
DatabaseSystems

15-445/645 FALL 2025

15- 445/645 FALL 2025
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Database Recovery
LECTURE #22

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ADMINISTRIVIA

Homework #5 is due Sunday Nov 23rd @ 11:59pm

Project #4 is due Sunday Dec 7th @ 11:59pm
→ Recitation Slides + Video (@280)

Final Exam is on Thursday Dec 11th @ 1:00pm
→ Do not make travel plans before this date!

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/280

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CRASH RECOVERY

Recovery algorithms are techniques to ensure database
consistency, transaction atomicity, and durability
despite failures.

Recovery algorithms have two parts:
→ Actions during normal txn processing to ensure that the

DBMS can recover from a failure.
→ Actions after a failure to recover the database to a state

that ensures atomicity, consistency, and durability. Today

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CRASH RECOVERY OVERVIEW

STEAL + NO-FORCE

Atomicity: Txns may abort/fail.

Durability: Changes of committed
txns should survive system failure.

Desired behavior after the DBMS
restarts (i.e., the contents of volatile
memory are lost):
→ T1 should be durable.
→ T2 + T3 should be aborted.

T
IM

E

Schedule
T1 T2

BEGIN
W(A)
COMMIT

BEGIN
W(B)
ABORT

BEGIN
R(A)
W(C)
 ⋮

T3

CRASH!

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ARIES

Algorithms for Recovery and
Isolation Exploiting Semantics

Developed at IBM Research in early
1990s for the DB2 DBMS.

Not all systems implement ARIES
exactly as defined in this paper but
they’re close enough.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics
https://en.wikipedia.org/wiki/Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics
https://dl.acm.org/citation.cfm?id=128770

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ARIES: MAIN IDEAS

Write-Ahead Logging:
→ Flush WAL record(s) changes to disk before a database object is

written to disk.
→ Must use STEAL + NO-FORCE buffer pool policies.

Repeating History During Redo:
→ On DBMS restart, retrace actions and restore database to exact

state before crash.

Logging Changes During Undo:
→ Record undo actions to log to ensure action is not repeated in

the event of repeated failures.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TODAY’S AGENDA

Log Sequence Numbers

Normal Commit & Abort Operations

Fuzzy Checkpointing

Recovery Algorithm

DB Flash Talk: ClickHouse

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://clickhouse.com/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL RECORDS

We need to extend our log record format from last class
to include additional info.

Every log record includes a globally unique log
sequence number (LSN).
→ LSNs represent the physical order that txns make changes to

the database.

Various components in the system keep track of LSNs
that pertain to them…

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL

WAL BOOKKEEPING

Log Sequence Number (LSN).
→ Unique and monotonically increasing.

Each data page contains a pageLSN.
→ The LSN of the most recent log record

that updated the page.

System keeps track of flushedLSN.
→ The max LSN flushed so far.

WAL: Before a pagex is written,
pageLSNx ≤ flushedLSN

LSNs

Data
Page

pageLSN

Data
Page

pageLSN

Disk

DRAM

WAL

flushedLSNpageLSNs

9

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LOG SEQUENCE NUMBERS

Name Location Definition

flushedLSN Memory Last LSN in log on disk

pageLSN pagex Newest update to pagex

recLSN DPT Oldest update to pagex since
it was last flushed

lastLSN ATT Latest record of txn Ti

MasterRecord Disk LSN of latest checkpoint

 DPT = Dirty Page Table. ATT = Active Transaction Table.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 1, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WRITING LOG RECORDS

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 4, 5>
019:<T5, B, 3, 4>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=5 B=4 C=2

pageLSN

A=4 B=3 C=2

Log Sequence Numbers
Log Sequence Numbers

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 1, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WRITING LOG RECORDS

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 4, 5>
019:<T5, B, 3, 4>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=5 B=4 C=2

pageLSN

A=4 B=3 C=2

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 1, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WRITING LOG RECORDS

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 4, 5>
019:<T5, B, 3, 4>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=5 B=4 C=2

pageLSN

A=4 B=3 C=2

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 1, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WRITING LOG RECORDS

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 4, 5>
019:<T5, B, 3, 4>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=5 B=4 C=2

pageLSN

A=4 B=3 C=2

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 1, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WRITING LOG RECORDS

WAL

Database

MasterRecord
flushedLSN

pageLSN

A=5 B=4 C=2

pageLSN

A=4 B=3 C=2

?

11

pageLSN

A=4 B=3 C=2
Safe to evict because

pageLSN ≤ flushedLSN

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 1, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WRITING LOG RECORDS

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 4, 5>
019:<T5, B, 3, 4>
020:<T5 COMMIT>
 ⋮

MasterRecord
flushedLSN

pageLSN

A=5 B=4 C=2

pageLSN

A=4 B=3 C=2? Not safe to evict because
pageLSN > flushedLSN

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WRITING LOG RECORDS

All log records have an LSN.

Update the pageLSN every time a txn modifies a record
in the page.

Update the flushedLSN in memory every time the
DBMS writes the WAL buffer to disk.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

NORMAL EXECUTION

Each txn invokes a sequence of reads and writes,
followed by commit or rollback.

Assumptions in this lecture:
→ All log records fit within a single page.
→ Disk writes are atomic.
→ Single-versioned tuples with Strong Strict 2PL.
→ STEAL + NO-FORCE buffer management with WAL.
→ Physical log record scheme.
→ Omitting log records for indexes.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION COMMIT

When a txn commits, the DBMS writes a COMMIT
record to log and guarantees that all log records up to
txn’s COMMIT record are flushed to disk.
→ Log flushes are sequential, synchronous writes to disk.
→ Many log records per log page.

When commit succeeds, write TXN-END record to log.
→ Indicates that no new log record for that txn will appear in the

log ever again.
→ DBMS does not need to flush these records immediately.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 1, 2>
011:<T3, COMMIT>

TRANSACTION COMMIT

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=4 B=2 C=2

pageLSN

A=4 B=2 C=2

012:<T4 BEGIN>

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 1, 2>
011:<T3, COMMIT>

TRANSACTION COMMIT

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=4 B=2 C=2

pageLSN

A=4 B=2 C=2

012:<T4 BEGIN>
013:<T4, A, 4, 5>
014:<T4, B, 2, 3>
015:<T4 COMMIT>

15

A=5 B=3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 1, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 4, 5>
014:<T4, B, 2, 3>
015:<T4 COMMIT>

TRANSACTION COMMIT

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=4 B=2 C=2

pageLSN

A=4 B=2 C=2

012:<T4 BEGIN>
013:<T4, A, 4, 5>
014:<T4, B, 2, 3>
015:<T4 COMMIT>

15

A=5 B=3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 1, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 4, 5>
014:<T4, B, 2, 3>
015:<T4 COMMIT>

TRANSACTION COMMIT

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=4 B=2 C=2

pageLSN

A=4 B=2 C=2

012:<T4 BEGIN>
013:<T4, A, 4, 5>
014:<T4, B, 2, 3>
015:<T4 COMMIT>

flushedLSN = 015

15

A=5 B=3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 1, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 4, 5>
014:<T4, B, 2, 3>
015:<T4 COMMIT>

TRANSACTION COMMIT

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=4 B=2 C=2

pageLSN

A=4 B=2 C=2

012:<T4 BEGIN>
013:<T4, A, 4, 5>
014:<T4, B, 2, 3>
015:<T4 COMMIT>
 ⋮
099:<T4 TXN-END>

15

A=5 B=3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 1, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 4, 5>
014:<T4, B, 2, 3>
015:<T4 COMMIT>

TRANSACTION COMMIT

WAL

Database
MasterRecord

flushedLSN

pageLSN

A=4 B=2 C=2

pageLSN

A=4 B=2 C=2

099:<T4 TXN-END>

15

A=5 B=3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION ABORT

Aborting a txn is a special case of the ARIES undo
operation applied to only one txn.

We need to add another field to our log records:
→ prevLSN: The previous LSN for the txn.
→ This maintains a linked-list for each txn to make it easier to

walk through its log records.

A txn does not release its locks until it has successfully
reverted all its changes.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION ABORT

Aborting a txn is a special case of the ARIES undo
operation applied to only one txn.

We need to add another field to our log records:
→ prevLSN: The previous LSN for the txn.
→ This maintains a linked-list for each txn to make it easier to

walk through its log records.

A txn does not release its locks until it has successfully
reverted all its changes.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

TRANSACTION ABORT

WAL

Database

Buffer Pool

MasterRecord
flushedLSN

pageLSN

A=5 B=3 C=2

pageLSN

A=4 B=2 C=2

012|nil:<T4 BEGIN>
013|012:<T4, A, 4, 5>
014|013:<T4, B, 2, 3>

LSN | prevLSN

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

TRANSACTION ABORT

WAL

Database

Buffer Pool

MasterRecord
flushedLSN

pageLSN

A=5 B=3 C=2

pageLSN

A=4 B=2 C=2

012|nil:<T4 BEGIN>
013|012:<T4, A, 4, 5>
014|013:<T4, B, 2, 3>
015|014:<T4 ABORT>

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

TRANSACTION ABORT

WAL

Database

Buffer Pool

MasterRecord
flushedLSN

pageLSN

A=5 B=3 C=2

pageLSN

A=4 B=2 C=2

012|nil:<T4 BEGIN>
013|012:<T4, A, 4, 5>
014|013:<T4, B, 2, 3>
015|014:<T4 ABORT>
 ???
099|098:<T4 TXN-END>

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

WAL (Tail)

TRANSACTION ABORT

WAL

Database

Buffer Pool

MasterRecord
flushedLSN

pageLSN

A=5 B=3 C=2

pageLSN

A=4 B=2 C=2

012|nil:<T4 BEGIN>
013|012:<T4, A, 4, 5>
014|013:<T4, B, 2, 3>
015|014:<T4 ABORT>
 ???
099|098:<T4 TXN-END>

Important: Need to record the
steps to undo the txn.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

COMPENSATION LOG RECORDS

A compensation log record (CLR) describes the
actions taken to reverse (i.e., undo) the changes of a
previous update log record.
→ Each CLR contains all the fields of an update log record plus the

undoNextLSN pointer (i.e., next-to-be-undone LSN).

DBMS adds CLRs to in-memory WAL buffer but it
does not wait for them to be flushed before notifying
the application the txn aborted.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION ABORT: CLR EXAMPLE

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

003 002 T1 UPDATE B 10 24 -

⋮

011 003 T1 ABORT - - - -

T
IM

E

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

003 002 T1 UPDATE B 10 24 -

⋮

011 003 T1 ABORT - - - -

⋮

026 011 T1 CLR-003 B 24 10 002

TRANSACTION ABORT: CLR EXAMPLE
T
IM

E

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

003 002 T1 UPDATE B 10 24 -

⋮

011 003 T1 ABORT - - - -

⋮

026 011 T1 CLR-003 B 24 10 002

TRANSACTION ABORT: CLR EXAMPLE
T
IM

E

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

003 002 T1 UPDATE B 10 24 -

⋮

011 003 T1 ABORT - - - -

⋮

026 011 T1 CLR-003 B 24 10 002

TRANSACTION ABORT: CLR EXAMPLE
T
IM

E

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

003 002 T1 UPDATE B 10 24 -

⋮

011 003 T1 ABORT - - - -

⋮

026 011 T1 CLR-003 B 24 10 002

TRANSACTION ABORT: CLR EXAMPLE

The LSN of the next log
record to be undone.

T
IM

E

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

003 002 T1 UPDATE B 10 24 -

⋮

011 003 T1 ABORT - - - -

⋮

026 011 T1 CLR-003 B 24 10 002

027 026 T1 CLR-002 A 40 30 001

TRANSACTION ABORT: CLR EXAMPLE
T
IM

E

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

003 002 T1 UPDATE B 10 24 -

⋮

011 003 T1 ABORT - - - -

⋮

026 011 T1 CLR-003 B 24 10 002

027 026 T1 CLR-002 A 40 30 001

TRANSACTION ABORT: CLR EXAMPLE
T
IM

E

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

003 002 T1 UPDATE B 10 24 -

⋮

011 003 T1 ABORT - - - -

⋮

026 011 T1 CLR-003 B 24 10 002

027 026 T1 CLR-002 A 40 30 001

TRANSACTION ABORT: CLR EXAMPLE
T
IM

E

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

003 002 T1 UPDATE B 10 24 -

⋮

011 003 T1 ABORT - - - -

⋮

026 011 T1 CLR-003 B 24 10 002

027 026 T1 CLR-002 A 40 30 001

TRANSACTION ABORT: CLR EXAMPLE
T
IM

E

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION ABORT: CLR EXAMPLE
T
IM

E

22

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

003 002 T1 UPDATE B 10 24 -

⋮

011 003 T1 ABORT - - - -

⋮

026 011 T1 CLR-003 B 24 10 002

027 026 T1 CLR-002 A 40 30 001

028 027 T1 TXN-END - - - nil

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTION ABORT: CLR EXAMPLE
T
IM

E

22

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

003 002 T1 UPDATE B 10 24 -

⋮

011 003 T1 ABORT - - - -

⋮

026 011 T1 CLR-003 B 24 10 002

027 026 T1 CLR-002 A 40 30 001

028 027 T1 TXN-END - - - nil

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ABORT ALGORITHM

First write an ABORT record to log for the txn.

Then analyze the txn’s updates in reverse order. For
each update record:
→ Write a CLR entry to the log.
→ Restore old value.

Lastly, write a TXN-END record and release locks.

Notice: CLRs never need to be undone.

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TODAY’S AGENDA

Log Sequence Numbers

Normal Commit & Abort Operations

Fuzzy Checkpointing

Recovery Algorithm

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

NON-FUZZY CHECKPOINTS

The DBMS halts everything when it takes a checkpoint
to ensure a consistent snapshot:
→ Halt the start of any new txns.
→ Wait until all active txns finish executing.
→ Flushes dirty pages on disk.

This checkpoint implementation is bad for runtime
performance, but it makes recovery easy.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SLIGHTLY BETTER CHECKPOINTS

Pause modifying txns while the DBMS takes
the checkpoint.
→ Flushes dirty pages on disk.
→ Block queries from acquiring write latch on

pages.
→ Do not wait until all txns finish before taking

the checkpoint.

Page 1

Page 2

Page 3C
he

ck
po

in
t

T
ran

saction

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SLIGHTLY BETTER CHECKPOINTS

Pause modifying txns while the DBMS takes
the checkpoint.
→ Flushes dirty pages on disk.
→ Block queries from acquiring write latch on

pages.
→ Do not wait until all txns finish before taking

the checkpoint.

Page 1

Page 2

Page 3C
he

ck
po

in
t

T
ran

saction

Page 3

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SLIGHTLY BETTER CHECKPOINTS

Pause modifying txns while the DBMS takes
the checkpoint.
→ Flushes dirty pages on disk.
→ Block queries from acquiring write latch on

pages.
→ Do not wait until all txns finish before taking

the checkpoint.

Page 1

Page 2

Page 3C
he

ck
po

in
t

T
ran

saction

Page 3

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SLIGHTLY BETTER CHECKPOINTS

Pause modifying txns while the DBMS takes
the checkpoint.
→ Flushes dirty pages on disk.
→ Block queries from acquiring write latch on

pages.
→ Do not wait until all txns finish before taking

the checkpoint.

Page 1

Page 2

Page 3C
he

ck
po

in
t

T
ran

saction

Page 3

Page 1 Page 2 Page 3

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SLIGHTLY BETTER CHECKPOINTS

Pause modifying txns while the DBMS takes
the checkpoint.
→ Flushes dirty pages on disk.
→ Block queries from acquiring write latch on

pages.
→ Do not wait until all txns finish before taking

the checkpoint.

Page 1

Page 2

Page 3C
he

ck
po

in
t

T
ran

saction

Page 3

Page 1

Page 1 Page 2 Page 3

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SLIGHTLY BETTER CHECKPOINTS

Pause modifying txns while the DBMS takes
the checkpoint.
→ Flushes dirty pages on disk.
→ Block queries from acquiring write latch on

pages.
→ Do not wait until all txns finish before taking

the checkpoint.

We must record internal state as of the
beginning of the checkpoint.
→ Active Transaction Table (ATT)
→ Dirty Page Table (DPT)

Page 1

Page 2

Page 3C
he

ck
po

in
t

T
ran

saction

Page 3

Page 1

Page 1 Page 2 Page 3

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ACTIVE TRANSACTION TABLE (ATT)

One entry per currently active txn.
→ txnId: Unique txn identifier.
→ status: The current status mode of the txn.
→ lastLSN: Most recent LSN created by the txn.

Remove a txn's ATT entry after appending its the TXN-
END record to the in-memory WAL buffer.

Txn Status Codes:
→ Running (R)
→ Committing (C)
→ Candidate for Undo (U)

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DIRTY PAGE TABLE (DPT)

Separate data structure to track which pages in the
buffer pool contain changes that the DBMS has not
flushed to disk yet.

One entry per dirty page in the buffer pool:
→ recLSN: The LSN of the oldest log record that modified the

page since the last time the DBMS wrote the page to disk. This
allows the DBMS to reason about whether the page was
modified before or after the checkpoint started.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SLIGHTLY BETTER CHECKPOINTS

At the first checkpoint, assuming P11
was flushed, T2 is still running and
there is only one dirty page (P22).

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END >
007:<CHECKPOINT
 ⮱ATT={T2},
 ⮱DPT={P22}>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<T2 COMMIT>
011:<T3, B→P33, 200, 400>
012:<CHECKPOINT
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>
013:<T3, B→P33, 400, 600>

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SLIGHTLY BETTER CHECKPOINTS

At the first checkpoint, assuming P11
was flushed, T2 is still running and
there is only one dirty page (P22).

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END >
007:<CHECKPOINT
 ⮱ATT={T2},
 ⮱DPT={P22}>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<T2 COMMIT>
011:<T3, B→P33, 200, 400>
012:<CHECKPOINT
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>
013:<T3, B→P33, 400, 600>

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SLIGHTLY BETTER CHECKPOINTS

At the first checkpoint, assuming P11
was flushed, T2 is still running and
there is only one dirty page (P22).

At the second checkpoint, assuming
P22 was flushed, T2 and T3 are active
and the dirty pages are (P11, P33).

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END >
007:<CHECKPOINT
 ⮱ATT={T2},
 ⮱DPT={P22}>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<T2 COMMIT>
011:<T3, B→P33, 200, 400>
012:<CHECKPOINT
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>
013:<T3, B→P33, 400, 600>

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SLIGHTLY BETTER CHECKPOINTS

At the first checkpoint, assuming P11
was flushed, T2 is still running and
there is only one dirty page (P22).

At the second checkpoint, assuming
P22 was flushed, T2 and T3 are active
and the dirty pages are (P11, P33).

This protocol still is not ideal because
the DBMS stalls txns during the
checkpoint…

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END >
007:<CHECKPOINT
 ⮱ATT={T2},
 ⮱DPT={P22}>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<T2 COMMIT>
011:<T3, B→P33, 200, 400>
012:<CHECKPOINT
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>
013:<T3, B→P33, 400, 600>

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

FUZZY CHECKPOINTS

A fuzzy checkpoint is where the DBMS allows active
txns to continue to run while the system writes the log
records for checkpoint.
→ No attempt to force dirty pages to disk.

New log records to track checkpoint boundaries:
→ CHECKPOINT-BEGIN: Indicates start of checkpoint
→ CHECKPOINT-END: Contains the state of the ATT + DPT from

when the checkpoint started.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END>
007:<CHECKPOINT-BEGIN>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<CHECKPOINT-END
 ⮱ATT={T2},
 ⮱DPT={P22} >
011:<T2 COMMIT>
012:<T3, B→P33, 200, 400>
013:<CHECKPOINT-BEGIN>
014:<T3, B→P33, 10, 12>
015:<CHECKPOINT-END
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>

FUZZY CHECKPOINTS

Assume the DBMS flushes P11 before
the first checkpoint starts.

Any txn that begins after the
checkpoint starts is excluded from the
ATT in the CHECKPOINT-END record.

The LSN of the CHECKPOINT-BEGIN
record is written to the
MasterRecord when it completes.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END>
007:<CHECKPOINT-BEGIN>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<CHECKPOINT-END
 ⮱ATT={T2},
 ⮱DPT={P22} >
011:<T2 COMMIT>
012:<T3, B→P33, 200, 400>
013:<CHECKPOINT-BEGIN>
014:<T3, B→P33, 10, 12>
015:<CHECKPOINT-END
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>

FUZZY CHECKPOINTS

Assume the DBMS flushes P11 before
the first checkpoint starts.

Any txn that begins after the
checkpoint starts is excluded from the
ATT in the CHECKPOINT-END record.

The LSN of the CHECKPOINT-BEGIN
record is written to the
MasterRecord when it completes.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END>
007:<CHECKPOINT-BEGIN>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<CHECKPOINT-END
 ⮱ATT={T2},
 ⮱DPT={P22} >
011:<T2 COMMIT>
012:<T3, B→P33, 200, 400>
013:<CHECKPOINT-BEGIN>
014:<T3, B→P33, 10, 12>
015:<CHECKPOINT-END
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>

FUZZY CHECKPOINTS

Assume the DBMS flushes P11 before
the first checkpoint starts.

Any txn that begins after the
checkpoint starts is excluded from the
ATT in the CHECKPOINT-END record.

The LSN of the CHECKPOINT-BEGIN
record is written to the
MasterRecord when it completes.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

001:<T1 BEGIN>
002:<T2 BEGIN>
003:<T1, A→P11, 100, 120>
004:<T1 COMMIT>
005:<T2, C→P22, 100, 120>
006:<T1 TXN-END>
007:<CHECKPOINT-BEGIN>
008:<T3 BEGIN>
009:<T2, A→P11, 120, 130>
010:<CHECKPOINT-END
 ⮱ATT={T2},
 ⮱DPT={P22} >
011:<T2 COMMIT>
012:<T3, B→P33, 200, 400>
013:<CHECKPOINT-BEGIN>
014:<T3, B→P33, 10, 12>
015:<CHECKPOINT-END
 ⮱ATT={T2,T3},
 ⮱DPT={P11,P33}>

FUZZY CHECKPOINTS

Assume the DBMS flushes P11 before
the first checkpoint starts.

Any txn that begins after the
checkpoint starts is excluded from the
ATT in the CHECKPOINT-END record.

The LSN of the CHECKPOINT-BEGIN
record is written to the
MasterRecord when it completes.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ARIES: RECOVERY PHASES

Phase #1: Analysis
→ Examine the WAL in forward direction starting at

MasterRecord to identify dirty pages in the buffer pool and
active txns at the time of the crash.

Phase #2: Redo
→ Repeat all actions starting from an appropriate point in the log

(even txns that will abort).

Phase #3: Undo
→ Reverse the actions of txns that did not commit before the

crash.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ARIES: OVERVIEW

Start from last BEGIN-CHECKPOINT
found via MasterRecord.

Analysis: Figure out which txns
committed or failed since checkpoint.

Redo: Repeat all actions.

Undo: Reverse effects of failed txns.

CRASH!

Oldest log
record of txn

active at crash

Smallest
recLSN in DPT
after Analysis

T
IM

E

A
1

R
2

U
3

Start of last
checkpoint

WAL

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ANALYSIS PHASE

Scan log forward from the beginning of the last
successful checkpoint to the end of the log and
construct the ATT.

If the DBMS finds a TXN-END record, remove its
corresponding txn from ATT.

All other records:
→ If txn not in ATT, add it with undo candidate status (U).
→ On commit, change the txn's status in ATT to commit (C).

For update log records:
→ If page Px not in DPT, add Px to DPT, set its recLSN=LSN.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ANALYSIS PHASE

At end of the Analysis Phase:
→ ATT identifies which txns were active at time of crash.
→ DPT identifies which dirty pages might not have made it to

disk.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ANALYSIS PHASE EXAMPLE

WAL
010:<CHECKPOINT-BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

36

CRASH!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ANALYSIS PHASE EXAMPLE

WAL
010:<CHECKPOINT-BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

(TxnId, Status)

36

CRASH!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ANALYSIS PHASE EXAMPLE

WAL
010:<CHECKPOINT-BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

Modify A in page P33

(PageId, RecLSN)

36

CRASH!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ANALYSIS PHASE EXAMPLE

WAL
010:<CHECKPOINT-BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

36

CRASH!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ANALYSIS PHASE EXAMPLE

WAL
010:<CHECKPOINT-BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

36

CRASH!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ANALYSIS PHASE EXAMPLE

WAL
010:<CHECKPOINT-BEGIN>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<CHECKPOINT-END
 ATT={T96,T97},
 DPT={P20}>
 ⋮
040:<T96 COMMIT>
 ⋮
050:<T96 TXN-END>
 ⋮

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

36

CRASH!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

REDO PHASE

The goal is to repeat history to reconstruct the database
state at the moment of the crash:
→ Reapply all updates (even aborted txns!) and redo CLRs.

There are techniques that allow the DBMS to avoid
unnecessary reads/writes, but we will ignore them in
this lecture…

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

REDO PHASE

Scan forward from the log record containing smallest
recLSN in DPT.

For each update log record or CLR with a LSN, redo
action unless one of the following conditions are true:
→ Target page is not in DPT.
→ Target page is in DPT, but that log record’s LSN is less than the

page’s recLSN. DBMS does not need to retrieve page from disk
for this check.

→ Target page is in DPT, but that log record’s LSN ≤ pageLSN.
DBMS must retrieve the page from disk for this check.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

REDO PHASE

To redo an action:
→ Reapply logged update.
→ Set pageLSN to log record’s LSN.
→ No additional logging, no forced flushes!

At the end of Redo Phase, write TXN-END log records
for all txns with commit status (C) and remove them
from the ATT.

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

UNDO PHASE

Undo all txns that were active at the time of crash and
therefore will never commit.
→ These are all the txns with undo candidate status (U) in the

ATT after the Analysis Phase.

Process them in reverse LSN order using the lastLSN
to speed up traversal.
→ At each step, pick the largest lastLSN across all transactions in

the ATT.
→ Traverse lastLSNs in the same order, but in reverse, for how

the updates happened originally.

Write a CLR for every modification.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>

FULL EXAMPLE
41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>

FULL EXAMPLE
41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>

FULL EXAMPLE

prevLSNs

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>

FULL EXAMPLE
41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>

FULL EXAMPLE
41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

FULL EXAMPLE
41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

FULL EXAMPLE

CRASH!

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DPT

ATT

flushedLSN

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

CRASH!

FULL EXAMPLE
42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DPT

ATT

flushedLSN

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

CRASH!

FULL EXAMPLE

TxnId Status lastLSN

T1 U 003

T2 U 004

T3 U 005

PageId recLSN

P1 001

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DPT

ATT

flushedLSN

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

CRASH!

FULL EXAMPLE

TxnId Status lastLSN

T1 U 017

T2 U 019

T3 U 018

PageId recLSN

P1 001

P3 014

P5 013

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DPT

ATT

flushedLSN

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

CRASH!

FULL EXAMPLE

TxnId Status lastLSN

T1 U 017

T2 U 019

T3 U 018

PageId recLSN

P1 001

P3 014

P5 013

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DPT

ATT

flushedLSN

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

CRASH!

FULL EXAMPLE

TxnId Status lastLSN

T1 U 017

T2 U 019

T3 U 018

PageId recLSN

P1 001

P3 014

P5 013

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DPT

ATT

flushedLSN

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

CRASH!

FULL EXAMPLE

TxnId Status lastLSN

T2 U 019

T3 U 018

PageId recLSN

P1 001

P3 014

P5 013

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DPT

ATT

flushedLSN

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

101:<T2 CLR-019, D→P5, UndoNext=014>

CRASH!

FULL EXAMPLE

TxnId Status lastLSN

T2 U 019

T3 U 018

PageId recLSN

P1 001

P3 014

P5 013

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DPT

ATT

flushedLSN

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

101:<T2 CLR-019, D→P5, UndoNext=014>
102:<T3 CLR-018, C→P1, UndoNext=005>

CRASH!

FULL EXAMPLE

TxnId Status lastLSN

T2 U 019

T3 U 018

PageId recLSN

P1 001

P3 014

P5 013

42

005:<T3 BEGIN>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DPT

ATT

flushedLSN

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

101:<T2 CLR-019, D→P5, UndoNext=014>
102:<T3 CLR-018, C→P1, UndoNext=005>
103:<T3 TXN-END>

CRASH!

FULL EXAMPLE

TxnId Status lastLSN

T2 U 019

T3 U 018

PageId recLSN

P1 001

P3 014

P5 013

Flush dirty pages
+ WAL to disk!

42

005:<T3 BEGIN>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DPT

ATT

flushedLSN

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

101:<T2 CLR-019, D→P5, UndoNext=014>
102:<T3 CLR-018, C→P1, UndoNext=005>
103:<T3 TXN-END>

CRASH!

FULL EXAMPLE

Flush dirty pages
+ WAL to disk!

CRASH!

42

005:<T3 BEGIN>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

101:<T2 CLR-019, D→P5, UndoNext=014>
102:<T3 CLR-018, C→P1, UndoNext=005>
103:<T3 TXN-END>

CRASH!

CRASH!

DPT

ATT
TxnId Status lastLSN

T2 U 101

PageId recLSN

P1 001

P3 014

P5 013

FULL EXAMPLE

flushedLSN

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

101:<T2 CLR-019, D→P5, UndoNext=014>
102:<T3 CLR-018, C→P1, UndoNext=005>
103:<T3 TXN-END>

201:<T2 CLR-014, B→P3, UndoNext=004>

CRASH!

CRASH!

DPT

ATT
TxnId Status lastLSN

T2 U 101

PageId recLSN

P1 001

P3 014

P5 013

FULL EXAMPLE

flushedLSN

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

011:<CHECKPOINT-BEGIN>
012:<CHECKPOINT-END>
013:<T1, A→P5, 1, 2>
014:<T2, B→P3, 2, 3>
015:<T1 ABORT>
016:<T1 CLR-014, B→P3, UndoNext=013>
017:<T1 TXN-END>
018:<T3, C→P1, 4, 5>
019:<T2, A→P5, 6, 7>

101:<T2 CLR-019, D→P5, UndoNext=014>
102:<T3 CLR-018, C→P1, UndoNext=005>
103:<T3 TXN-END>

201:<T2 CLR-014, B→P3, UndoNext=004>
202:<T2 TXN-END>

CRASH!

CRASH!

DPT

ATT
TxnId Status lastLSN

T2 U 101

PageId recLSN

P1 001

P3 014

P5 013

FULL EXAMPLE

flushedLSN

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ADDITIONAL CRASH ISSUES (1)

What does the DBMS do if it crashes during recovery in
the Analysis Phase?
→ Nothing. Just run recovery again.

What does the DBMS do if it crashes during recovery in
the Redo Phase?
→ Again nothing. Redo everything again.

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ADDITIONAL CRASH ISSUES (2)

How can the DBMS improve performance during
recovery in the Redo Phase?
→ Assume that it is not going to crash again and flush all changes

to disk asynchronously in the background.

How can the DBMS improve performance during
recovery in the Undo Phase?
→ Lazily rollback changes before new txns access pages.
→ Rewrite the application to avoid long-running txns.

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUSION

Mains ideas of ARIES:
→ WAL with STEAL + NO-FORCE
→ Fuzzy Checkpoints (snapshot of dirty page ids)
→ Redo everything since the earliest dirty page
→ Undo txns that never commit
→ Write CLRs when undoing, to survive failures during restarts

Log Sequence Numbers:
→ LSNs identify log records; linked into backwards chains per

transaction via prevLSN.
→ pageLSN allows comparison of data page and log records.

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

NEXT CLASS

You now know how to build a single-node DBMS.

Let's make it even more challenging and start talking
about distributed DBMSs!

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Database Recovery
	Slide 2: ADMINISTRIVIA
	Slide 3: CRASH RECOVERY
	Slide 4: CRASH RECOVERY OVERVIEW
	Slide 5: ARIES
	Slide 6: ARIES: MAIN IDEAS
	Slide 7: TODAY’S AGENDA

	Log Sequence Numbers
	Slide 8: WAL RECORDS
	Slide 9: WAL BOOKKEEPING
	Slide 10: LOG SEQUENCE NUMBERS
	Slide 11: WRITING LOG RECORDS
	Slide 12: WRITING LOG RECORDS
	Slide 13: WRITING LOG RECORDS
	Slide 14: WRITING LOG RECORDS
	Slide 15: WRITING LOG RECORDS
	Slide 16: WRITING LOG RECORDS
	Slide 17: WRITING LOG RECORDS

	Normal Commit & Abort Operations
	Slide 18: NORMAL EXECUTION
	Slide 19: TRANSACTION COMMIT
	Slide 20: TRANSACTION COMMIT
	Slide 21: TRANSACTION COMMIT
	Slide 22: TRANSACTION COMMIT
	Slide 23: TRANSACTION COMMIT
	Slide 24: TRANSACTION COMMIT
	Slide 25: TRANSACTION COMMIT
	Slide 26: TRANSACTION ABORT
	Slide 27: TRANSACTION ABORT
	Slide 28: TRANSACTION ABORT
	Slide 29: TRANSACTION ABORT
	Slide 30: TRANSACTION ABORT
	Slide 31: TRANSACTION ABORT

	Compensation Log Records
	Slide 32: COMPENSATION LOG RECORDS
	Slide 33: TRANSACTION ABORT: CLR EXAMPLE
	Slide 34: TRANSACTION ABORT: CLR EXAMPLE
	Slide 35: TRANSACTION ABORT: CLR EXAMPLE
	Slide 36: TRANSACTION ABORT: CLR EXAMPLE
	Slide 37: TRANSACTION ABORT: CLR EXAMPLE
	Slide 38: TRANSACTION ABORT: CLR EXAMPLE
	Slide 39: TRANSACTION ABORT: CLR EXAMPLE
	Slide 40: TRANSACTION ABORT: CLR EXAMPLE
	Slide 41: TRANSACTION ABORT: CLR EXAMPLE
	Slide 42: TRANSACTION ABORT: CLR EXAMPLE
	Slide 43: TRANSACTION ABORT: CLR EXAMPLE
	Slide 44: ABORT ALGORITHM
	Slide 45: TODAY’S AGENDA

	Fuzzy Checkpoints
	Slide 46: NON-FUZZY CHECKPOINTS
	Slide 47: SLIGHTLY BETTER CHECKPOINTS
	Slide 48: SLIGHTLY BETTER CHECKPOINTS
	Slide 49: SLIGHTLY BETTER CHECKPOINTS
	Slide 50: SLIGHTLY BETTER CHECKPOINTS
	Slide 51: SLIGHTLY BETTER CHECKPOINTS
	Slide 52: SLIGHTLY BETTER CHECKPOINTS
	Slide 53: ACTIVE TRANSACTION TABLE (ATT)
	Slide 54: DIRTY PAGE TABLE (DPT)
	Slide 55: SLIGHTLY BETTER CHECKPOINTS
	Slide 56: SLIGHTLY BETTER CHECKPOINTS
	Slide 57: SLIGHTLY BETTER CHECKPOINTS
	Slide 58: SLIGHTLY BETTER CHECKPOINTS
	Slide 59: FUZZY CHECKPOINTS
	Slide 60: FUZZY CHECKPOINTS
	Slide 61: FUZZY CHECKPOINTS
	Slide 62: FUZZY CHECKPOINTS
	Slide 63: FUZZY CHECKPOINTS

	Recovery
	Slide 64: ARIES: RECOVERY PHASES
	Slide 65: ARIES: OVERVIEW
	Slide 66: ANALYSIS PHASE
	Slide 67: ANALYSIS PHASE
	Slide 68: ANALYSIS PHASE EXAMPLE
	Slide 69: ANALYSIS PHASE EXAMPLE
	Slide 70: ANALYSIS PHASE EXAMPLE
	Slide 71: ANALYSIS PHASE EXAMPLE
	Slide 72: ANALYSIS PHASE EXAMPLE
	Slide 73: ANALYSIS PHASE EXAMPLE
	Slide 74: REDO PHASE
	Slide 75: REDO PHASE
	Slide 76: REDO PHASE
	Slide 77: UNDO PHASE
	Slide 78: FULL EXAMPLE
	Slide 79: FULL EXAMPLE
	Slide 80: FULL EXAMPLE
	Slide 81: FULL EXAMPLE
	Slide 82: FULL EXAMPLE
	Slide 83: FULL EXAMPLE
	Slide 84: FULL EXAMPLE
	Slide 85: FULL EXAMPLE
	Slide 86: FULL EXAMPLE
	Slide 87: FULL EXAMPLE
	Slide 88: FULL EXAMPLE
	Slide 89: FULL EXAMPLE
	Slide 90: FULL EXAMPLE
	Slide 91: FULL EXAMPLE
	Slide 92: FULL EXAMPLE
	Slide 93: FULL EXAMPLE
	Slide 94: FULL EXAMPLE
	Slide 95: FULL EXAMPLE
	Slide 96: FULL EXAMPLE
	Slide 97: FULL EXAMPLE
	Slide 98: ADDITIONAL CRASH ISSUES (1)
	Slide 99: ADDITIONAL CRASH ISSUES (2)
	Slide 100: CONCLUSION
	Slide 101: NEXT CLASS

