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ADMINISTRIVIA

Homework #5 is due Sunday Nov 23" @ 11:59pm

Project #4 is due Sunday Dec 7" @ 11:59pm
— Recitation on Tuesday Nov 18% @ 8:00pm (@280)

Final Exam is on Thursday Dec 11" @ 1:00pm

— Do not make travel plans before this date!
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UPCOMING DATABASE TALKS 5

Firebolt (DB Seminar) mooncake
— Monday Nov 17% @ 4:30pm
— Zoom

N
Snowflake (DB Group) 90L& SnOWﬂ(]ke
— Tuesday Nov 18™ @ 12:00pm r
— GHC 8115

XTDB (DB Seminar)
— Monday Nov 24" @ 12:00pm @ XTDB

— Zoom


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/future-data-firebolt/
https://db.cs.cmu.edu/events/fall-2025-optimizing-the-table-scan-operator-i-o-minimization-and-runtime-adaptivity/
https://db.cs.cmu.edu/events/futuredata-reconstructing-history-with-xtdb/

LAST CLASS

We discussed multi-version concurrency control

(MVCC) and how it effects the design of the entire
DBMS architecture.

A DBMS's concurrency control protocol gives it
Atomicity + Consistency + Isolation.

We now need ensure Atomicity + Durability...
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CRASH RECOVERY

Recovery algorithms are techniques to ensure database
consistency, transaction atomicity, and durability
despite failures.

Recovery algorithms have two parts:

— Actions during normal txn processing to ensure that the d
DBMS can recover from a failure. TO ay

— Actions after a failure to recover the database to a state
that ensures atomicity, consistency, and durability.
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TODAY’S AGENDA

Bufter Pool Policies
Shadow Paging
Write-Ahead Log
Logging Schemes
Checkpoints
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OBSERVATION

The database’s primary storage location is on non-
volatile storage, but this is slower than volatile storage.

Use volatile memory for faster access:
— First copy target record into memory.

— Perform the writes in memory.

— Write dirty records back to disk.

The DBMS needs to ensure the following:

— The changes for any txn are durable once the DBMS has told
somebody that it committed.

— No partial changes are durable if the txn aborted.
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UNDO V5. REDO

Undo: The process of removing the effects of an
incomplete or aborted txn.

Redo: The process of re-applying the effects of a
committed txn for durability.

How the DBMS supports this functionality depends on
how it manages the buffer pool ...
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STEAL POLICY

Whether the DBMS can evict a dirty object in the
buffer pool modified by an uncommitted txn and
overwrite the most recent committed version of that
object in non-volatile storage.

STEAL: Eviction + overwriting is allowed.
NO-STEAL: Eviction + overwriting is not allowed.
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FORCE POLICY

Whether the DBMS requires that all updates made by a
txn are written back to non-volatile storage before the
txn can commit.

FORCE: Write-back is required.
NO-FORCE: Write-back is not required.
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NO-STEAL + FORCE

This approach is the easiest to implement:

— Never have to undo changes of an aborted txn because the
changes were not written to disk.

— Never have to redo changes of a committed txn because all the
changes are guaranteed to be written to disk at commit time
(assuming atomic hardware writes).

Previous example cannot support write sets that
exceed the amount of physical memory available.
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SHADOW PAGING

The system maintains two versions of the database:

— Master: Contains only changes from committed txns.

— Shadow: Temporary database with changes made from
uncommitted txns.

DBMS makes a copy of page before a txn modifies it.

To install updates when a txn commits, overwrite the
root so it points to the shadow, thereby swapping the
master and shadow.

Bufter Pool Policy: NO-STEAL + FORCE
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Read-only txns access
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SHADOW PAGING: UNDO/REDO

Supporting rollbacks and recovery is easy with shadow
paging.

Undo: Remove the shadow pages. Leave the master and
the DB root pointer alone.

Redo: Not needed at all.
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SHADOW PAGING: DISADVANTAGES

Copying the entire page table is expensive:

— Use a page table structured like a B+tree (LMDB).

— No need to copy entire tree, only need to copy paths in the tree
that lead to updated leaf nodes.

Commit overhead is high:

— Flush every updated page, page table, and root.

— Data gets fragmented (bad for sequential scans).

— Need garbage collection.

— Only supports one writer txn at a time or txns in a batch.
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OBSERVATION

Shadowing page requires the DBMS to perform writes
to random non-contiguous pages on disk.

We need a way for the DBMS convert random writes
into sequential writes. It would also be nice to not have

to write entire pages each time they are modified.
— CouchDB appends shadow pages to end of the database file, but
it writes out the entire page.
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WRITE-AHEAD LOG (WAL)

Maintain a log file separate from data files that contains

the changes that txns make to database.

— Assume that the log is on stable storage.

— Log contains enough information to perform the necessary
undo and redo actions to restore the database.

DBMS must write to disk the log file records that

correspond to changes made to a database object before
it can flush that object to disk.

Bufter Pool Policy: STEAL + NO-FORCE



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BUFFER POOL + WAL %

Steal

No-Force:
To recover after a crash before a page is flushed to disk, flush
summary/log @ commit for REDO.

Force

Force:
On every update, flush the updated page to disk.

Poor response time but enforces durability of committed txns.

<

N\

No-Steal: Steal:

Low throughput Flush unpinned dirty page even if updating txn is active.
but works for To ensure atomicity if a flushed page is modified by an
aborted txns. uncommitted txn, record old value in log for UNDO.
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WAL PROTOCOL

The DBMS stages all a txn’s log records in volatile
storage (usually backed by buffer pool).

All log records pertaining to an updated page are
written to non-volatile storage before the page itself is
over-written in non-volatile storage.

A txn is not considered committed until all its log
records have been written to stable storage.
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WAL PROTOCOL

Write a <BEGIN> record to the log for each txn to mark
its starting point.

Append a record every time a txn changes an object:
— Transaction Id

— Object Id

— Before Value (UNDO)

« Not necessary if using
— After Value (REDO)

append-only MVCC

When a txn finishes, the DBMS appends a <COMMIT>

record to the log.
— Make sure that all log records are flushed before it returns an
acknowledgement to application.
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WAL EXAMPLE

Schedule
T ( WAL Buffer |

BEGIN
W(A)
W(B)

<T, BEGIN>

COMMIT

4

\. J

f Buffer Pool )

A=1|B=5|C=7
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WAL EXAMPLE

Schedule

( )
T W AL Buffer
BEGIN
W(A) <T1 BEGIN>
W(B) a<T1, AL 1, 8
Beftre A}ter
COMMIT 7
U J

f Buffer Pool )

A=1|B=5|C=7
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WAL EXAMPLE

Schedule

( )
T W AL Buffer
BEGIN
W(A) <T1 BEGIN>
W(B) a<T1, AL 1, 8
Beftre A}ter
COMMIT 7
U J

f Buffer Pool )

A=8|B=5|C=7

\_ e )
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WAL EXAMPLE

Schedule
T 4 )
1 V@Z41;lhq[fbr'
BEGIN
W) <T, BEGIN>
W(B) <T,, A, 1, 8
5 <T,, B, 5, 9>
COMMIT 7
\_ y,

f Buffer Pool )

A=8|B=9|C=7
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WAL EXAMPLE

Schedule

<T,, A, 1, &
<T,, B, 5, 9>
<T, COMMIT>

(WALBuffer| | [

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, COMMIT>

4

" y
Txn result is now safe to - N
return to application. Buffer Pool

A=8|B=9|C=7
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WAL EXAMPLE

Schedule
T ( N\
1 ‘VAL Buffer j:BEGn;b S

BEGIN 30658

W(A) <T, BEGIN> To COMIT |

: <T,, B, 5, 9>
<T, COMMIT>
COMMIT : 7
\. y

f Buffer Pool )

A=8|B=9|C=7
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WAL EXA

Everything we need to
Schedule restore T, is in the log!
4 )
T W AL Buffer
BEGIN
W(A)

W(B)

COMMIT

\. J

[ Bu ‘fer Pool )
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WAL IMPLEMENTATION 5

Flushing the log buffer to disk every time a txn commits
will become a bottleneck.

The DBMS can use the group commit optimization to
batch multiple log flushes together to amortize

overhead.
— When the buffer is full, flush it to disk.

— Or if there is a timeout (e.g., 5 ms).
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Schedule

WAL 6ROUP COMMIT

p
T T, WAL Buffers |
BEGIN
WCAD <T, BEGIN>
W(B)
BEGIN
W(C)
W(D) 7
COMMIT
COMMIT
/4
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WAL 6ROUP COMMIT

Schedule

r D
T T, W AL Buffers
BEGIN
WA <T, BEGIN>
WeB) <T,, A, 1, 8

BEGIN ......

W(C) E

w(D) § |
: 4

COMMIT /4

COMMIT
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WAL 6ROUP COMMIT

Schedule
T T - R
1 2 W AL Buffers

BEGIN

WA <T, BEGIN>

WeB) <T,, A, 1, 8
Bp— <T,, B, 5, 9>
W(C)
W(D) 7

COMMIT
COMMIT
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WAL 6ROUP COMMIT

Schedule
I T (WAL Buffers |
BEGIN
W(A) <T, BEGIN>

<T,, A, 1, &

W(B) g
»BEGIN — <T,, B, 5, 9
W(C) <T2 BEGIN> ------

W(D) -

COMMIT

COMMIT -
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WAL 6ROUP COMMIT

Schedule
T T ~ ~N
1 2 W AL Buffers
BEGIN |
W(A) <T, BEGIN>
W(B) <T1 ’ A7 1 ) 8>
BEGIN <T,, B, 5, 9
»W(C) f— <T2 BEGIN> ------
W(D) <T2, c, 1, 2>7 |
COMMIT §
COMMIT R
\- J
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WAL 6ROUP COMMIT

Flush the buffer
when it is full.

)
A’ﬁ?

NN

<T, BEGIN>
<T,, A, 1,
<T,, B, 5,
<T, BEGIN>

Schedule
T1 T2

BEGIN

W(A)

W(B)
BEGIN

) —

W(D)

COMMIT
COMMIT

<T2) C7 17

8>
9>

2>

4

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>

<T,, C, 1, 2>

=
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WAL 6ROUP COMMIT

Schedule
r D
T T, W AL Buffers
BEGIN
WCAD <T, BEGIN>
WCB) <T,, A, 1, 8>
BEGIN <T,, B, 5, 9>
W(C) <T, BEGIN>
o~ ||

COMMIT

COMMIT

M7, D, 3, 4>

4

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>

<T,, C, 1, 2>

=


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL 6ROUP COMMIT

Schedule
T 1 T2
BEGIN
W(A)
W(B)
BEGIN
W(C)

X

COMMIT

=

W(D) ~\\\\

X

COMMIT

(‘VC4IHquférs\

<T, BEGIN>

<T,, A, 1, 8
<T,, B, 5, 9>

<T, BEGIN>

<T,, C, 1, 2>

4

M7, D, 3, 4>

4

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>

<T,, C, 1, 2>

=
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WAL 6ROUP COMMIT

Schedule
T T [ b
1 2 W AL Buffers
BEGIN
WOA) <T, BEGIN>
WeB) <T,, A, 1, 8
W(C) <T, BEGIN>
WD) <T,, C, 1, 2>7
g g <T,, D, 3, 4>
<T, COMMIT>
COMMIT <T, COMMIT>
QCOMMIT -
. J

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>

<T,, C, 1, 2>

=
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WAL 6ROUP COMMIT

Schedule
( )
T T, W AL Buffers
BEGIN
W(A)
W(B)
BEGIN 7]
W(C)
W(D) p
g g <T,, D, 3, 4>
<T, COMMIT>
COMMIT <T, COMMIT>
QCOMMIT —
. J

<T, BEGIN>
<T,, A, 1, 8
<T,, B, 5, 9>
<T, BEGIN>

<T,, C, 1, 2>

=
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WAL 6ROUP COMMIT

( WAL Buffers b

Schedule
T, T,
BEGIN
W(A)
W(B)
BEGIN
W(C)

X

W(D)

X

4

<T,, D, 3, 4>
<T, COMMIT>

COMMIT
QCOMMIT —

<T, COMMIT>

4

<T, BEGIN>
<T,, A, 1, &
<T,, B, 5, 9
<T, BEGIN>
<T,, C, 1, 2>
<T,, D, 3, 4>
<T, COMMIT>
<T, COMMIT>

=


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LO6-STRUCTURED SYSTEMS

Log-structured DBMSs do not have dirty pages.

— Any page retrieved from disk is immutable.

The DBMS buffers log records in in-memory pages
(MemTable). If this buffer is full, it must be flushed to
disk. But it may contain changes uncommitted txns.

These DBMS:s still maintain a separate WAL to recreate
the MemTable on crash.
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BUFFER POOL POLICIES

Almost every DBMS uses NO-FORCE + STEAL

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

No U ndo + No Redo

Runttme Performance Recovery Performance
Steal Steal (T2 Rodo
No Yes No Yes
L
®) ®) :
- Fastest - S1 t
O 7. O 7. owes
Q Q
o =
o o
- O Sl - S F
— owest - — astest -
_—1

ooooooooooooooooooooooooooooooo
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LOG6ING SCHEMES

Physical Logging
— Record the byte-level changes made to a specific page.
— Example: git diff

Logical Logging
— Record the high-level operations executed by txns.
— Example: UPDATE, DELETE, and INSERT queries.

Physiological Logging

— Physical-to-a-page, logical-within-a-page.

— Hybrid approach with byte-level changes for a single tuple
identified by page id + slot number.

— Does not specify organization of the page.
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LOG6ING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;

Physical Logical Physiological
<T1 , <T1 , <T1 ,
able=X Query="UPDATE foo
SET val=XYZ
Offset=1024 WHERE id=1">
Betore=ABC, Betore=ABC,
After=XYZ> After=xXYZ>

<T,,
Index=X PKEY

IndexPage=45

Key=(1,Record1)>

4 4
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PHYSICAL V5. LOGICAL LOGGING

Logical logging requires less data written in each log
record than physical logging.

Difficult to implement recovery with logical logging if
the DBMS executes concurrent txns running at lower

isolation levels.

— Hard to determine which parts of the database may have been
modified by a query before crash.

— Recovery takes longer because DBMS re-executes every query
in the log again.

=
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CHANGE DATA CAPTURE (CDC)

Automatically propagate changes to
external sources to replicate and

synchronize database contents.

— Extract Transform Load (ETL)

— Some systems can do this automatically.
Others require third-party tools.

Approach #1: WAL
Approach #2: Triggers

Approach #3: Timestamps
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CHANGE DATA CAPTURE (CDC)

Automatically propagate changes to
external sources to replicate and

synchronize database contents. »
— Extract Transform Load (ETL)
— Some systems can do this automatically.

Others require third-party tools.

Approach #1: WAL a8 debezium Il || Strllm
Approach #2: Triggers ORACLE | Goldenite

Approach #3: Timestamps % K lek a Q | | k
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OBSERVATION

The DBMS's WAL will grow forever.

After a crash, the DBMS must replay the entire log,
which will take a long time.

The DBMS periodically takes a checkpoint where it

flushes all buffers out to disk.

— This provides a hint on how far back it needs to replay the
WAL after a crash.
— Truncate the WAL up to a certain safe point in time.
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CHECKPOINTS

Blocking / Consistent Checkpoint Protocol:
— Pause all queries.

— Flush all WAL records in memory to disk.

— Flush all modified pages in the buffer pool to disk.

— Write a <CHECKPOINT> entry to WAL and flush to disk.
— Resume queries.
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CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.

Any txn that committed before the
checkpoint is ignored (T,).

T, + T; did not commit before the last

checkpoint.

— Need to redo T, because it committed
after checkpoint.

— Need to undo T; because it did not
commit before the crash.

WAL

<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2, B, 4, 5>
<T2 COMMIT>
<T3, A, 3, 4>

* o
OQQ 174
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CHECKPOINTS: CHALLENGES

In this example, the DBMS must stall txns when it takes

a checkpoint to ensure a consistent snapshot.
— We will see how to get around this problem next class.

Scanning the log to find uncommitted txns can take a

long time.
— Unavoidable but we will add hints to the <CHECKPOINT> record
to speed things up next class.

How often the DBMS should take checkpoints depends
on many different factors...
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CHECKPOINTS: FREQUENCY

Checkpointing too often causes the runtime

performance to degrade.
— System spends too much time flushing buffers.

But waiting a long time is just as bad:
— The checkpoint will be large and slow.
— Makes recovery time much longer.

Tunable option that depends on application recovery
time requirements.
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CONCLUSION

Write-Ahead Logging is (almost) always the best
approach to handle loss of volatile storage.

Use incremental updates (STEAL + NO-FORCE) with
checkpoints.

On Recovery: undo uncommitted txns + redo
committed txns.
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NEXT CLASS

Better Checkpoint Protocols.
Recovery with ARIES.
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