Carnegie Mellon University

Database Recovery

LECTURE #22)) 15-445/645 FALL 2025)») PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Homework #5 is due Sunday Nov 23" @ 11:59pm

Project #4 is due Sunday Dec 7" @ 11:59pm
— Recitation Slides + Video (@280)

Final Exam is on Thursday Dec 11" @ 1:00pm

— Do not make travel plans before this date!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/280

CRASH RECOVERY

Recovery algorithms are techniques to ensure database
consistency, transaction atomicity, and durability
despite failures.

Recovery algorithms have two parts:
— Actions during normal txn processing to ensure that the
DBMS can recover from a failure.

— Actions after a failure to recover the database to a state T d
that ensures atomicity, consistency, and durability. 0 ay

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CRASH RECOVERY OVERVIEW

STEAL + NO-FORCE
Atomicity: Txns may abort/fail.

Durability: Changes of committed
txns should survive system failure.

Desired behavior after the DBMS
restarts (i.e., the contents of volatile

memory are lost):
— T, should be durable.
— T, + T; should be aborted.

Schedule
T, T, T,
BEGIN
W(A)
COMMIT
BEGIN
W(B)
ABORT
BEGIN
R(A)
W(C)
C H!
[}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ARIES

Algorithms for Recovery and
Isolation Exploiting Semantics

Developed at IBM Research in ear
1990s for the DB2 DBMS.

Not all systems implement ARIES
exactly as defined in this paper but
they're close enough.

ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking

and Partial Rollbacks Using
Write-Ahead Logging

C. MOHAN

IBM Almaden Research Center

and

DON HADERLE

IBM Santa Teresa Laboratory

and

BRUCE LINDSAY, HAMID PIRAHESH and PETER SCHWARZ
IBM Almaden Research Center

In this paper we present & simple and efficient method, called ARTES (Algorifhm for Recovery
and Isolation Exploiting Semantics), which supports partial rollbacks of transactions, fine-
granularity (e.g., record) locking and recovery using write-ahead logging (WAL). We introduce
the paradigm of repeating history to redo all missing updates before porforming the rollbacks of
the loser transactions during restart after a system failure. ARIES uses a log sequence number
in each page to correlate the state of # page with respect to logged updates of that page. All
updates of a transaction are logged. including those performed during rollbacks. By appropriate
chaining of the log records written during rollbacks to those written during forward progress, a
bounded amount of logging is ensured during rollbacks even in the face of repeated failures
during restart or of nested rollbacks We deal with a variety of features that are very important
in building and operating an industrial-strength transaction processing system ARIES supports
fuzzy checkpoints, seloctive and deferred restart, fuzzy image copies, media recovery, and high
increment /decrement) which exploit the semantics of the opera
to perform operation logging. ARIES is flexible with respect
to the kinds of buffer management policies that can be implemented. It supports objects of
varying length efficiently. By enabling parallelism during restart, pageoriented redo, and
logical undo, it enhances concurrency and performance. We show why some of the System R
paradigms for logging and recovery, which were based on the shadow page technique, need to be
changed in the context of WAL, We compare ARIES to the WAL-based recovery methods of

Authors’ addresses: C Mohan, Data Base Technology Institute, IBM Almaden Research Conter,
San Jose, CA 95120; D. Haderle, Data Base Technology Institute, IBM Santa Teresa Labora.
tory, San Jose, CA 95150; B. Lindsay, H. Pirahesh, and P. Schwarz, IBM Almaden Research
Center, San Jose, CA 95120,

Permussion to copy without foe all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or ta republish, requires a fee and/or
specific pormission.

© 1992 0362-5915/92/0300-0094 $1.50

ACM Transactions on Database Systems, Vol 17, No. 1, March 1992, Pages 94-162

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics
https://en.wikipedia.org/wiki/Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics
https://dl.acm.org/citation.cfm?id=128770

ARIES: MAIN IDEAS

Write-Ahead Logging:
— Flush WAL record(s) changes to disk before a database object is
written to disk.

— Must use STEAL + NO-FORCE buffer pool policies.

Repeating History During Redo:
— On DBMS restart, retrace actions and restore database to exact
state before crash.

Logging Changes During Undo:

— Record undo actions to log to ensure action is not repeated in
the event of repeated failures.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TODAY’S AGENDA

Log Sequence Numbers
Normal Commit & Abort Operations
Fuzzy Checkpointing

Recovery Algorithm
$DB Flash Talk: ClickHouse

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://clickhouse.com/

WAL RECORDS 5

We need to extend our log record format from last class
to include additional info.

Every log record includes a globally unique log

sequence number (LSN).

— LSNs represent the physical order that txns make changes to
the database.

Various components in the system keep track of LSNs
that pertain to them...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WAL BOOKKEEPING

Log Sequence Number (LSN).

— Unique and monotonically increasing.

Each data page contains a pageLSN.

— The LSN of the most recent log record
that updated the page.

System keeps track of|flushedLSN.

@

N—

LSNs pageLSNs
1

pageLSN

D;%b\

Page

— The max LSN flushed so far.

WAL: Before a page, is written,
pageLSN, < flushedLSN

LT

flushedLSN

s

WAL

Disk

N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

L06 SEQUENCE NUMBERS

Name Location Definition

flushedLSN Memory Last LSN in log on disk

pageLSN page, Newest update to page,
recLSN DPT* Oldest update to page, since
it was last flushed
lastLSN ATT* Latest record of txn T,
MasterRecord Disk LSN of latest checkpoint

* DPT = Dirty Page Table. * ATT = Active Transaction Table.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITING LOG RECORDS

e Log Sequence Numbers [*>
Log S Numb 3 08 >¢q
og Sequence Numbers [— "

,,,,,,,,,,,,,,,,,,,, 001JJ<T, BEGIN>
002<T,, A, 1, 2>

<T, BEGIN>
<T., A, 4, 5>
<T., B, 3, 4>
<T, COMMIT>

003 <1, COMMIT>
004 |<T, BEGIN>
00sf<T,, A, 2, 3>
006 |<T, BEGIN>
007 J<CHECKPOINT>
008 <1, COMMIT>

|
|
|
|
|
|
I 009f<T;, A, 3, 4>
|
|
|
|
|
|

010f<T, BEGIN>
o11f<T,, X, 5, 6>
012f<T,, v, 9, 7>
013f<T,, B, 1, 2>
014)<T, commMIT>

e 015)<T,, B, 2, 3>
e16)<T,, C, 1, 2>7

"""""""""""""""""""""""""" I

1

I A=4|B=3|C=2

1

Buffer Pool

A=5(B=4|C=2

MasterRecord
flushedlL SN
. J Database

’----------

)

J
\-----------

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITING LOG RECORDS

: at e I 001:<T, BEGIN> |
1 | |017:<T, BEGIN> ! I 38§;Z$;'c32,4}+3> !
004:<T, BEGIN>
1 018:<T;, A, 4, 5> I : 005:<T,, A, 2, 3> 1
1 006:<T, BEGIN> i
I 019:<T., B, 3, 4> I | 007 <CHECKPOINT> I
008:<T, COMMIT>
|| 020:<T, COMMIT> : - 009:<T, a3 4> "
| . I I 010:<T. BEGIN>
1 : 11 | 011:<T,, X, 5, 6> I
' 7l ! i]
I\) 1 | 014:<T, COMMIT> I
! ! S N =T I
([h I I T N Sl L0,
: Buffer Pool I I 4 |
: pagersy) | | : 777777 : 5 I
A=4|B= = |
: A=5[B=4|C=2] | | o L |
| “ | I MasterRecord I
1 flushedLSN | 1 |
1) i Database i

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITING LOG RECORDS

|\ .) i WAL
i WAL (Tail) I 1 -
1|l | | I ————— I 001:<T, BEGIN> |
002:<T,, A, 1, 2> I
| 017: <T5 BEGIN> : | 003:<T, C02M1T> :
004:<T, BEGIN>
: 018:<T5, A, 4, 5> I : ggg:dz, A(;Il%l’ 3> 1
:<T, BEGIN>
I 019:<T., B, 3, 4> I | 007 : <CHECKPOINT> :
008:<T, COMMIT>
| | | 020:<T, commrT> : ! oos T 0 1> :
. 10:<T, BEGIN>
1 : | | 011:<T,, X, 5, 6> :
| l | 012E<T4, Y, 9, 7>
L 7 B e |
1 1 — 1 015:<T,, B, 2, 3> :
e Al 016 <T,, C, 1, 2>
: Buffer Pool I 4 |
: -_pageI.SIV 777777777777777777777 : 777777777777777 : |
| A=5|B=4|C=2 v/ [A=4|B=3|C=2 !
| S 1 MasterRecord |
i # FlushedL SN pmm———| | i I
1) i Database i

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITING LOG RECORDS

|\ .) i AL
i WAL (Tail) I 1 I
|| Lo I 001 <1, BEGIN- '
1 | | @17:<T. BEGIN> : i 003.<T COMMIT> :
|| 018:<T,, A, 4, 5> , : oon 2 Y 5 I
006:<T, BEGIN>
| 019:<T;, B, 3, 4> 1 | 007 : <CHECKPOINT > e :
I | | 020:<T; coMmMIT> : : 009. <17, Ay 3, 4> l
- : i i DL :
I l I 012E<T4, Y, 9, 7>
AN 4 J1 i HHPLI Mt i
| p 1 1 812:<T4, B, 2, 3> 1
N | e 16:<T,, C, 1, 2> I
: Buffer Pool I 4 I
: -_pageI.SIV 777777777777777777777 : 7777777777777777777777777777777777 : :
: A=5|B=4|c=2 : 777777777777777777777777777777777777777 : 777777777777777777 A=4(B=3|C=2 :
" e | 1 » MasterRecord -l |
I Flushedl SN =" | I
1) i Database i

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITING LOG RECORDS

'- L N B N N N B B N B N N N N N N _§N | \ —

| = e

] WAL (Tai N |] WAL)k

| (Tail) i | !

T o o cor <1, BEGIV !
:) ’ » >

| I I 003:<T, COMMIT> I

i | LB |
:) ’ ’ >

I | i 006:<T. BEGIN> I

I 007 : <CHECKPOINT> |

i | || mEE |
:) ’ ’ >

I I T B !

:<Ty, X, 5, 6

| I | 012:<Ti, Y, 9, 7§ I
I | 1 013:<T,, B, 1, 2>

I 014:<T, COMMIT> |

| - I !

I I : 4r Shy, c, 1, 2>7 I

e 2= i ‘ i

| H | I

| A= — _ |

I Safetoevictbecause |} L |

: pagelLSN < flushed LSN I : MasterRecord I

|

\ L _ 8 B N B B BN B _§B §B §B §B _§B §B B]| ’

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITING LOG RECORDS

e .) | AL
I WAL (Tail) I 1 !
O N e N | I — I 001:<T; BEGIN> |
1 | | 017:<T, BEGIN> ! I 003. <1 COMMIT> !
| |018:<T,, A, 4, 5> : : 005 T, b 2. |
I»019:<T,, B, 3, 4> i i 007 <CHECKPOINT> !
| | 020:<7; commIT> : ! oas. <1 T4 :
I 5 ! i o11i<r S, 6 :
1 I 012:<T,, Y, 9, 7>
nu 4 J i O14.<T” COMMIT> i
"N \ | — e &1 :
I | _— Sl L0,
: Buffer Pool I P 4 I
: peeersy | | :: """"" :
— Nl 1 Jd 1 I A=4|B=3|C=2 I
s et haraticn |- | I—-—— 1 |
N—Ot scll{'seléo efl,?Ct’f’ i;ﬁg}sve : | MasterRecord :
age > flushe [
pas ,I i Database II
\-----------------— \---------------

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

WRITING LOG RECORDS

All log records have an LSN.

Update the pageLSN every time a txn modifies a record
in the page.

Update the flushedLSN in memory every time the
DBMS writes the WAL butffer to disk.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NORMAL EXECUTION

Each txn invokes a sequence of reads and writes,
followed by commit or rollback.

Assumptions in this lecture:

— All log records fit within a single page.

— Disk writes are atomic.

— Single-versioned tuples with Strong Strict 2PL.

— STEAL + NO-FORCE buffer management with WAL.
— Physical log record scheme.

— Omitting log records for indexes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION COMMIT

When a txn commits, the DBMS writes a COMMIT
record to log and guarantees that all log records up to
txn’s COMMIT record are flushed to disk.

— Log flushes are sequential, synchronous writes to disk.
— Many log records per log page.

When commit succeeds, write TXN-END record to log.

— Indicates that no new log record for that txn will appear in the
log ever again.

— DBMS does not need to flush these records immediately.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION COMMIT

1 . | AL
i WAL (Tail) I 1 !
: R] e]
012:<T, BEGIN> I | 003:<T, COMMIT> I
| | 004:<T, BEGIN> |
| | I 005:<T,, A, 2, 3> I
006:<T, BEGIN> I
1 I 1 007 : <CHECKPOINT>
i i 1 008:<T, COMMIT> |
I I I ol B 1, 25 I
| | 1 011:<T,, COMMIT> :
| . |
I 7 Y : | :
| ~1
7 AN | 1
: Buffer Pool : : 4 |
: -_pageLSIV 777777777777777777777 : 777777777777777 : :
: A=4|B=2|C=2 e T A=4|B=2|C=2 !
| | 1 MasterRecord |
1 flushedl SN | 1 |
1 U)1 i Database i

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION COMMIT

\ - | : m_——N
| WAL (Tail) - . WAL I
,,,,, L a1
|| | 012:<7, BEGIN> I : 002, hc 1 2> :
. 003 :<T,
I 013:<T,, A, 4, 5> : | 004 T, SEE’I“E,? 1
I 014:<7T,, B, 2, 3> I : ggggai’asémé 3> :
*91 5:<T, COMMIT> ! I 008 <T. COMIT- i
1 | I 009:<T,, A, 3, 4> i
| ' | o<1, Comnir
7 = I :<T,, COMMIT> |
I\ J 1 i '
| Buffer Pool I I 4 '
,, |
| H : I
! A=5[B=3|c=2 I 1 |la=4[B=2]c=2 :
1| == 1y I |
1 FlushedLSN : : MasterRecord I
1 \ I
LN N N ---------------’

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION COMMIT

e . I AL
i WAL (Tail) ! T !
i Epvrsprarvreea— . | g e l
| 012:<T, BEGIN> : | 003:<T, COMMIT> :

:<T, BEG
| |013:<T,, A, 4, 5> , : 005 <T" - 2. 3> I
1 L|014:<T,, B, 2, 3> i i 007 <CHECKPOINT> !
* 015:<T, COMMIT>=~— : ! 009 <, A5, 4> "
010:<T,, B, 1, 2>
I i .<T.. COMMI I
! —n e |
1)1 I 04T B 2 3 I
I 1 1 015:<T, COMMIT> 1
e AN | |
: Buffer Pool I : 777777777777777777 4 :
! oo H ! |
I A=5|B=3|C=2 I I A=4|B=2(C=2 :
[I Lt S e R N B b |

1 | | MasterRecord I
I flushedL SN | 1 1
1 U)1 i Database i

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

---\

TRANSACTION COMMIT

|
|

(WAL (Tail) WAL

"" 001:<T, BEGIN>
012:<T, BEGIN> 003 <. CoMIT>
013:<T,, A, 4, 5> 004:<T, BEGIN>
014:<T,, B, 2, 3>
015:<T, COMMIT>=~—

005:<T,, A, 2, 3>
006:<T, BEGIN>

007 : <CHECKPOINT>
008:<T, COMMIT>

009:<T;, A, 3, 4>
010:<T,, B, 1, 2>
011:<T,, COMMIT>
= 012:<T, BEGIN>

013:<T,, A, 4, 5
014:<T, B, 2, 3>

015:<T, COMMIT>

3

~
J

Buffer Pool
A=5|B=3|C=2 ”

1
| MasterRecord
F1uShedL SN "] | |
. — J 1 i Database

R ——— * - N\ o o o o e e
flushedLSN = 015

A=4(B=2(C=2

1
i
1
i
i
i
i
i
[|
i
i
i
i
i
Ll
i
i
L

\-----------

,-------

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION COMMIT

|
|

(WAL (Tail) WAL

"" 001:<T, BEGIN>
012:<T, BEGIN> 003 <. CoMIT>
013:<T,, A, 4, 5> 004:<T, BEGIN>
014:<T,, B, 2, 3>
015:<T, COMMIT>

005:<T,, A, 2, 3>
006:<T, BEGIN>
007 : <CHECKPOINT>
008:<T, COMMIT>
009:<T,, A, 3, 4>
010:<T,, B, 1, 2>
011:<T,, COMMIT>
012:<T, BEGIN>
013:<T,, A, 4, 5>
014:<T,, B, 2, 3>
015:<T, COMMIT>

-----\

.
NN N N N N N B N N B N N § § N § N |

099:<T, TXN-END> 7 |

\-----------

1
@ N

: Buffer Pool | 7

: e |1 | . f : [pageLsn]

: A=sB=3|c=2| | (' / : 777777777777777777 A=4|B=2|C=2
777777777777777777777777 M: Record

: fJushedLS/v—/ I : asterRecor

A J 1 i Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION COMMIT

|
|

e ; WAL
WAL (Tail) |V 1
,,, 001 :<T, BEGIN>
002:<T,, A, 1, 2>
003 :<T, COMMIT>
004:<T, BEGIN>
005:<T,, A, 2, 3>
006:<T3 BEGIN>
: <CHECKPOINT>
008:<T2 COMMIT>
009:<T,, A, 3, 4>
010:<T,, B, 1, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T,, A, 4, 5>
014:<T,, B, 2, 3>
015:<T4 COMMIT>

-----\

099:<T, TXN-END> 7

' L N N N N N N _§ |
[
(S
~

Buffer Pool 4

A=5|B=3|C=2

A=4(B=2(C=2

1

i

1

i

i

i

i

i

i

| i
- -
i

~/ i

i

i

Ll

i

i

1

1

| MasterRecord
FIUShEdL SN mmmmmm— 1

1

. J Database

|
i

\-----------

,-----

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT

Aborting a txn is a special case of the ARIES undo
operation applied to only one txn.

We need to add another field to our log records:

— prevLSN: The previous LSN for the txn.

— This maintains a linked-list for each txn to make it easier to
walk through its log records.

A txn does not release its locks until it has successfully
reverted all its changes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT

Aborting a txn is a special case of the ARIES undo
operation applied to only one txn.

We need to add another field to our log records:

— prevLSN: The previous LSN for the txn.

— This maintains a linked-list for each txn to make it easier to
walk through its log records.

A txn does not release its locks until it has successfully
reverted all its changes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT

,-----------~

----- N

LSN | prevLSN [; -
errdil) :
@12|nil <T, BEGIN> -1
013]012 <T4’ A, 4, 5> :
014]013)<T,, B, 2, 3> :
|
|

7
L) :

()

Buffer Pool :
,,,,,,,,,,,,,,,,,,,,, :
A=5(B=3|C=2 :
,,,,,,,,,,,,,,,,,,,,,,,, |
flushedLSN !
\]

, --------------- \

WAL :

,,,,,,,,,,,,,,,,,,,,,, |

1

1

1

1

1

1

1

1

1

1

174 I

- i

i 777777777777777777 -_pageLSN :

: A=4|B=2(C=2 I

1 I

| MasterRecord :
1

I Database I

| — J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

---~

,-------

TRANSACTION ABORT

3

| T TR N RN RN ———— N T _——_—_—_—————— N
r : N | I WAL !
WAL (Tail) e T !
012|nil:<T, BEGIN> " : i !
013]012:<T,, A, 4, 5> || : I
014]013:<T,, B, 2, 3> || 1 i I
015|014:<T, ABORT> ! ! :
11 [I

7 = I I

- J | o :
4 B 1
Buffer Pool | P i 4 I

-_pageLSIV 777777777777777777777 : 7777777777777777777777777777777 : :
A=5[B=3|c=2| | | : 777 : 777777777777777777 A=4|B=2|C=2 :

7777777777777777777 | 1 MasterRecord 1

flushedL SN | 1 1

.) i Database i
_________________ - D I ——

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT

¢
e : N |
: WAL (Tail) !
1 | |012|nil:<T, BEGIN> } !
| |e131012:<T,, A, 4, 5> || 4
I 014]013:<T,, B, 2, 3> I
*015|014:<T4 ABORT> :
I 777 1
1 : < - IR
| @ 099]098:<T, TXN END>7) !
1 <
: Buffer Pool -
: -_pageLSIV 7777777777777777 :
I - - = I
| A=5[B=3|C=2| | | i
: flushedL SN |
1 \ J 1
‘e ————— -7

I --------------- \

WAL :

,,,,,,,,,,,,,,,,,,,,,, |

1

1

1

1

1

1

1

1

1

1

174 I

- i

i 777777777777777777 -_pageLSN :

: A=4|B=2(C=2 I

1 I

| MasterRecord :
1

I Database I

| — J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

-----------\

TRANSACTION ABORT

""""""""" \ 7T
r . i
WAL(Tail) ! L |
12|nil:<T, BE - I
012|n1 P Important: Need to record the i
0131012:<T,, A i
014]013: steps to undo the txn. -
015]014: o : :
777 I : !
099]098:<T, TXN-END o I :
" J | : |
() 1
Buffer Pool : | : 4 -
-_pageLSIV 777777777777777777777 : 7777777777777777777 : :
A=5[B=3|c=2| | | : 777 : 777777777777777777 A=4|B=2|C=2 :
7777777777777777777 | 1 MasterRecord |
flushedL SN | 1 1
.) i Database i
N 4 N o o o J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

COMPENSATION LOG RECORDS

A compensation log record (CLR) describes the
actions taken to reverse (i.e., undo) the changes of a

previous update log record.
— Each CLR contains all the fields of an update log record plus the
undoNextLSN pointer (i.e., next-to-be-undone LSN).

DBMS adds CLRs to in-memory WAL buffer but it
does not wait for them to be flushed before notifying
the application the txn aborted.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT: CLR EXAMPLE 5

prevLSN TxnId Type Object Before After UndoNextLSN
001 nil T, BEGIN - - - -

002 001 T, UPDATE A 30 40 _
003 002 T, UPDATE B 10 24 -

011 003 T, ABORT - - - -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT: CLR EXAMPLE 5

prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T, BEGIN - - - -

002 001 T, UPDATE A 30 40 -
003 002 T, UPDATE B 10 24 -
011 003 T, ABORT - - - -

026 011 T, CLR-003 B 24 10 002

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT: CLR EXAMPLE 5

prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T, BEGIN = - - -

002 001 T, UPDATE A 30 40 -
003 002 T, UPDATE B 10 24 - |
011 003 - ABORT - . - -

! 1\
026 011 T, ICLR-0@3I B 24 10 002

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT: CLR EXAMPLE 5

prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T, BEGIN - - - -

002 001 T, UPDATE A 30 40 -
@03 002 T, UPDATE B 1 @»\ /'24 -
011 @03 T, ABORT - - X - -

026 011 T, CLR-003 B I 24 I | 10 I 002

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT: CLR EXAMPLE 5

LSN prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T, BEGIN - - - -
002 [¢+804+——___ UPDATE A 30 40 -
003 002 T, UPDATE -
011 003 T, ABORT - -
026 011 T, CLR-003 B 24 10

The LSN of the next log
record to be undone.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT: CLR EXAMPLE 5

prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T, BEGIN - - - -
002 001 T, UPDATE A 30 40 -
003 002 T, UPDATE B 10 24 -
011 003 T, ABORT - - - -
026 011 T, CLR-003 B 24 10 002
027 026 T, CLR-002 A 40 30 001

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT: CLR EXAMPLE 5

prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T, BEGIN - - - -

002 001 T, UPDATE A 30 40 - |
od3 002 T, UPDATE B 10 24 -

011 003 ~ ABORT - : - -

026 011 T. CLRY003 B 24 10 002

027 026 T, |cLr-002] A 40 30 001

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT: CLR EXAMPLE 5

prevLSN TxnId Type

Object Before After UndoNextLSN

001 nil T, BEGIN - - - -
002 001 T, UPDATE A 30 40 -
003 002 T, UPDATE B 10 /24 -
011 @03 T, ABORT - - A - -
026 011 T, CLR-003 B 2 0 002
027 026 T, CLR-002 A | 40 30| oo

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT: CLR EXAMPLE 5

prevLSN TxnId Type Object Before After UndoNextLSN

001 J+rit I BEGIN - - - -
002 001 T, 40 _
003 002 T, UPDATE -
011 003 T, ABORT - - - N\ -
026 011 T, CLR-003 B 24 10 dp2
027 026 T, CLR-002 A 40 30 | oo1]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT: CLR EXAMPLE 5

prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T, BEGIN - - - -
002 001 T, UPDATE A 30 40 -
003 002 T, UPDATE B 10 24 -
011 003 T, ABORT - - - -
026 011 T, CLR-003 B 24 10 002
027 026 T, CLR-002 A 40 30 001
028 027 T, TXN-END - - - nil

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION ABORT: CLR EXAMPLE 5

prevLSN TxnId Type Object Before After UndoNextLSN

001 nil T, BEGIN - - - -
002 001 T, UPDATE A 30 40 -
003 002 T, UPDATE B 10 24 -
011 003 T, ABORT - - - -
026 011 T, CLR-003 B 24 10 002
027 026 T, CLR-002 A 40 30 001
028 027 T, TXN-END - - - nil

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ABORT ALGORITHM

First write an ABORT record to log for the txn.

Then analyze the txn’s updates in reverse order. For

each update record:
— Write a CLR entry to the log.
— Restore old value.

Lastly, write a TXN-END record and release locks.

Notice: CLRs never need to be undone.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TODAY’S AGENDA

LegSequenee Numbers

N LC g Al . .
Fuzzy Checkpointing

Recovery Algorithm

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NON-FUZZY CHECKPOINTS

The DBMS halts everything when it takes a checkpoint

to ensure a consistent snapshot:

— Halt the start of any new txns.

— Wait until all active txns finish executing.
— Flushes dirty pages on disk.

This checkpoint implementation is bad for runtime
performance, but it makes recovery easy.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SLIGHTLY BETTER CHECKPOINTS

Pause modifying txns while the DBMS takes

the checkpoint.

—> Flushes dirty pages on disk.

— Block queries from acquiring write latch on
pages.

— Do not wait until all txns finish before taking
the checkpoint.

Checkpoint

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SLIGHTLY BETTER CHECKPOINTS

Pause modifying txns while the DBMS takes
the checkpoint.

— Flushes dirty pages on disk. 8

— Block queries from acquiring write latch on °§
pages. §

— Do not wait until all txns finish before taking S
the checkpoint.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SLIGHTLY BETTER CHECKPOINTS

Pause modifying txns while the DBMS takes
the checkpoint.
— Flushes dirty pages on disk.

— Block queries from acquiring write latch on
pages.

— Do not wait until all txns finish before taking
the checkpoint.

Checkpoint
UOLIDSUD.L |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SLIGHTLY BETTER CHECKPOINTS 5

Pause modifying txns while the DBMS takes
the checkpoint.
— Flushes dirty pages on disk.

— Block queries from acquiring write latch on
pages.

— Do not wait until all txns finish before taking
the checkpoint.

Checkpoint
UOLIDSUD.L |

Page 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SLIGHTLY BETTER CHECKPOINTS 5

Pause modifying txns while the DBMS takes
the checkpoint.
— Flushes dirty pages on disk.

— Block queries from acquiring write latch on
pages.

— Do not wait until all txns finish before taking
the checkpoint.

Checkpoint
UOLIDSUD.L |

Page 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SLIGHTLY BETTER CHECKPOINTS 5

Pause modifying txns while the DBMS takes

the checkpoint.

— Flushes dirty pages on disk.

— Block queries from acquiring write latch on
pages.

— Do not wait until all txns finish before taking
the checkpoint.

Checkpoint
UOLIDSUD.L |

We must record internal state as of the
beginning of the checkpoint.

— Active Transaction Table (ATT)

— Dirty Page Table (DPT)

Page 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ACTIVE TRANSACTION TABLE (ATT)

One entry per currently active txn.

— txnld: Unique txn identifier.

— status: The current status mode of the txn.
— lastLSN: Most recent LSN created by the txn.

Remove a txn's ATT entry after appending its the TXN-
END record to the in-memory WAL bufter.

Txn Status Codes:

— Running (R)

— Committing (C)

— Candidate for Undo (U)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DIRTY PAGE TABLE (DPT)

Separate data structure to track which pages in the
buffer pool contain changes that the DBMS has not
flushed to disk yet.

One entry per dirty page in the buffer pool:

— recLSN: The LSN of the oldest log record that modified the
page since the last time the DBMS wrote the page to disk. This
allows the DBMS to reason about whether the page was
modified before or after the checkpoint started.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SLIGHTLY BETTER CHECKPOINTS
("

. : 001:<T, BEGIN>
At the first checkpoint, assuming P;; 002:<T, BEGIN>

was flushed, T, is still running and 003:<T,, A>P,,, 100, 120>
there is only one dirty page (P,,). 004:<T, COMMIT>

005:<T,, C>P,,, 100, 120>
006:<T, TXN-END >

00A, <CHECKPOINT
YATT={T,},
Y DPT={P,,}>

008:<T, BEGIN>
009:<T,, A>P,,, 120, 130>
010:<T, COMMIT>
011:<T,, B>P,,, 200, 400>
012: <CHECKPOINT

S ATT=(T,,T,},

% DPT=(P,,,P.}>
013:<T,, B>P,,, 400, 600>

_ 7)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SLIGHTLY BETTER CHECKPOINTS
("

. : 001:<T, BEGIN>
At the first checkpoint, assuming P;; 002:<T, BEGIN>

was flushed, T, is still running and 003:<T,, A>P,,, 100, 120>
: - 004:<T, COMMIT>

there is only one dirty page (P,,). 005.<T., [CoP,| 100, 120>
006:<T, TXN-END >
007 : <CHECKPOINT

S ATT=(T,},

& DPT=(P,,}
008:<T, BEGIN>
009:<T,, A>P,,, 120, 130>
010:<T, COMMIT>
011:<T,, B>P,,, 200, 400>
012: <CHECKPOINT

Y ATT=(T,,T5},

& DPT=(P,,,Ps}>
013:<T,, B+P,,, 400, 600>

_ 7)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SLIGHTLY BETTER CHECKPOINTS
("

. : 001:<T, BEGIN>
At the first checkpoint, assuming P;; 002:<T, BEGIN>

was flushed, T, is still running and 003:<T,, ASP,,, 100, 120>

, . 004:<T, COMMIT>
there is only one dirty page (P,,). 005:<T., C-P, . 100, 120>

At the second checkpoint, assuming 006:<T, TXN-END >
, 007 : <CHECKPOINT

P,, was flushed, T, and T; are active S ATT=(T,},

and the dirty pages are (P,,, P3,). $DPT={Py,}>

008:<T, BEGIN>
009:<T,, A>P,,, 120, 130>
010:<T, COMMIT>

011:<T,, B>P,,, 200, 400>

012 <CHECKPOINT
Y ATT=(T,,T5},
$DPT={P,,,P3;}>

013:<T,, B>P,,, 400, 600>

_ 7)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SLIGHTLY BETTER CHECKPOINTS

. : 001:<T, BEGIN>
At the first checkpoint, assuming P;; 002:<T, BEGIN>

was flushed, T, is still running and 003:<T,, ASP,,, 100, 120>

)) 004:<T, COMMIT>
there is only one dirty page (P,,). 005:<T., C-P, . 100, 120>

At the second checkpoint, assuming 006:<T, TXN-END >
) 007 : <CHECKPOINT
P,, was flushed, T, and T; are active S ATT=(T,},

% DPT={P,,}>
008:<T, BEGIN>
009:<T,,[A>P,,| 120, 130>
010:<T, COMMIT>

and the dirty pages are (P,,, P3,).

This protocol still is not ideal because 011:<T,, [B>P,,] 200, 400>
12 : <CHECKPOINT
the DBMS stalls txns during the o1z ATT=(T, T.3
22 "3J
checkpoint... %DPT={P11,P33}>,
013:<T,, B>P,;, 400, 800>

_ 7)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FUZZY CHECKPOINTS

A fuzzy checkpoint is where the DBMS allows active
txns to continue to run while the system writes the log

records for checkpoint.
— No attempt to force dirty pages to disk.

New log records to track checkpoint boundaries:

— CHECKPOINT-BEGIN: Indicates start of checkpoint

— CHECKPOINT-END: Contains the state of the ATT + DPT from
when the checkpoint started.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FUZZY CHECKPOINIS

001:<T, BEGIN>

002:<T, BEGIN>
Assume the DBMS flushes P,, before 003.<T, AP, . 100, 120>
the first checkpoint starts. 004:<T, COMMIT>
005:<T,, C>P,,, 100, 120>
_ 006:<T, TXN-END>
Any txn that begins after the »007 : <CHECKPOINT-BEGIN>
: : 008:<T, BEGIN>
checkpomt starts is excluded from the 200.<T., AP, 120, 1305
ATT in the CHECKPOINT-END record. 010 : <CHECKPOINT-END
& ATT={T,},
% DPT={P,,} >
011:<T, COMMIT>
The LSN of the CHECKPOINT-BEGIN 012:<T,, B>P,,, 200, 400>
record is written to the 013: <CHECKPOINT-BEGIN>
. 014:<T,, B>P,,, 10, 12>
MasterRecord when it completes. 015 <CHECKPOINT-END

$ATT=(T, T3,
$DPT=(P,, P1s}>

'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FUZZY CHECKPOINIS

001:<T, BEGIN>

002:<T, BEGIN>
Assume the DBMS flushes P,, before 003.<T., AP, 100, 120>
the first checkpoint starts. 004:<T, COMMIT>

005:<T,, CP,,, 100, 120>
, 006:<T, TXN-END>
Any txn that begins after the 007 : <CHECKPOINT-BEGIN>

. . 008:<T, BEGIN>
checkpoint starts is excluded from the 009:<T., A>P,. . 120, 130>

ATT in the CHECKPOINT-END record. »010:<CHECKPOINT—END

Y ATT={T,3},
% DPT={P,,} >
011:<T, COMMIT>
The LSN of the CHECKPOINT-BEGIN 012:<T., BoP.,, 200, 400>
record is written to the 013 : <CHECKPOINT-BEGIN>
) 014:<T,, BsP,,, 10, 12>
MasterRecord when it completes. D15 <CHECKPOINT-END

$ATT=(T, T3,
$DPT=(P,, P1s}>

'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FUZZY CHECKPOINIS

001:<T, BEGIN>
»002:<T2 BEGIN>
Assume the DBMS flushes P,, before 003.<T, AP, . 100, 120>
the first checkpoint starts. 004:<T, COMMIT>
005:<T,, C>P,,, 100, 120>
006:<T, TXN-END>

Any txn that begins after the 007 : <CHECKPOINT-BEGIN>
: : 008:<T. BEGIN>
checkpomt starts is excluded from the 205 <T; AP 120, 130>
ATT in the CHECKPOINT-END record. 010 : <CHECKPOINT-END
e
=Py} >
011:<T, COMMIT
The LSN of the CHECKPOINT-BEGIN 0121, Bop.. 200, 4005
record is written to the 013 :<CHECKPOINT-BEGIN>
MasterRecord when it completes O14:<T5, BoPy, 10, 12>
p : 015 : <CHECKPOINT-END

$ATT=(T, T3,
$DPT=(P,, P1s}>

'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FUZZY CHECKPOINIS

001:<T, BEGIN>

002:<T, BEGIN>
Assume the DBMS flushes P, before 003.<T . AP, 100, 120
the first checkpoint starts.

044 :<T, COMMIT>
<T,, CsP,,, 100, 120>
0d6:<T, TXN-END>

Any txn that begins after the 007 : <CHECKPOINT-BEGIN>
: : 008:<T, BEGIN>

checkpomt starts is excluded from the 200.<T., AP, 120, 1305
ATT in the CHECKPOINT-END record. 010 : <CHECKPOINT-END

S ATT=(T.},

SDPT={P,,}

< >

The LSN of the CHECKPOINT-BEGIN 012, B 200, 4005
record is written to the 013 :<CHECKPOINT-BEGIN>
MasterR d when i 1 014:<T,, B>P,,, 10, 12>

$ATT=(T, T3,
$DPT=(P,, P3;}>

\ 7)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ARIES: RECOVERY PHASES

Phase #1: Analysis

— Examine the WAL in forward direction starting at
MasterRecord to identify dirty pages in the buffer pool and
active txns at the time of the crash.

Phase #2: Redo

— Repeat all actions starting from an appropriate point in the log
(even txns that will abort).

Phase #3: Undo

— Reverse the actions of txns that did not commit before the
crash.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ARIES: OVERVIEW

lll

Start from last BEGIN-CHECKPOINT ¢ Oldest log | AT
found via MasterRecord. e |

Analysis: Figure out which txns Smallest

committed or failed since checkpoint. : e Anabeis i "
Redo: Repeat all actions.
. Start of last 1
. - heckpoint
Undo: Reverse effects of failed txns. checkpoint | ‘
: AR U

CRASH! &

ll

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ANALYSIS PHASE

Scan log forward from the beginning of the last
successful checkpoint to the end of the log and
construct the ATT.

If the DBMS finds a TXN-END record, remove its
corresponding txn from ATT.

All other records:
— If txn not in ATT, add it with undo candidate status (U).
— On commit, change the txn's status in ATT to commit (C).

For update log records:
— If page P, not in DPT, add P, to DPT, set its recLSN=LSN.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ANALYSIS PHASE

At end of the Analysis Phase:
— ATT identifies which txns were active at time of crash.

— DPT identifies which dirty pages might not have made it to
disk.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ANALYSIS PHASE EXAMPLE

(" WAL)

B 010 : <CHECKPOINT-BEGIN>
: LSN ATT DPT
020:<T,;, A>P,,, 10, 15>
: m 010
030 : <CHECKPOINT-END 020
ATT={T,s, Tos},
DPT=(P,,}> 030
: 040
040:<T,, COMMIT>
: 050
050:<T,, TXN-END>
Y@, CRASH! 7
\ J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ANALYSIS PHASE EXAMPLE

WAL)

\\

B 020:<T,, APy, 10, 15>

010 :<CHECKPOINT-BEGIN>

030: <CHECKPOINT-END
ATT={Tg¢, To7},
DPT={P,p}>

040:<T,, COMMIT>

050:<T,, TXN-END>

o) ECRASH.' 7 y

P (Txnld, Status)

>

y
020 (Tge,U)

030

040

050

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ANALYSIS PHASE EXAMPLE

-

Z AL \

\\

mo20:<7, [AP) 10, 15>

010:<CHEC

Modify A in page P,

030: <CHECKPOINT-END
ATT={Tg¢, To7},
DPT={P,p}>

040:<T,, COMMIT>

050:<T,, TXN-END>

Y®. CRASH! 7)

=)

010 ! (Pageld, RecLSN) |

>

7 —

020

(Tgs,U)

(P55,020)

030

040

050

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ANALYSIS PHASE EXAMPLE

(

WAL)

B 030 <CHECKPOINT-END

010: <CHECKPOINT-BEGIN>
020:<T,,, A>P,,, 10, 15>
ATT=(T,, To;3,

DPT={P,,}>
040:<T,, COMMIT>

050:<T,, TXN-END>

LSN ATT DPT
010

020 (Ty,U) (P,5,020)

030 (T, U), (T,,,U) (P,,,020), (P,,,008)
040

050

\\

o) ECRASH.' 7 y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ANALYSIS PHASE EXAMPLE

WAL)

B 040:<T,, COMMIT>

010: <CHECKPOINT-BEGIN>
020:<T,,, A>P,,, 10, 15>
030 : <CHECKPOINT-END

ATT={Tg¢, To7},
DPT={P,5}>

050:<T,, TXN-END>

LSN ATT DPT
010

020 (Ty,U) (P,5,020)

030 (T, U), (T,,,U) (P,,,020), (P,,,008)
040 (T,,C), (T,,,U) (P,,,020), (P,,, 008)
050

\\

o) ECRASH.' 7 y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ANALYSIS PHASE EXAMPLE

WAL)

m 050: <T,, TXN-END>

010: <CHECKPOINT-BEGIN>

020:<T,,, A>P,,, 10, 15>

030 : <CHECKPOINT-END
ATT=(T,, To;3,
DPT={P,,}>

040:<T,, COMMIT>

LSN ATT DPT
010

020 (Ty,U) (P,5,020)

030 (T, U), (T,,,U) (P,,,020), (P,,,008)
040 (T,,C), (T,,,U) (P,,,020), (P,,, 008)
050 (T,,,U) (P,,,020), (P,,,008)

\\

o) ECRASH.' 7 y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

REDD PHASE 5

The goal is to repeat history to reconstruct the database

state at the moment of the crash:
— Reapply all updates (even aborted txns!) and redo CLRs.

There are techniques that allow the DBMS to avoid
unnecessary reads/writes, but we will ignore them in
this lecture...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

REDD PHASE

Scan forward from the log record containing smallest
recLSN in DPT.

For each update log record or CLR with a LSN, redo

action unless one of the following conditions are true:

— Target page is not in DPT.

— Target page is in DPT, but that log record’s LSN is less than the
page’s recLSN. DBMS does not need to retrieve page from disk
for this check.

— Target page is in DPT, but that log record’s LSN < pageLSN.
DBMS must retrieve the page from disk for this check.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

REDD PHASE

To redo an action:

— Reapply logged update.

— Set pageLSN to log record’s LSN.

— No additional logging, no forced flushes!

At the end of Redo Phase, write TXN-END log records

for all txns with commit status (C) and remove them
from the ATT.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

UNDO PHASE

Undo all txns that were active at the time of crash and

therefore will never commit.

— These are all the txns with undo candidate status (U) in the
ATT after the Analysis Phase.

Process them in reverse LSN order using the lastLSN

to speed up traversal.

— At each step, pick the largest 1astLSN across all transactions in
the ATT.

— Traverse 1astLSNs in the same order, but in reverse, for how
the updates happened originally.

Write a CLR for every modification.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

011:
012:
013:
014:
015:

<CHECKPOINT-BEGIN>
<CHECKPOINT-END>
<T,, AP, 1, 2>
<T,, BsP,, 2, 3>
<T, ABORT>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

011: <CHECKPOINT-BEGIN>

012: <CHECKPOINT-END>

013:<T,, AP, 1, 2>

014:<T,, B>P,, 2, 3>

015:<T, ABORT>

016:<T, CLR-014, B+P,, UndoNext=013>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

011 :<CHECKPOINT-BEGIN>

012: <CHECKPOINT-END>

013:<T,, A>P;, 1, 2>

014:<T,, B>P,;, 2, 3>
prevLSNs 15:<T, ABORT>
16:<T, CLR-014, B->P,;, UndoNext=013>
=017 :<T, TXN-END>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

011: <CHECKPOINT-BEGIN>

012: <CHECKPOINT-END>

013:<T,, AP, 1, 2>

014:<T,, B>P,, 2, 3>

015:<T, ABORT>

016:<T, CLR-014, B+P,, UndoNext=013>
017:<T, TXN-END>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

011: <CHECKPOINT-BEGIN>
012: <CHECKPOINT-END>

013:<T,, AP, 1, 2>

014:<T,, B>P,, 2, 3>

015:<T, ABORT>

016:<T, CLR-014, B+P,, UndoNext=013>
017:<T, TXN-END>

018:<T,, C+P,, 4, 5>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

011: <CHECKPOINT-BEGIN>
012: <CHECKPOINT-END>

013:<T,, AP, 1, 2>

014:<T,, B>P,, 2, 3>

015:<T, ABORT>

016:<T, CLR-014, B+P,, UndoNext=013>
017:<T, TXN-END>

018:<T,, C+P,, 4, 5>

019:<T,, AP, 6, 7>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

011: <CHECKPOINT-BEGIN>
012: <CHECKPOINT-END>

013:<T,, AP, 1, 2>

014:<T,, B>P,, 2, 3>

015:<T, ABORT>

016:<T, CLR-014, B+P,, UndoNext=013>
017:<T, TXN-END>

018:<T,, C+P,, 4, 5>

019:<T,, AP, 6, 7>

‘@, CRASH!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE
-:---------——:»91 1:<CHECKPOINT-BEGIN>

ATT 012: <CHECKPOINT-END>
013:<T,, AP, 1, 2>

014:<T,, B>P,, 2, 3>

015:<T, ABORT>

016:<T, CLR-014, B>P,, UndoNext=013>
017:<T, TXN-END>

018:<T,, C+P,, 4, 5>

019:<T,, AP, 6, 7>

‘@, CRASH!

DPT

\. J

flushedlL SN

’-----------“
L N B N N N B N N B F N N B N N B B N § |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

("= ============, | 011:<CHECKPOINT-BEGIN>
1 (ATT \#01 2: <CHECKPOINT-END>

| .

I TxnId Status lastLSN I 013-<T1’ A_>P5, 1’ 2>

i I | 014:<T,, B>P,, 2, 3>

| i u 003 | 2 3

I T, U 004 I 015:<T, ABORT>

N 005 1| 016:<T, CLR-014, B~P,, UndoNext=013>
1 \ J 017:<T, TXN-END>

' 018:<T,, C>P,, 4, 5>

l l ° 3 1» ’

i DPT I |019:<T,, A>P;, 6, 7>

: | | X CRASH!

I P, 001 |

| |

| |

1\ J

: flushedL SN :

S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

r---------------‘ 011 :<CHECKPOINT-BEGIN>
() .

1 | 012:<CHECKPOINT-END>

' AT bl e13:<T,, AsP, 1, 2>

I TxnId Status lastLSN I) v 57 ’

| I 014:<T,, B»>P,, 2, 3>

I T, u 017 | 2 3

N pop I | 015:<T, ABORT>

I 018 1| 016:<T, CLR-014, B~P,, UndoNext=013>

1 L J 1| @17:<T, TXN-END>

I 018:<T,, C>P,, 4, 5>

l l ° 3 1» ’

i DPT 1]019:<T,, AP, 6, 7>

| I () 7 crasH

I P, 001]

| P, 014 |

| P, 013 :

: \ J 1

: flushedLSN :

N e e o o o o o e e e e

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

’-----------“

L B B N N N §B &N §N B N N N _§N 3

7

~

ATT
TxnId Status lastLSN
T, U 017
T, U 019
T, u 018
\. J
[D”)
Pageld recLSN
P, 001
ir, 014
Ps 013

flushedlLSN

.
AuN EEN BN BN SN EEE B .

FULL EXAMPLE

011:
012:
013:
014:
015:
016:
017:
018:
019:

<CHECKPOINT-BEGIN>
<CHECKPOINT-END>
<T,, A>P;, 1, 2>
<T,, B»P;, 2, 3>
<T, ABORT>

<T, CLR-014, B-»P,, UndoNext=013>

<T, TXN-END>
<T,, C>P,, 4, 5>
<T,, AP, 6, 7>

@ CRASH!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

r--------------~‘ 011 :<CHECKPOINT-BEGIN>
() 1 012:<CHECKPOINT-END>

: ATT I

i , 1 | 013:<T,, AP, 1, 2>

| I 014:<T,, B»>P,, 2, 3>

I T, u 017 1 2 3

N R po I | 015:<T, ABORT>

I 018 1| 016:<T, CLR-014, B~P,, UndoNext=013>

1 \ J 1| 017:<T; TXN-END>

1 018:<T,, C>P,, 4, 5>

l l ° 3 1» ’

i DPT 1.|019:<T,, A>P., 6, 7>

| T (i o cras:

I P, 001 i

| P, 014 1

| P, 013 :

: \ J 1

| [Flushedsn :

N e e o o o o o e e e e

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

—=—======—======_ | 011:<CHECKPOINT-BEGIN>
(ATT) 012: <CHECKPOINT-END>

013:<T,, AP, 1, 2>
014:<T,, B>P,, 2, 3>
015:<T, ABORT>

TxnId Status lastLSN

(

1

1

1

1

1

| T,] 0194

: T, 018 016:<T, CLR-014, B>P,, UndoNext=013>
1 \ 017:<T, TXN-END>

I r 018:<T,, C>P,, 4, 5>
l . 3 19 ’

I DPT 019:<T,, A>P., 6, 7>
! '@ CRASH!

| P, 001 |

| P, 014 1

| P, 013 I

| 1

1\ J 1

| [Flushedsn :
‘--------------—'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

(1
r N\ 1 | 012:<CHECKPOINT-END>
: AT bl e13:<T,, AsP., 1, 2>
I TxnId Status lastLSN I) v 57 ’
i || 014:<T,, B>P;, 2, 3>4
: T, u 019 | 015:<T, ABORT> \
I 018 1| 016:<T, CLR-014, B~P,, UndoNext=0j3>
1 U J 1| @17:<T, TXN-END>
!) 018:<T,, C>P,, 4, 5>
l l ° 3 1» ’
i DPT || 019:<T,, AP, 6, 7>
| | | 1l crash
o p ot |»101:<T2 CLR-019, D>P;, UndoNext=014>
| P, 013 :
: \ J 1
: flushedLSN :
\)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

005:<T, BEGIN>
mmmm——mmmm————=—==_ | 011:<CHECKPOINT-BEGIN> *

(1
r N\ 1 | 012:<CHECKPOINT-END>
: AT b 013:<T,, AP, 1, 2>
I TxnId Status lastLSN 1) B 57 ’
I || 014:<T,, B>P;, 2, 3>4
: T, u 019 | 015:<T, ABORT> \
I 018 1| 016:<T, CLR-014, B~P,, UndoNext=0j3>
1 \ J 1| @17:<T, TXN-END>
!) 018:<T,, C>P,, 4, 5>
l l ° 3 1» ’
i DPT |1 019:<T,, A5P;, 6, 7>
| || mcmash
i -~ 1y | 101:<T, CLR-019, D>P., UndoNext=014>
|| G 013 J»mz:a3 CLR-018, C>P,, UndoNext=005>=—
1N I
: flushedlL SN :
\ [

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

005:<T, BEGIN>
mmmm——mmmm————=—==_ | 011:<CHECKPOINT-BEGIN> *

r { N 1

i ATE |0 om 1, 2

I TxnId Status lastLSN :) v 57 ’

i || 014:<T,, B>P;, 2, 3>4

T N commra—r I | 015:<T, ABORT> \

I 018 1| 016:<T, CLR-014, B~P,, UndoNext=0j3>
1 U J 1| @17:<T, TXN-END>

I) 018:<T,, C3P,, 4, 5>

: DPT : 019:<T3’ A 11 h di

| || wrorasm | Ty pages

e e I R * | + WAL to disk!

1T o4 1 | 101:<T, CLR® - ext=014>
| 013 I | 102:<T, CLR-0] / C>P,, UndoNext=005>=
1\ 1#103:03 TXN-END>

: flushedL SN r ‘)

\)

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

’-----------\

FULL EXAMPLE 005:<T, BEGIN>

-------------- - 011 : <CHECKPOINT-BEGIN> 4
012 : <CHECKPOINT-END>
013:<T,, A>P., 1, 2>
014:<T,, B>P,, 2, 3>
\3>

015:<T, ABORT>

016:<T, CLR-014, B~»P;, UndoNext=0
017:<T, TXN-END>

018:<T;, C>P,, 4, 5>

019:<T,, A
®. CRASH!

101:<T, CLRS - ext=014>

i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I [102:<T, CLR-0] // C>P,, UndoNext=005>=—
. 1#1 03:<T, TXN-END>

1

_

DPT
Flush dirty pages

+ W AL to disk!

LR 4
flushedL SN ,Q, CRASH!

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

7

~

: AT1

: TxnId Status lastLSN

I T, U 101

|

|

|

| . J
1 ~ A
: DPT

: Pageld recLSN

1 P 001

| P, 014

| P, 013

|

1 . J
: FlushedLSN

\

L B B N N N §B &N §N B N N N _§N 3

L B N B B B B N B N B N B N B B B B B B B J

FULL EXAMPLE

011: <CHECKPOINT-BEGIN>
012: <CHECKPOINT-END>

013:<T,, AP, 1, 2>

014:<T,, B>P,, 2, 3>

015:<T, ABORT>

016:<T, CLR-014, B>P,, UndoNext=013>
017:<T, TXN-END>

018:<T,, C+P,, 4, 5>

019:<T,, AP, 6, 7>

‘@, CRASH!

101:<T, CLR-019, D»P., UndoNext=014>
102:<T, CLR-018, C»P,, UndoNext=005>
103:<T, TXN-END>

‘@, CRASH!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

(m============== | 011:<CHECKPOINT-BEGIN>

I @ N 1 012 :<CHECKPOINT-END>

I ATT b | 013:<T,, AP, 1, 2>

i TxnId Status lastLSN I ’ " >’ ’

| I 014:<T,, B»>P,, 2, 3>

I T, u 101 I 2 3

, I | @15:<T, ABORT>

: : 016:<T1 CLR-014, B+P3, UndoNext=013>
1\ J : 017:<T1 TXN-END>

1 018:<T,, C>P., 4, 5>

I | . 3 1» ’

| DPT : 019:<T2, A9P5, 6, 7>

| || wcRash

: é 014 | 101:<T2 CLR-019, D+P5, UndoNext=014>
: P 013 : 102:<T3 CLR-018, C+P1, UndoNext=005>
1. " | 103:<T3 TXN-END>

: fl ushedLSN : 0@5 CRAS H ',

S, 201:<T, CLR-014, B>P,, UndoNext=004>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FULL EXAMPLE

r---------------‘ 011 :<CHECKPOINT-BEGIN>

1 () 1 012 :<CHECKPOINT-END>

I ATT b1 013:<T,, AsP.. 1, 2>

| TxnId Status lastLSN 1) v >’ ’

| I 014:<T,, B»>P,, 2, 3>

I T, u 101 I 2 3

: I 015:<T, ABORT>

: : 016:<T, CLR-014, B->P,, UndoNext=013>

1 U J 11 017:<T, TXN-END>

I 018:<T,, C>P., 4, 5>

I | . 3 1» ’

I DPT I 019:<T,, AP, 6, 7>

| | | mcRas

i o1a 1 | 101:<T, CLR-019, D>P., UndoNext=014>

: P, 013 : 102:<T, CLR-018, C-»P,, UndoNext=005>

1. J 1 | 103:<T, TXN-END>

: f 1 ushedLS/V : 0@5 CRAS H ',

S, 201:<T, CLR-014, B>P,, UndoNext=004>
202:<T, TXN-END> 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ADDITIONAL CRASH ISSUES (1)

W hat does the DBMS do if it crashes during recovery in
the Analysis Phase?

— Nothing. Just run recovery again.

W hat does the DBMS do if it crashes during recovery in
the Redo Phase?

— Again nothing. Redo everything again.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ADDITIONAL CRASH ISSUES (2)

How can the DBMS improve performance during
recovery in the Redo Phase?

— Assume that it is not going to crash again and flush all changes
to disk asynchronously in the background.

How can the DBMS improve performance during
recovery in the Undo Phase?

— Lazily rollback changes before new txns access pages.
— Rewrite the application to avoid long-running txns.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCLUSION

Mains ideas of ARIES:

— WAL with STEAL + NO-FORCE

— Fuzzy Checkpoints (snapshot of dirty page ids)

— Redo everything since the earliest dirty page

— Undo txns that never commit

— WTrite CLRs when undoing, to survive failures during restarts

Log Sequence Numbers:

— LSNs identify log records; linked into backwards chains per
transaction via prevLSN.

— pageLSN allows comparison of data page and log records.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NEXT CLASS

You now know how to build a single-node DBMS.

Let's make it even more challenging and start talking
about distributed DBMSs!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Database Recovery
	Slide 2: ADMINISTRIVIA
	Slide 3: CRASH RECOVERY
	Slide 4: CRASH RECOVERY OVERVIEW
	Slide 5: ARIES
	Slide 6: ARIES: MAIN IDEAS
	Slide 7: TODAY’S AGENDA

	Log Sequence Numbers
	Slide 8: WAL RECORDS
	Slide 9: WAL BOOKKEEPING
	Slide 10: LOG SEQUENCE NUMBERS
	Slide 11: WRITING LOG RECORDS
	Slide 12: WRITING LOG RECORDS
	Slide 13: WRITING LOG RECORDS
	Slide 14: WRITING LOG RECORDS
	Slide 15: WRITING LOG RECORDS
	Slide 16: WRITING LOG RECORDS
	Slide 17: WRITING LOG RECORDS

	Normal Commit & Abort Operations
	Slide 18: NORMAL EXECUTION
	Slide 19: TRANSACTION COMMIT
	Slide 20: TRANSACTION COMMIT
	Slide 21: TRANSACTION COMMIT
	Slide 22: TRANSACTION COMMIT
	Slide 23: TRANSACTION COMMIT
	Slide 24: TRANSACTION COMMIT
	Slide 25: TRANSACTION COMMIT
	Slide 26: TRANSACTION ABORT
	Slide 27: TRANSACTION ABORT
	Slide 28: TRANSACTION ABORT
	Slide 29: TRANSACTION ABORT
	Slide 30: TRANSACTION ABORT
	Slide 31: TRANSACTION ABORT

	Compensation Log Records
	Slide 32: COMPENSATION LOG RECORDS
	Slide 33: TRANSACTION ABORT: CLR EXAMPLE
	Slide 34: TRANSACTION ABORT: CLR EXAMPLE
	Slide 35: TRANSACTION ABORT: CLR EXAMPLE
	Slide 36: TRANSACTION ABORT: CLR EXAMPLE
	Slide 37: TRANSACTION ABORT: CLR EXAMPLE
	Slide 38: TRANSACTION ABORT: CLR EXAMPLE
	Slide 39: TRANSACTION ABORT: CLR EXAMPLE
	Slide 40: TRANSACTION ABORT: CLR EXAMPLE
	Slide 41: TRANSACTION ABORT: CLR EXAMPLE
	Slide 42: TRANSACTION ABORT: CLR EXAMPLE
	Slide 43: TRANSACTION ABORT: CLR EXAMPLE
	Slide 44: ABORT ALGORITHM
	Slide 45: TODAY’S AGENDA

	Fuzzy Checkpoints
	Slide 46: NON-FUZZY CHECKPOINTS
	Slide 47: SLIGHTLY BETTER CHECKPOINTS
	Slide 48: SLIGHTLY BETTER CHECKPOINTS
	Slide 49: SLIGHTLY BETTER CHECKPOINTS
	Slide 50: SLIGHTLY BETTER CHECKPOINTS
	Slide 51: SLIGHTLY BETTER CHECKPOINTS
	Slide 52: SLIGHTLY BETTER CHECKPOINTS
	Slide 53: ACTIVE TRANSACTION TABLE (ATT)
	Slide 54: DIRTY PAGE TABLE (DPT)
	Slide 55: SLIGHTLY BETTER CHECKPOINTS
	Slide 56: SLIGHTLY BETTER CHECKPOINTS
	Slide 57: SLIGHTLY BETTER CHECKPOINTS
	Slide 58: SLIGHTLY BETTER CHECKPOINTS
	Slide 59: FUZZY CHECKPOINTS
	Slide 60: FUZZY CHECKPOINTS
	Slide 61: FUZZY CHECKPOINTS
	Slide 62: FUZZY CHECKPOINTS
	Slide 63: FUZZY CHECKPOINTS

	Recovery
	Slide 64: ARIES: RECOVERY PHASES
	Slide 65: ARIES: OVERVIEW
	Slide 66: ANALYSIS PHASE
	Slide 67: ANALYSIS PHASE
	Slide 68: ANALYSIS PHASE EXAMPLE
	Slide 69: ANALYSIS PHASE EXAMPLE
	Slide 70: ANALYSIS PHASE EXAMPLE
	Slide 71: ANALYSIS PHASE EXAMPLE
	Slide 72: ANALYSIS PHASE EXAMPLE
	Slide 73: ANALYSIS PHASE EXAMPLE
	Slide 74: REDO PHASE
	Slide 75: REDO PHASE
	Slide 76: REDO PHASE
	Slide 77: UNDO PHASE
	Slide 78: FULL EXAMPLE
	Slide 79: FULL EXAMPLE
	Slide 80: FULL EXAMPLE
	Slide 81: FULL EXAMPLE
	Slide 82: FULL EXAMPLE
	Slide 83: FULL EXAMPLE
	Slide 84: FULL EXAMPLE
	Slide 85: FULL EXAMPLE
	Slide 86: FULL EXAMPLE
	Slide 87: FULL EXAMPLE
	Slide 88: FULL EXAMPLE
	Slide 89: FULL EXAMPLE
	Slide 90: FULL EXAMPLE
	Slide 91: FULL EXAMPLE
	Slide 92: FULL EXAMPLE
	Slide 93: FULL EXAMPLE
	Slide 94: FULL EXAMPLE
	Slide 95: FULL EXAMPLE
	Slide 96: FULL EXAMPLE
	Slide 97: FULL EXAMPLE
	Slide 98: ADDITIONAL CRASH ISSUES (1)
	Slide 99: ADDITIONAL CRASH ISSUES (2)
	Slide 100: CONCLUSION
	Slide 101: NEXT CLASS

