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ADMINISTRIVIA

Project #4 is due Sunday Dec 7" @ 11:59pm
— Recitation Slides + Video (@300)

Homework #6 is due Sunday Dec 7" @ 11:59pm

Final Exam is on Thursday Dec 11" @ 1:00pm

— Do not make travel plans before this date!

This course is recruiting TAs for the next semester
— Apply at: https://www.ugrad.cs.cmu.edu/ta/S26/
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https://piazza.com/class/me9159rcdhm69w/post/300
https://www.ugrad.cs.cmu.edu/ta/S26/

UPCONING DATABASE TALKS
D oo o XY XTDB

— Zoom

Apache Polaris (DB Seminar) APACHE
— Monday Dec 1** @ 12:00pm POLARIS
— Zoom

Apache Fluss (DB Seminar)

— Monday Dec 7% @ 12:00pm F ’ ussS

— Zoom
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COURSE OUTLINE

Query Planning

Databases are hard. C
oncurrency Control

Distributed databases are harder. -
Operator Execution

Access Methods

Recovery

Buffer Pool Manager

Disk Manager

§2)) DATABASE SYSTEMS (FALL 2025)
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PARALLEL V5. DISTRIBUTED

Parallel DBMSs:

— Nodes are physically close to each other.
— Nodes connected with high-speed LAN.
— Communication cost is assumed to be small.

Distributed DBMSs:

— Nodes can be far from each other.
— Nodes connected using public network.
— Communication cost and problems cannot be ignored.
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DISTRIBUTED DBMSS

Use the building blocks that we covered in single-node
DBMSs to now support transaction processing and

query execution in distributed environments.
— Optimization & Planning

— Concurrency Control

— Logging & Recovery
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DESIGN ISSUES

How does the application find data?
Where does the application send queries?

How to execute queries on distributed data?
— Push query to data.
— Pull data to query.

How do we divide the database across resources?
How does the DBMS ensure correctness?
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DESIGN ISSUES

How does the application find data?
Where does the application send queries?

How to execute queries on distributed data?
— Push query to data.
— Pull data to query.

How do we divide the database across resources?
How does the DBMS ensure correctness?
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TODAY'S AGENDA

System Architectures
Partitioning Schemes

Replication

Distributed Concurrency Control
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SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
what shared resources are directly accessible to CPUs.

This affects how CPUs coordinate with each other and
where they retrieve/store objects in the database.
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SYSTEM ARCHITECTURE 5

Shared- Shared- Shared— Shared-
FEverything Nothing

f Most Common f Common f Common f Non- Extstent?;

(Decreasing) (Increasing)
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SHARED-NOTHING &

Each DBMS node has its own CPU,
memory, and local disk. Network

Nodes only communicate with each

other via network.

— Better performance & efficiency.
— Harder to scale capacity.

— Harder to ensure consistency.

meted
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SHARED-NOTHING EXAMPLE 5

Catalog
Meta-Data Node ; ]

............... #E}ﬂ P1+ID:1-150

Get 1d=200

Application

Server Node ]
P2->ID:151-300
#%ﬂ =
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SHARED-NOTHING EXAMPLE 5
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SHARED-NOTHING EXAMPLE 5
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SHARED-NOTHING EXAMPLE 5

Catalog
Meta-Data [ Node ]

AT > P1->ID:1-100

P3+ID:101-200
J

]
P2>ID:201-300

Application
Server
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SHARED-DISK 5

Nodes access a single logical disk via

an interconnect, but each have their
Own private memories.

— Scale execution layer independently from
the storage layer.

— Nodes can still use direct attached storage
as a slower/larger cache.

— This architecture facilitates data lakes

Network

Distributed F ile%S ystems | §
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SHARED-DISK EXAMPLE

Catalog
Meta-Data f ) - N
Page ABC Storage
Get Id=101 -
Application

Server ( Node | @
\ % . J
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SHARED-DISK EXAMPLE
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SHARED-DISK EXAMPLE
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SHARED-DISK EXAMPLE
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SHARED-DISK EXAMPLE

Catalog
Meta-Data f
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DISTRIBUTED SYSTEM ARCRITECTURE

A distributed DBMS's system architecture specifies the
location of the database's data files. This affects how
nodes coordinate with each other and where they
retrieve/store objects in the database.

Two approaches (not mutually exclusive):
— Push Query to Data
— Pull Data to Query
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PUSH V5. PULL

Approach #1: Push Query to Data

— Send the query (or portion of it) to node that contains the data.

— Perform as much filtering and processing as possible where data
resides before transmitting over network.

Approach #2: Pull Data to Query

— Bring the data to the node that is executing a query that needs it
for processing.

— This is necessary when there is no compute resources available
where database files are located.
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Approac
— Send the
— Perform

resides b

You can perform SQL queries using AWS SDKs, the SELECT Object Content REST API,
(AWS CLI), or the Amazon S3 console, The Amazon s3 console limits the a
more data, use the AWS CLI or the AP,

the AWS Command Line Interface
mount of data returned to 40 MB. To retrieve

. COMPUTE TS Uuroso—e
— This is necessary when there s no P

where database files are located.
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Approac
Query Blob Contents

Article » 07/20/2021 = 10 minutes to read * 3 contributors

The query Blob contents AP applies a simple Structured Que

contents and returns only the queried subset of the data. You can

the contents of a version or snapshot.

> Request
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PUSH QUERY TO DATA

SELECT * FROM R JOIN S
ON R.id = S.1id

Node

=

]
P1»R.id:1-100
P1+S.id:1-100

IDs [101,

ZZZ3K
Application
Server

! Result: RP S

1

P2»R.id:101-200
P2>S.1d:101-200
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PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node e
ON R.id = S.id #_%
- /
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PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node e
ON R.id = S.id #% Page ABC
= /
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PULL DATA TO QUERY

P1>ID:1-100

SELECT * FROM R JOIN S Node r N
Storage

ON R.id = S.id #%
‘/ 7Y
ZZZ [ qui

ZZEK IDs [101,200] Mt: RS
ZZZ3
Application !
Server [ Node |
of

P2>ID:101-200



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE PARTITIONING

Split database across multiple resources:
— Disks, nodes, processors.

— Called "sharding" in NoSQL system:s.

— Fine-Grained vs. Coarse-grained

The DBMS executes query fragments on each partition
and then combines the results to produce a single
answer.
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NAIVE TABLE PARTITIONING

Assign an entire table to a single node.

Assumes that each node has enough storage space for an
entire table.

[deal if queries never join data across tables stored on
different nodes and access patterns are uniform.
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NAIVE TABLE PARTITIONING %

Tablel Table2 Partitions

SES
SES

Ideal Query:
SELECT * FROM tableT
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NAIVE TABLE PARTITIONING %

Tablel Table2 Partitions

SES
SES

Ideal Query:
SELECT * FROM tablel
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NAIVE TABLE PARTITIONING %

Tablel Table2 Partitions

B 1

Ideal Query:
SELECT * FROM tablel
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NAIVE TABLE PARTITIONING %

Tablel Table2 Partitions

=
=

B 1

Ideal Query:
SELECT * FROM tableT
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HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on some

partitioning key and scheme.
— Choose column(s) that divides the database equally in terms of
size, load, or usage.

Partitioning Schemes:
— Hashing

— Ranges

— Predicates

— Round Robin
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HORIZONTAL PARTITIONING

Table
101 |a XXX [2025-11-29
102 |b XXY 12025-11-28
103 |c XYZ |2025-11-29
104 |d XYX 12025-11-27
105 |e XYY |2025-11-29
Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

=

Partitions

SES
SES
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HORIZONTAL PARTITIONING

Partitioning Key Table

—X
101 |a XXX 12025-11-29

102 |b XXY 12025-11-28

103 |c XYZ |2025-11-29

104 |d XYX 12025-11-27

105 e XYY |2025-11-29

Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

=

Partitions

SES
SES
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HORIZONTAL PARTITIONING

Partitioning Key Table

<<
A e

Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2

)| hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

=

Partitions

SES
SES
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HORIZONTAL PARTITIONING

Partitioning Key Table Partitions

~—~X
101

XXX |2025-11-29| hash(a)%4 = P2

a
102 |b XXY |2025-11-28| hash(b)%4 = P4

103 |c XYZ |2025-11-29| hash(c)%4 = P3

104 |d XYX |2025-11-27| hash(d)%4 = P2

105 |e XYY |2025-11-29| hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?
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HORIZONTAL PARTITIONING

Partitioning Key Table Partitions

~—~X
101

XXX |2025-11-29| hash(a)%4 = P2

a
102 |b XXY |2025-11-28| hash(b)%4 = P4

103 |c XYZ |2025-11-29| hash(c)%4 = P3

104 |d XYX |2025-11-27| hash(d)%4 = P2

105 |e XYY |2025-11-29| hash(e)%4 = P1

Ideal Query:
SELECT * FROM table

WHEREIpartitionKey = ?!
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SHARED-DISK PARTITIONING

Node Id=1

[ Storage )

=8 e

Id=1
Id=2
Id=3
Application Id=4

Server M Neee |
#% Td=3
| Id=4 L )
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SHARED-DISK PARTITIONING

[ Storage )

Get Id=1 a a
AR
ZZZ3 Ld=1
ZZZ3 1d22
ZZZ3 Id=3
Application I1d=4

Server M Neee |
#% Td=3
| Id=4 L )
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SHARED-DISK PARTITIONING

[ Node |

Id=1
Id=2

A

7

o . l Get Id=3
Application

Server (

W_Aii:g:j’//,/’ffﬂv
Id=4 N

[ Storage )

d [cd

Id=1
Id=2
Id=3
Id=4

=
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SHARED-DISK PARTITIONING

[ Node ||[ 1d=1 ot
#_% i orage
- d Q
2 Id=1
B Id=2
Id=3
Application ! I1d=4
Server Neee |
T
l TId=4 L )
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SHARED-NOTHING PARTITIONING

[ Node |
o3 lo

Application
Server ( Node — |
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SHARED-NOTHING PARTITIONING

Node —, |

L3:l°

Get Id=1

3
Application

Server ( Node — |
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SHARED-NOTHING PARTITIONING

Node —, |

L3:l°

| Get Id=3
Application

Server ( Node — |
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HORIZONTAL PARTITIONING

Partitioning Key

—=_ lable Partitions
101 xxx [2025-11-29| hash(a)%4 = P2

a
102 |b XXY |2025-11-28| hash(b)%4 = P4

103 |c XYZ |2025-11-29| hash(c)%4 = P3

104 |d XYX |2025-11-27| hash(d)%4 = P2

105 |e XYY |2025-11-29| hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?
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HORIZONTAL PARTITIONING

Partitioning Key Table Partitions

~—~X
101

XXX |2025-11-29| hash(a)%4 = P2

a
102 |b XXY |2025-11-28| hash(b)%4 = P4

103 |c XYZ |2025-11-29| hash(c)%4 = P3

104 |d XYX |2025-11-27| hash(d)%4 = P2

105 |e XYY |2025-11-29| hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?
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HORIZONTAL PARTITIONING

Partitioning Key Table Partitions

~—~X
101

XXX |2025-11-29| hash(a)%5 = P4

a
102 |b XXY |2025-11-28| hash(b)%5 = P3

103 |c XYZ |2025-11-29| hash(c)%5 = P5

104 |d XYX [2025-11-27| hash(d)%5 = P1

105 |e XYY |2025-11-29| hash(e)%5 = P3

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?
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CONSISTENT HASHING

1,0 hash(keyl)

P1

P3

P2

0.5
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CONSISTENT HASHING

1,0 hash(keyl)

NS

P1

P3

P2

0.5
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CONSISTENT HASHING

1,0 hash(keyl)

NS

P1

?

hash(key2)

P2

0.5


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

1,0 hash(keyl)

N

P1

?

hash(key2)

P2

0.5
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CONSISTENT HASHING

1,0 hash(keyl)

hash(key2)

0.5
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CONSISTENT HASHING

1,0 hash(keyl)

hash(key2)

0.5
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CONSISTENT HASHING

1,0

P1

P3

P2

New Partition » P4

0.5
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CONSISTENT HASHING

1,0

S
N—’

7hash(key)P4
= =

0.5
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CONSISTENT HASHING
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CONSISTENT HASHING

1,0

0.5
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CONSISTENT HASHING

1,0

P5 Replication Factor = 3
P1

P3

P2
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Q Couchbase

db
G snowflake

<EROSPIKE

. MEMCAHACHED
%cassandm

sriak

SCYLLA.

CONSISTENT HASHING

1,0 hash(keyl)

Replication Factor = 3

0.5

=
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RENDEZVOUS HASHING

For each key, generate a hash value Partitioning Key
per partition by concatenating the
partition's identifier to hashed key.

101 ja XXX 12025-11-29

102 1b XXY |2025-11-28

Assign key to a partition based on the 103 Jc  [xvz [2025-11-29
hash value with the highest weight.

Consistent Hashing is a specialized
form of Rendezvous Hashing.

Yellowbrick ¢g glgf‘“[em ") druid %8 kafka
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RENDEZVOUS HASHING

For each key, generate a hash value
per partition by concatenating the »
partition's identifier to hashed key.

Assign key to a partition based on the c
hash value with the highest weight.

Consistent Hashing is a specialized hash(a + nodel) = 100
form of Rendezvous Hashing. hash(a + node2) = 90

hash(a + node3) = 80

Yellowbrick ¢ éléf‘“[em ") druid §8 kafka


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing

RENDEZVOUS HASHING

For each key, generate a hash value Assigned Node
per partition by concatenating the » — ..

partition's identifier to hashed key.

Assign key to a partition based on the c
hash value with the highest weight.

'Eéé

Consistent Hashing is a specialized
form of Rendezvous Hashing.

Yellowbrick ¢ gléf“[em ") druid % kafka
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RENDEZVOUS HASHING

For each key, generate a hash value Assigned Node
per partition by concatenating the — i || o [ |
partition's identifier to hashed key.

-
Assign key to a partition based on the . |~Z3
hash value with the highest weight. » i ...

Consistent Hashing is a specialized
form of Rendezvous Hashing.
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RENDEZVOUS HASHING 5

For each key, generate a hash value Assigned Node
per partition by concatenating the —1-

partition's identifier to hashed key.

.
-
Assign key to a partition based on the . |~

hash value with the highest weight. -

Consistent Hashing is a specialized
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REPLICATION

The DBMS can replicate a database across redundant

nodes to increase availability.

— Partitioned vs. Non-Partitioned
— Shared-Nothing vs. Shared-Disk

Design Decisions:

— Replica Configuration
— Propagation Scheme
— Propagation Timing
— Update Method
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REPLICA CONFIGURATIONS

Approach #1: Primary-Replica

— All updates go to a designated primary for each object.

— The primary propagates updates to its replicas by shipping logs.

— Read-only txns may be allowed to access replicas.

— [f the primary goes down, then hold an election to select a new
primary.

Approach #2: Multi-Primary

— Txns can update data objects at any replica.
— Replicas must synchronize with each other using an atomic
commit protocol.
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REPLICA CONFIGURATIONS

Primary-Replica

| Writes Reads |

Reads
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Reads
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K-SAFETY

K-safety is a threshold for determining the fault
tolerance of the replicated database.

The value K represents the number of replicas per data
object that must always be available.

[f the number of replicas goes below this threshold,
then the DBMS halts execution and takes itself offline.
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PROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS decides whether it must wait for that txn's
changes to propagate to other nodes before it can send
the acknowledgement to application.

Propagation levels:
— Synchronous (Strong Consistency)
— Asynchronous (Eventual Consistency)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROPAGATION SCHEME 5

Approach #1: Synchronous

— The primary sends updates to replicas and Commit?l m
then waits for them to acknowledge that I Y > 3 >
they fully applied (i.e., logged) the = @
changes. —
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PROPAGATION SCHEME 5

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

X
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PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Comm l

ir? m Flush!
Y G T 2 >

U N’ PR

Ack l Ack l
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PROPAGATION SCHEME 5

Approach #1: Synchronous

— The primary sends updates to replicas and Commit?l
then waits for them to acknowledge that Y <> T %
. i’ S

they fully applied (i.e., logged) the
changes.

Flush!

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.
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PROPAGATION TIMING

Approach #1: Continuous

— The DBMS sends log messages immediately as it generates
them.

— Also need to send a commit/abort message.

Approach #2: On Commit

— The DBMS only sends the log messages for a txn to the replicas
once the txn is commits.

— Do not waste time sending log records for aborted txns.
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UPDATE METHOD

Approach #1: Active-Active

— A txn executes at each replica independently.

— Need to check at the end whether the txn ends up with the
same result at each replica.

Approach #2: Active-Passive

— Each txn executes at a single location and propagates the
changes to the replica.

— Can either do physical or logical replication.

— Not the same as Primary-Replica vs. Multi-Primary



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SINGLE-NODE V3. DISTRIBUTED

A single-node txn only accesses data that is contained

on one partition.
— The DBMS may not need check the behavior concurrent txns
running on other nodes.

A distributed txn accesses data at one or more

partitions.
— Requires expensive coordination.
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TRANSACTION COORDINATION

[f our DBMS supports multi-operation and distributed
txns, we need a way to coordinate their execution in the
system.

Two different approaches:
— Centralized: Global "traftic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach where
they periodically elect some node to be a temporary
coordinator.
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CENTRALIZED COORDINATOR
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OBSERVATION

We have assumed that the nodes in our distributed
systems are running the same DBMS software.

But organizations often run many different DBMSs in
their applications.

[t would be nice if we could have a single interface for
all our data.
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FEDERATED DATABASES 5

Distributed architecture that connects disparate DBMSs

into a single logical system.
— Expose a single query interface that can access data at any
location.

This is hard and nobody does it well

— Different data models, query languages, limitations.
— No easy way to optimize queries

— Lots of data copying (bad).
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FEDERATED DATABASE EXAMPLE 5
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FEDERATED DATABASE EXAMPLE 5
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DISTRIBUTED CONCURRENCY CONTROL 5

Need to allow multiple txns to execute simultaneously

across multiple nodes.

— Many of the same protocols from single-node DBMSs can be
adapted.

This is harder because of:
— Replication.
— Network Communication Overhead.

— Node Failures (Permanent + Ephemeral).
— Clock Skew.
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DISTRIBUTED 2PL
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CONCLUSION

We have barely scratched the surface on distributed
database systems...

[t is hard to get this right.
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NEXT CLASS

Distributed OLTP Systems
Distributed OLAP Systems
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