMPLE

i

) (
the current master. Jemory Disk
i
2
3
4
Master |
-/ Page Table
Master
Pointer 1 >
»2 =
3 —
4]
Shadow
Page Table
iy -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TxnT,
COMMIT

r

_

SHADOW PAGING: EXAMPLE

Memory

1

2

3

4
Master
Page Table

Master

Pointer

Disk

!

W N =

Shadow

Page Table
&)

i

Snn

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TxnT,
COMMIT

SHADOW PAGING: EXAMPLE

Disk

!

r
Memory
1
2
3
4
- """" Page Table
Master
Pointer 1
2 —
3
4
Shadow
Page Table
\ e

i

Snn

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TxnT,
COMMIT

r

_

SHADOW PAGING: EXAMPLE

Memory

1

2

3

4

"""" Page Table
Master
Pointer

Disk

!

W N =

Master

Page Table
87)

i

Snn

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TxnT,
COMMIT

r

_

SHADOW PAGING: EXAMPLE

Memory

"""" Page Table
Master
Pointer

Disk

!

W N =

Master

Page Table
87)

i

Snn

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TxnT,
COMMIT

r

_

SHADOW PAGING: EXAMPLE

Memory

1\%\
Pointer

Disk

W N =

Master

Page Table
87)

i

C i1l

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHADOW PAGING: UNDO/REDO

Supporting rollbacks and recovery is easy with shadow
paging.

Undo: Remove the shadow pages. Leave the master and
the DB root pointer alone.

Redo: Not needed at all.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHADOW PAGING: DISADVANTAGES

Copying the entire page table is expensive:

— Use a page table structured like a B+tree (LMDB).

— No need to copy entire tree, only need to copy paths in the tree
that lead to updated leaf nodes.

Commit overhead is high:

— Flush every updated page, page table, and root.

— Data gets fragmented (bad for sequential scans).

— Need garbage collection.

— Only supports one writer txn at a time or txns in a batch.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SALITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.

Memory

Page 1

Page 2

Page 3

— Called rollback mode.

After restarting, if a journal file exists,

Disk |

Page 1

Page 4

then the DBMS restores it to undo

Page 2

Page 5

changes from uncommitted txns.

Page 3

Page 6

Journal File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

SALITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.

Page 1

Page 3

— Called rollback mode.

After restarting, if a journal file exists,

Disk |

Page 1

Page 4

then the DBMS restores it to undo

Journal File

Page 2

Page 5

Page 2

changes from uncommitted txns.

Page 3

Page 6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

SALITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before
overwriting master version.

Page 1

Page 3

— Called rollback mode.

After restarting, if a journal file exists,

Disk |

Page 1

Page 4

then the DBMS restores it to undo

Journal File

Page 2

Page 5

Page 2

changes from uncommitted txns.

Page 3

Page 6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

SALITE (PRE-2010)

When a txn modifies a page, the [Memory)
DBMS copies the original page to a $
separate journal file before page 1 | | Page 2 | [Page 3
overwriting master version. L |
— (Called rollback mode.

é R)

o : Disk
After restarting, if a journal file exists, —— —— .
then the DBMS restores it to undo : =— | JournalFile
. Page 2 Page 5 : Page 2
changes from uncommitted txns. :
Page 3 Page 6
. J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

SALITE (PRE-2010)

When a txn modifies a page, the [Memory I
DBMS copies the original page to a $
separate journal file before page 1 | [Page 2 | [Page 3
overwriting master version. L I |
— (Called rollback mode. \
é R)
o : Disk
After restarting, if a journal file exists, —— —— .
then the DBMS restores it to undo : = JournalFile
. Page 2 Page 5 Page 2
changes from uncommitted txns.
Page 3 Page 6 Page 3
. J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

SALITE (PRE-2010)

When a txn modifies a page, the [Memory)
DBMS copies the original page to a
separate journal file before page 1 | | Page 2 | [Page 3
overwriting master version. L |
— (Called rollback mode.
é R)
o : Disk
After restarting, if a journal file exists, ;
. Page 1 Page 4 Journal File
then the DBMS restores it to undo
. Page 2 Page 5 Page 2
changes from uncommitted txns.
Page 3 Page 6 Page 3
. J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

SALITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before

overwriting master version.
— (Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory
Page 1 Page 2 Page 3
: /
([
//Dtsk
Pagf1 Page 4 | i Journal File
Page 2 Page 5 Page 2
Page 3 Page 6 Page 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

SALITE (PRE-2010)

When a txn modifies a page, the

Memory

Page 2

Page 3

DBMS copies the original pagetoa @ gu @
separate journal file before Page 1
overwriting master version. U 2, R

/

— Called rollback mode.

After restarting, if a journal file exists,

Pagf 1

Page 4

then the DBMS restores it to undo

(//Disk |

Journal File

Page 2

Page 5

Page 2

changes from uncommitted txns.

Page 3

Page 6

Page 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

SALITE (PRE-2010)

When a txn modifies a page, the

DBMS copies the original pagetoa @ gu @
separate journal file before

overwriting master version. oWe

Memory

— Called rollback mode.

7

After restarting, if a journal file exists,

Disk

Page 1

Page 4

then the DBMS restores it to undo

Journal File

Page 2

Page 5

Page 2

changes from uncommitted txns.

Page 3

Page 6

Page 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

SALITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before

overwriting master version.
— (Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

=

7

Memory

Page 2

Page 3

1

1

J

\

\

Page 1

Page 2

Page 3

Page 6

R)
D
Page 4 Journal File
Page 5 § Page 2

Page 3

4

x

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

SOLITE (PRE-2010) 5

When a txn modifies a page, the [Memory I
DBMS copies the original page to a
separate journal file before page 2 | [Page 3
overwriting master version. L I |
— (Called rollback mode.
é R)
o : Disk
After restarting, if a journal file exists, —f—— .
then the DBMS restores it to undo g =— | JournalFile
. Page 2 Page 5 Page 2
changes from uncommitted txns.
Page 3 Page 6 Page 3

\ =38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

SALITE (PRE-2010)

When a txn modifies a page, the
DBMS copies the original page to a
separate journal file before

overwriting master version.
— (Called rollback mode.

After restarting, if a journal file exists,
then the DBMS restores it to undo
changes from uncommitted txns.

Memory

Page 2

Page 3

/

/]

Pa

Page 4

Journal File

Paa{rz

Page 5

Page 2

Page 3

Page 6

Page 3

4+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.sqlite.org/atomiccommit.html

OBSERVATION

Shadowing page requires the DBMS to perform writes
to random non-contiguous pages on disk.

We need a way for the DBMS convert random writes
into sequential writes. It would also be nice to not have

to write entire pages each time they are modified.
— CouchDB appends shadow pages to end of the database file, but
it writes out the entire page.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITE-AHEAD LOG (WAL)

Maintain a log file separate from data files that contains

the changes that txns make to database.

— Assume that the log is on stable storage.

— Log contains enough information to perform the necessary
undo and redo actions to restore the database.

DBMS must write to disk the log file records that

correspond to changes made to a database object before
it can flush that object to disk.

Bufter Pool Policy: STEAL + NO-FORCE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUFFER POOL + WAL %

Steal

No-Force:
To recover after a crash before a page is flushed to disk, flush
summary/log @ commit for REDO.

Force

Force:
On every update, flush the updated page to disk.

Poor response time but enforces durability of committed txns.

<

N\

No-Steal: Steal:

Low throughput Flush unpinned dirty page even if updating txn is active.
but works for To ensure atomicity if a flushed page is modified by an
aborted txns. uncommitted txn, record old value in log for UNDO.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL PROTOCOL

The DBMS stages all a txn’s log records in volatile
storage (usually backed by buffer pool).

All log records pertaining to an updated page are
written to non-volatile storage before the page itself is
over-written in non-volatile storage.

A txn is not considered committed until all its log
records have been written to stable storage.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL PROTOCOL

Write a <BEGIN> record to the log for each txn to mark
its starting point.

Append a record every time a txn changes an object:
— Transaction Id

— Object Id

— Before Value (UNDO)

« Not necessary if using
— After Value (REDO)

append-only MVCC

When a txn finishes, the DBMS appends a <COMMIT>

record to the log.
— Make sure that all log records are flushed before it returns an
acknowledgement to application.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL EXAMPLE

Schedule
T (WAL Buffer |

BEGIN
W(A)
W(B)

<T, BEGIN>

COMMIT

4

\. J

f Buffer Pool)

A=1|B=5|C=7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL EXAMPLE

Schedule

()
T W AL Buffer
BEGIN
W(A) <T1 BEGIN>
W(B) a<T1, AL 1, 8
Beftre A}ter
COMMIT 7
U J

f Buffer Pool)

A=1|B=5|C=7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL EXAMPLE

Schedule

()
T W AL Buffer
BEGIN
W(A) <T1 BEGIN>
W(B) a<T1, AL 1, 8
Beftre A}ter
COMMIT 7
U J

f Buffer Pool)

A=8|B=5|C=7

_ e)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL EXAMPLE

Schedule
T 4)
1 V@Z41;lhq[fbr'
BEGIN
W) <T, BEGIN>
W(B) <T,, A, 1, 8
5 <T,, B, 5, 9>
COMMIT 7
_ y,

f Buffer Pool)

A=8|B=9|C=7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL EXAMPLE

Schedule

<T,, A, 1, &
<T,, B, 5, 9>
<T, COMMIT>

(WALBuffer| | [

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, COMMIT>

4

" y
Txn result is now safe to - N
return to application. Buffer Pool

A=8|B=9|C=7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL EXAMPLE

Schedule
T (N\
1 ‘VAL Buffer j:BEGn;b S

BEGIN 30658

W(A) <T, BEGIN> To COMIT |

: <T,, B, 5, 9>
<T, COMMIT>
COMMIT : 7
\. y

f Buffer Pool)

A=8|B=9|C=7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL EXA

Everything we need to
Schedule restore T, is in the log!
4)
T W AL Buffer
BEGIN
W(A)

W(B)

COMMIT

\. J

[Bu ‘fer Pool)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL IMPLEMENTATION 5

Flushing the log buffer to disk every time a txn commits
will become a bottleneck.

The DBMS can use the group commit optimization to
batch multiple log flushes together to amortize

overhead.
— When the buffer is full, flush it to disk.

— Or if there is a timeout (e.g., 5 ms).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Schedule

WAL 6ROUP COMMIT

p
T T, WAL Buffers |
BEGIN
WCAD <T, BEGIN>
W(B)
BEGIN
W(C)
W(D) 7
COMMIT
COMMIT
/4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL 6ROUP COMMIT

Schedule

r D
T T, W AL Buffers
BEGIN
WA <T, BEGIN>
WeB) <T,, A, 1, 8

BEGIN

W(C) E

w(D) § |
: 4

COMMIT /4

COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL 6ROUP COMMIT

Schedule
T T - R
1 2 W AL Buffers

BEGIN

WA <T, BEGIN>

WeB) <T,, A, 1, 8
Bp— <T,, B, 5, 9>
W(C)
W(D) 7

COMMIT
COMMIT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL 6ROUP COMMIT

Schedule
I T (WAL Buffers |
BEGIN
W(A) <T, BEGIN>

<T,, A, 1, &

W(B) g
»BEGIN — <T,, B, 5, 9
W(C) <T2 BEGIN> ------

W(D) -

COMMIT

COMMIT -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL 6ROUP COMMIT

Schedule
T T ~ ~N
1 2 W AL Buffers
BEGIN |
W(A) <T, BEGIN>
W(B) <T1 ’ A7 1) 8>
BEGIN <T,, B, 5, 9
»W(C) f— <T2 BEGIN> ------
W(D) <T2, c, 1, 2>7 |
COMMIT §
COMMIT R
\- J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL 6ROUP COMMIT

Flush the buffer
when it is full.

)
A’ﬁ?

NN

<T, BEGIN>
<T,, A, 1,
<T,, B, 5,
<T, BEGIN>

Schedule
T1 T2

BEGIN

W(A)

W(B)
BEGIN

) —

W(D)

COMMIT
COMMIT

<T2) C7 17

8>
9>

2>

4

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>

<T,, C, 1, 2>

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL 6ROUP COMMIT

Schedule
r D
T T, W AL Buffers
BEGIN
WCAD <T, BEGIN>
WCB) <T,, A, 1, 8>
BEGIN <T,, B, 5, 9>
W(C) <T, BEGIN>
o~ ||

COMMIT

COMMIT

M7, D, 3, 4>

4

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>

<T,, C, 1, 2>

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL 6ROUP COMMIT

Schedule
T 1 T2
BEGIN
W(A)
W(B)
BEGIN
W(C)

X

COMMIT

=

W(D) ~\\\\

X

COMMIT

(‘VC4IHquférs\

<T, BEGIN>

<T,, A, 1, 8
<T,, B, 5, 9>

<T, BEGIN>

<T,, C, 1, 2>

4

M7, D, 3, 4>

4

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>

<T,, C, 1, 2>

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL 6ROUP COMMIT

Schedule
T T [b
1 2 W AL Buffers
BEGIN
WOA) <T, BEGIN>
WeB) <T,, A, 1, 8
W(C) <T, BEGIN>
WD) <T,, C, 1, 2>7
g g <T,, D, 3, 4>
<T, COMMIT>
COMMIT <T, COMMIT>
QCOMMIT -
. J

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>

<T,, C, 1, 2>

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL 6ROUP COMMIT

Schedule
()
T T, W AL Buffers
BEGIN
W(A)
W(B)
BEGIN 7]
W(C)
W(D) p
g g <T,, D, 3, 4>
<T, COMMIT>
COMMIT <T, COMMIT>
QCOMMIT —
. J

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>

<T,, C, 1, 2>

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL 6ROUP COMMIT

(WAL Buffers b

Schedule
T, T,
BEGIN
W(A)
W(B)
BEGIN
W(C)

X

W(D)

X

4

<T,, D, 3, 4>
<T, COMMIT>

COMMIT
QCOMMIT —

<T, COMMIT>

4

<T, BEGIN>
<T,, A, 1, &
<T,, B, 5, 9
<T, BEGIN>
<T,, C, 1, 2>
<T,, D, 3, 4>
<T, COMMIT>
<T, COMMIT>

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LO6-STRUCTURED SYSTEMS

Log-structured DBMSs do not have dirty pages.

— Any page retrieved from disk is immutable.

The DBMS buffers log records in in-memory pages
(MemTable). If this buffer is full, it must be flushed to
disk. But it may contain changes uncommitted txns.

These DBMS:s still maintain a separate WAL to recreate
the MemTable on crash.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUFFER POOL POLICIES

Almost every DBMS uses NO-FORCE + STEAL

ooo

No U ndo + No Redo

Runttme Performance Recovery Performance
Steal Steal (T2 Rodo
No Yes No Yes
L
®) ®) :
- Fastest - S1 t
O 7. O 7. owes
Q Q
o =
o o
- O Sl - S F
— owest - — astest -
_—1

ooooooooooooooooooooooooooooooo

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LOG6ING SCHEMES

Physical Logging
— Record the byte-level changes made to a specific page.
— Example: git diff

Logical Logging
— Record the high-level operations executed by txns.
— Example: UPDATE, DELETE, and INSERT queries.

Physiological Logging

— Physical-to-a-page, logical-within-a-page.

— Hybrid approach with byte-level changes for a single tuple
identified by page id + slot number.

— Does not specify organization of the page.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LOG6ING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;

Physical Logical Physiological
<T1 , <T1 , <T1 ,
able=X Query="UPDATE foo
SET val=XYZ
Offset=1024 WHERE id=1">
Betore=ABC, Betore=ABC,
After=XYZ> After=xXYZ>

<T,,
Index=X PKEY

IndexPage=45

Key=(1,Record1)>

4 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHYSICAL V5. LOGICAL LOGGING

Logical logging requires less data written in each log
record than physical logging.

Difficult to implement recovery with logical logging if
the DBMS executes concurrent txns running at lower

isolation levels.

— Hard to determine which parts of the database may have been
modified by a query before crash.

— Recovery takes longer because DBMS re-executes every query
in the log again.

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CHANGE DATA CAPTURE (CDC)

Automatically propagate changes to
external sources to replicate and

synchronize database contents.

— Extract Transform Load (ETL)

— Some systems can do this automatically.
Others require third-party tools.

Approach #1: WAL
Approach #2: Triggers

Approach #3: Timestamps

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Extract,_transform,_load

CHANGE DATA CAPTURE (CDC)

Automatically propagate changes to
external sources to replicate and

synchronize database contents. »
— Extract Transform Load (ETL)
— Some systems can do this automatically.

Others require third-party tools.

Approach #1: WAL a8 debezium Il || Strllm
Approach #2: Triggers ORACLE | Goldenite

Approach #3: Timestamps % K lek a Q | | k

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Extract,_transform,_load

OBSERVATION

The DBMS's WAL will grow forever.

After a crash, the DBMS must replay the entire log,
which will take a long time.

The DBMS periodically takes a checkpoint where it

flushes all buffers out to disk.

— This provides a hint on how far back it needs to replay the
WAL after a crash.
— Truncate the WAL up to a certain safe point in time.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CHECKPOINTS

Blocking / Consistent Checkpoint Protocol:
— Pause all queries.

— Flush all WAL records in memory to disk.

— Flush all modified pages in the buffer pool to disk.

— Write a <CHECKPOINT> entry to WAL and flush to disk.
— Resume queries.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.

Any txn that committed before the
checkpoint is ignored (T,).

T, + T; did not commit before the last

checkpoint.

— Need to redo T, because it committed
after checkpoint.

— Need to undo T; because it did not
commit before the crash.

WAL

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2, B, 4, 5>
<T2 COMMIT>
<T3, A, 3, 4>

* o
OQQ 174

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CHECKPOINTS: CHALLENGES

In this example, the DBMS must stall txns when it takes

a checkpoint to ensure a consistent snapshot.
— We will see how to get around this problem next class.

Scanning the log to find uncommitted txns can take a

long time.
— Unavoidable but we will add hints to the <CHECKPOINT> record
to speed things up next class.

How often the DBMS should take checkpoints depends
on many different factors...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CHECKPOINTS: FREQUENCY

Checkpointing too often causes the runtime

performance to degrade.
— System spends too much time flushing buffers.

But waiting a long time is just as bad:
— The checkpoint will be large and slow.
— Makes recovery time much longer.

Tunable option that depends on application recovery
time requirements.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCLUSION

Write-Ahead Logging is (almost) always the best
approach to handle loss of volatile storage.

Use incremental updates (STEAL + NO-FORCE) with
checkpoints.

On Recovery: undo uncommitted txns + redo
committed txns.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NEXT CLASS

Better Checkpoint Protocols.
Recovery with ARIES.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics

	Introduction
	Slide 1: Database Logging
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: MOTIVATION
	Slide 6: MOTIVATION
	Slide 7: MOTIVATION
	Slide 8: MOTIVATION
	Slide 9: MOTIVATION
	Slide 10: CRASH RECOVERY
	Slide 11: TODAY’S AGENDA
	Slide 12: OBSERVATION

	Buffer Pool Policies
	Slide 13: UNDO VS. REDO
	Slide 14: BUFFER POOL
	Slide 15: BUFFER POOL
	Slide 16: BUFFER POOL
	Slide 17: BUFFER POOL
	Slide 18: BUFFER POOL
	Slide 19: BUFFER POOL
	Slide 20: BUFFER POOL
	Slide 21: BUFFER POOL
	Slide 22: BUFFER POOL
	Slide 23: STEAL POLICY
	Slide 24: FORCE POLICY
	Slide 25: NO-STEAL + FORCE
	Slide 26: NO-STEAL + FORCE
	Slide 27: NO-STEAL + FORCE
	Slide 28: NO-STEAL + FORCE
	Slide 29: NO-STEAL + FORCE
	Slide 30: NO-STEAL + FORCE
	Slide 31: NO-STEAL + FORCE
	Slide 32: NO-STEAL + FORCE
	Slide 33: NO-STEAL + FORCE

	Shadow Paging
	Slide 34: SHADOW PAGING
	Slide 35: SHADOW PAGING: EXAMPLE
	Slide 36: SHADOW PAGING: EXAMPLE
	Slide 37: SHADOW PAGING: EXAMPLE
	Slide 38: SHADOW PAGING: EXAMPLE
	Slide 39: SHADOW PAGING: EXAMPLE
	Slide 40: SHADOW PAGING: EXAMPLE
	Slide 41: SHADOW PAGING: EXAMPLE
	Slide 42: SHADOW PAGING: EXAMPLE
	Slide 43: SHADOW PAGING: EXAMPLE
	Slide 44: SHADOW PAGING: EXAMPLE
	Slide 45: SHADOW PAGING: EXAMPLE
	Slide 46: SHADOW PAGING: EXAMPLE
	Slide 47: SHADOW PAGING: EXAMPLE
	Slide 48: SHADOW PAGING: UNDO/REDO
	Slide 49: SHADOW PAGING: DISADVANTAGES
	Slide 50: SQLITE (PRE-2010)
	Slide 51: SQLITE (PRE-2010)
	Slide 52: SQLITE (PRE-2010)
	Slide 53: SQLITE (PRE-2010)
	Slide 54: SQLITE (PRE-2010)
	Slide 55: SQLITE (PRE-2010)
	Slide 56: SQLITE (PRE-2010)
	Slide 57: SQLITE (PRE-2010)
	Slide 58: SQLITE (PRE-2010)
	Slide 59: SQLITE (PRE-2010)
	Slide 60: SQLITE (PRE-2010)
	Slide 61: SQLITE (PRE-2010)
	Slide 62: OBSERVATION

	Write-Ahead Logging
	Slide 63: WRITE-AHEAD LOG (WAL)
	Slide 64: BUFFER POOL + WAL
	Slide 65: WAL PROTOCOL
	Slide 66: WAL PROTOCOL
	Slide 67: WAL EXAMPLE
	Slide 68: WAL EXAMPLE
	Slide 69: WAL EXAMPLE
	Slide 70: WAL EXAMPLE
	Slide 71: WAL EXAMPLE
	Slide 72: WAL EXAMPLE
	Slide 73: WAL EXAMPLE
	Slide 74: WAL IMPLEMENTATION
	Slide 75: WAL GROUP COMMIT
	Slide 76: WAL GROUP COMMIT
	Slide 77: WAL GROUP COMMIT
	Slide 78: WAL GROUP COMMIT
	Slide 79: WAL GROUP COMMIT
	Slide 80: WAL GROUP COMMIT
	Slide 81: WAL GROUP COMMIT
	Slide 82: WAL GROUP COMMIT
	Slide 83: WAL GROUP COMMIT
	Slide 84: WAL GROUP COMMIT
	Slide 85: WAL GROUP COMMIT
	Slide 86: LOG-STRUCTURED SYSTEMS
	Slide 87: BUFFER POOL POLICIES

	Logging Schemes
	Slide 88: LOGGING SCHEMES
	Slide 89: LOGGING SCHEMES
	Slide 90: PHYSICAL VS. LOGICAL LOGGING

	CDC
	Slide 91: CHANGE DATA CAPTURE (CDC)
	Slide 92: CHANGE DATA CAPTURE (CDC)

	Checkpoints
	Slide 93: OBSERVATION
	Slide 94: CHECKPOINTS
	Slide 95: CHECKPOINTS
	Slide 96: CHECKPOINTS: CHALLENGES
	Slide 97: CHECKPOINTS: FREQUENCY

	Conclusion
	Slide 98: CONCLUSION
	Slide 99: NEXT CLASS

