Carnegie Mellon University

LECTURE #23)) 15-445/645 FALL 2025)) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #4 is due Sunday Dec 7" @ 11:59pm
— Recitation Slides + Video (@300)

Homework #6 is due Sunday Dec 7" @ 11:59pm

Final Exam is on Thursday Dec 11" @ 1:00pm

— Do not make travel plans before this date!

This course is recruiting TAs for the next semester
— Apply at: https://www.ugrad.cs.cmu.edu/ta/S26/

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/300
https://piazza.com/class/me9159rcdhm69w/post/300
https://www.ugrad.cs.cmu.edu/ta/S26/

UPCONING DATABASE TALKS
D oo o XY XTDB

— Zoom

Apache Polaris (DB Seminar) APACHE
— Monday Dec 1** @ 12:00pm POLARIS
— Zoom

Apache Fluss (DB Seminar)

— Monday Dec 7% @ 12:00pm F ’ ussS

— Zoom

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/futuredata-reconstructing-history-with-xtdb/
https://db.cs.cmu.edu/events/futuredata-apache-polaris/
https://db.cs.cmu.edu/events/future-data-apache-fluss-a-streaming-storage-for-real-time-lakehouse/

COURSE OUTLINE

Query Planning

Databases are hard. C
oncurrency Control

Distributed databases are harder. -
Operator Execution

Access Methods

Recovery

Buffer Pool Manager

Disk Manager

§2)) DATABASE SYSTEMS (FALL 2025)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

COURSE OUTLINE

Databases are hard.
Distributed databases are harder.

Node

| Query Planning

Node

Concurrency Control
Operator Execution

Access Methods

Recovery

Buffer Pool Manager

Disk Manager

Query Planning

Node

Concurrency Control
Operator Execution

Access Methods

Recovery

Buffer Pool Manager

Disk Manager

Query Planning

Node

Concurrency Control
Operator Execution

Access Methods

Recovery

Buffer Pool Manager

Disk Manager

Query Planning

Concurrency Control
Operator Execution

Access Methods

Recovery

Buffer Pool Manager

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARALLEL V5. DISTRIBUTED

Parallel DBMSs:

— Nodes are physically close to each other.
— Nodes connected with high-speed LAN.
— Communication cost is assumed to be small.

Distributed DBMSs:

— Nodes can be far from each other.
— Nodes connected using public network.
— Communication cost and problems cannot be ignored.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DISTRIBUTED DBMSS

Use the building blocks that we covered in single-node
DBMSs to now support transaction processing and

query execution in distributed environments.
— Optimization & Planning

— Concurrency Control

— Logging & Recovery

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DESIGN ISSUES

How does the application find data?
Where does the application send queries?

How to execute queries on distributed data?
— Push query to data.
— Pull data to query.

How do we divide the database across resources?
How does the DBMS ensure correctness?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DESIGN ISSUES

How does the application find data?
Where does the application send queries?

How to execute queries on distributed data?
— Push query to data.
— Pull data to query.

How do we divide the database across resources?
How does the DBMS ensure correctness?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TODAY'S AGENDA

System Architectures
Partitioning Schemes

Replication

Distributed Concurrency Control

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
what shared resources are directly accessible to CPUs.

This affects how CPUs coordinate with each other and
where they retrieve/store objects in the database.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SYSTEM ARCHITECTURE 5

Shared- Shared- Shared— Shared-
FEverything Nothing

f Most Common f Common f Common f Non- Extstent?;

(Decreasing) (Increasing)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SYSTEM ARCHITECTURE 5

Shared- Shared- Shared— Shared-
Everything Nothing

f Most Common f Common f Common f Non- Extstent?

(Decreasing) (Increasing)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-NOTHING &

Each DBMS node has its own CPU,
memory, and local disk. Network

Nodes only communicate with each

other via network.

— Better performance & efficiency.
— Harder to scale capacity.

— Harder to ensure consistency.

meted

- . TigerBeetl Yellowbrick ¢g .mEmEHEHED 3 lasti
Kinzticq 7 TigerBeetle. oracLe wrelastic Fyasol 5 ciuedata
DSGiDS yfqunq NOSQL DATABASE ngraph /{*“5% @ CockroachDB QMOﬂgODB (C/

M, —= == FOUNDATIONDB
Comdb2 :::‘ GEODE éfbit Ap . || ClickHouse cassandra I}] Store VOLTDR CrateDB
‘e RonDB Sy @ Greenplum BRGNS 5 singlestore \/ERTICA

TiDB g redis [ERADATA OCEANBASE (@ Couchbase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-NOTHING EXAMPLE 5

Catalog
Meta-Data Node ;]

............... #E}ﬂ P1+ID:1-150

Get 1d=200

Application

Server Node]
P2->ID:151-300
#%ﬂ =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-NOTHING EXAMPLE 5

Catalog
Get 1d=100 @ Node]
P1»ID:1-150

Get 1d=200

.
lllllllll
.
“

Application

Server Node)
P2->ID:151-300
#%ﬂ =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-NOTHING EXAMPLE 5

Catalog
Get 1d=100 [*@ Node]
Get 1d=200 #%ﬂ P1>ID:1-150
Get 1d=200 Id—200
w
Application

Server Node)
P2->ID:151-300
#%ﬂ =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-NOTHING EXAMPLE 5

Catalog
Meta-Data [Node]

AT > P1->ID:1-100

P3+ID:101-200
J

]
P2>ID:201-300

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-DISK 5

Nodes access a single logical disk via

an interconnect, but each have their
Own private memories.

— Scale execution layer independently from
the storage layer.

— Nodes can still use direct attached storage
as a slower/larger cache.

— This architecture facilitates data lakes

Network

Distributed F ile%S ystems | §
Object Stores

and serverless systems. [] NEON
.) Google g ngialed /VVAPR
@ YDB Apeuratake . yugabyteDB -_Dj druid . Big Query
» OorACLE @earrl presto i+ Cloudera @ dremio [\ceporT . REDoneT
o€ sNowflake ~exapata q p ot IMPALA gz - A3 TN

an oA li et b e e %dcltclbricksGO e L~
oxlasee"Sae SPICE Wik HBRSE ... dY7 b Spanner * ‘Aurora @
Spr K HAWQ

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-DISK EXAMPLE

Catalog
Meta-Data f) - N
Page ABC Storage
Get Id=101 -
Application

Server (Node | @
\ % . J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-DISK EXAMPLE

Catalog
Meta-Data [Node | - X
Storage
AR
— d Iid
Get 1d=102

Page XYZ
Application
Server (Node | @
. J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-DISK EXAMPLE

Catalog

Meta-Data [Node |
AR _ r
Get 1d=101 Node
m S
73 Eﬂj}Eﬁ
Application - g

Server

Page ABC I

—

(Storage)

d |cd

=2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-DISK EXAMPLE

Catalog
Meta-Data f

(Storage)

Application - g
Server (Node | ¢
~
o @

Update 101

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-DISK EXAMPLE

Catalog
Meta-Data f

Update 101

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DISTRIBUTED SYSTEM ARCRITECTURE

A distributed DBMS's system architecture specifies the
location of the database's data files. This affects how
nodes coordinate with each other and where they
retrieve/store objects in the database.

Two approaches (not mutually exclusive):
— Push Query to Data
— Pull Data to Query

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PUSH V5. PULL

Approach #1: Push Query to Data

— Send the query (or portion of it) to node that contains the data.

— Perform as much filtering and processing as possible where data
resides before transmitting over network.

Approach #2: Pull Data to Query

— Bring the data to the node that is executing a query that needs it
for processing.

— This is necessary when there is no compute resources available
where database files are located.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Approac
— Send the
— Perform

resides b

You can perform SQL queries using AWS SDKs, the SELECT Object Content REST API,
(AWS CLI), or the Amazon S3 console, The Amazon s3 console limits the a
more data, use the AWS CLI or the AP,

the AWS Command Line Interface
mount of data returned to 40 MB. To retrieve

. COMPUTE TS Uuroso—e
— This is necessary when there s no P

where database files are located.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html

Approac
Query Blob Contents

Article » 07/20/2021 = 10 minutes to read * 3 contributors

The query Blob contents AP applies a simple Structured Que

contents and returns only the queried subset of the data. You can

the contents of a version or snapshot.

> Request

The query Blob contents request may be constructed

myaccount with the name of your storage account:

pOST Method Request URI

https: / /myaccount. plob.core.windows. netfmyccntainer/myhlcb?cnmp:query

https: //myaccount. plob.core.windows.

hteps: //myaccount. plob.core.windows. net/

net/mycontainer/myhloh'?comp:query&snapshot:<0at eTime>

Filtering and retrievin

PDF | Rss

With Amazon 53

W® Microsoft

4 Feedback

ry Language (sQL) statementon a blob's

also call Query Blob contents toquery

as follows. HTTPS is recommended. Replace

HTTP Version

HTTP/1.0

HTTP/1.1

mycontainer/mybloh‘?comp:que ry&ver sion id=<DateTime>

g data using Amazon S3 Select

amazon

ery la |Quage (SQL) State”'e 1ts to lte the contents oran

t you need. B
| - BY usin
ch reduces the co tg Amazon S3 Select to filter thj
st and latency to retrieve this d is data, you can
Is data.

’r Apache Par.
quet format. It
only), and ser - It also works with obi
! ver-si ob
etermine how the side encrypted objects. You CJ:,c,ts that are
records in the r ' specify th
esult are delimj €
ited.

azon S3 Select
supports a
Select, se subset of SQL .
e SQL reference for Am320n§3:olr more information
elect.

Pbject Conte
nt
e limits the amF;EST AP, the AWS Command Lj
unt of data returned to 40 MBlﬂe Interface
- To retrieve

(CTCSUuUrceo—~«

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://learn.microsoft.com/en-us/rest/api/storageservices/query-blob-contents

PUSH QUERY TO DATA

SELECT * FROM R JOIN S
ON R.id = S.1id

Node

=

]
P1»R.id:1-100
P1+S.id:1-100

IDs [101,

ZZZ3K
Application
Server

! Result: RP S

1

P2»R.id:101-200
P2>S.1d:101-200

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node e
ON R.id = S.id #_%
- /
7 RS
73 IDs [101,200]
g
Application |
Server T Node |
i L J

P2>ID:101-200

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node e
ON R.id = S.id #% Page ABC
= /
ZZ3 [R4S
IZZZ.Z-i IDs [101,200] Page XYZ
Application |
Server T Node |
i L J

P2>ID:101-200

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PULL DATA TO QUERY

P1>ID:1-100

SELECT * FROM R JOIN S Node r N
Storage

ON R.id = S.id #%
‘/ 7Y
ZZZ [qui

ZZEK IDs [101,200] Mt: RS
ZZZ3
Application !
Server [Node |
of

P2>ID:101-200

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE PARTITIONING

Split database across multiple resources:
— Disks, nodes, processors.

— Called "sharding" in NoSQL system:s.

— Fine-Grained vs. Coarse-grained

The DBMS executes query fragments on each partition
and then combines the results to produce a single
answer.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NAIVE TABLE PARTITIONING

Assign an entire table to a single node.

Assumes that each node has enough storage space for an
entire table.

[deal if queries never join data across tables stored on
different nodes and access patterns are uniform.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NAIVE TABLE PARTITIONING %

Tablel Table2 Partitions

SES
SES

Ideal Query:
SELECT * FROM tableT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NAIVE TABLE PARTITIONING %

Tablel Table2 Partitions

SES
SES

Ideal Query:
SELECT * FROM tablel

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NAIVE TABLE PARTITIONING %

Tablel Table2 Partitions

B 1

Ideal Query:
SELECT * FROM tablel

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NAIVE TABLE PARTITIONING %

Tablel Table2 Partitions

=
=

B 1

Ideal Query:
SELECT * FROM tableT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on some

partitioning key and scheme.
— Choose column(s) that divides the database equally in terms of
size, load, or usage.

Partitioning Schemes:
— Hashing

— Ranges

— Predicates

— Round Robin

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HORIZONTAL PARTITIONING

Table
101 |a XXX [2025-11-29
102 |b XXY 12025-11-28
103 |c XYZ |2025-11-29
104 |d XYX 12025-11-27
105 |e XYY |2025-11-29
Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

=

Partitions

SES
SES

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HORIZONTAL PARTITIONING

Partitioning Key Table

—X
101 |a XXX 12025-11-29

102 |b XXY 12025-11-28

103 |c XYZ |2025-11-29

104 |d XYX 12025-11-27

105 e XYY |2025-11-29

Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2
hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

=

Partitions

SES
SES

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HORIZONTAL PARTITIONING

Partitioning Key Table

<<
A e

Ideal Query:

hash(a)%4 = P2
hash(b)%4 = P4
hash(c)%4 = P3
hash(d)%4 = P2

)| hash(e)%4 = P1

SELECT * FROM table
WHERE partitionKey = ?

=

Partitions

SES
SES

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HORIZONTAL PARTITIONING

Partitioning Key Table Partitions

~—~X
101

XXX |2025-11-29| hash(a)%4 = P2

a
102 |b XXY |2025-11-28| hash(b)%4 = P4

103 |c XYZ |2025-11-29| hash(c)%4 = P3

104 |d XYX |2025-11-27| hash(d)%4 = P2

105 |e XYY |2025-11-29| hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HORIZONTAL PARTITIONING

Partitioning Key Table Partitions

~—~X
101

XXX |2025-11-29| hash(a)%4 = P2

a
102 |b XXY |2025-11-28| hash(b)%4 = P4

103 |c XYZ |2025-11-29| hash(c)%4 = P3

104 |d XYX |2025-11-27| hash(d)%4 = P2

105 |e XYY |2025-11-29| hash(e)%4 = P1

Ideal Query:
SELECT * FROM table

WHEREIpartitionKey = ?!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-DISK PARTITIONING

Node Id=1

[Storage)

=8 e

Id=1
Id=2
Id=3
Application Id=4

Server M Neee |
#% Td=3
| Id=4 L)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-DISK PARTITIONING

[Storage)

Get Id=1 a a
AR
ZZZ3 Ld=1
ZZZ3 1d22
ZZZ3 Id=3
Application I1d=4

Server M Neee |
#% Td=3
| Id=4 L)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-DISK PARTITIONING

[Node |

Id=1
Id=2

A

7

o . l Get Id=3
Application

Server (

W_Aii:g:j’//,/’ffﬂv
Id=4 N

[Storage)

d [cd

Id=1
Id=2
Id=3
Id=4

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-DISK PARTITIONING

[Node ||[1d=1 ot
#_% i orage
- d Q
2 Id=1
B Id=2
Id=3
Application ! I1d=4
Server Neee |
T
l TId=4 L)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-NOTHING PARTITIONING

[Node |
o3 lo

Application
Server (Node — |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-NOTHING PARTITIONING

Node —, |

L3:l°

Get Id=1

3
Application

Server (Node — |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHARED-NOTHING PARTITIONING

Node —, |

L3:l°

| Get Id=3
Application

Server (Node — |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HORIZONTAL PARTITIONING

Partitioning Key

—=_ lable Partitions
101 xxx [2025-11-29| hash(a)%4 = P2

a
102 |b XXY |2025-11-28| hash(b)%4 = P4

103 |c XYZ |2025-11-29| hash(c)%4 = P3

104 |d XYX |2025-11-27| hash(d)%4 = P2

105 |e XYY |2025-11-29| hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HORIZONTAL PARTITIONING

Partitioning Key Table Partitions

~—~X
101

XXX |2025-11-29| hash(a)%4 = P2

a
102 |b XXY |2025-11-28| hash(b)%4 = P4

103 |c XYZ |2025-11-29| hash(c)%4 = P3

104 |d XYX |2025-11-27| hash(d)%4 = P2

105 |e XYY |2025-11-29| hash(e)%4 = P1

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HORIZONTAL PARTITIONING

Partitioning Key Table Partitions

~—~X
101

XXX |2025-11-29| hash(a)%5 = P4

a
102 |b XXY |2025-11-28| hash(b)%5 = P3

103 |c XYZ |2025-11-29| hash(c)%5 = P5

104 |d XYX [2025-11-27| hash(d)%5 = P1

105 |e XYY |2025-11-29| hash(e)%5 = P3

Ideal Query:

SELECT * FROM table
WHERE partitionKey = ?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

1,0 hash(keyl)

P1

P3

P2

0.5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

1,0 hash(keyl)

NS

P1

P3

P2

0.5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

1,0 hash(keyl)

NS

P1

?

hash(key2)

P2

0.5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

1,0 hash(keyl)

N

P1

?

hash(key2)

P2

0.5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

1,0 hash(keyl)

hash(key2)

0.5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

1,0 hash(keyl)

hash(key2)

0.5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

1,0

P1

P3

P2

New Partition » P4

0.5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

1,0

S
N—’

7hash(key)P4
= =

0.5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

1,0

0.5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENT HASHING

1,0

P5 Replication Factor = 3
P1

P3

P2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Q Couchbase

db
G snowflake

<EROSPIKE

. MEMCAHACHED
%cassandm

sriak

SCYLLA.

CONSISTENT HASHING

1,0 hash(keyl)

Replication Factor = 3

0.5

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

RENDEZVOUS HASHING

For each key, generate a hash value Partitioning Key
per partition by concatenating the
partition's identifier to hashed key.

101 ja XXX 12025-11-29

102 1b XXY |2025-11-28

Assign key to a partition based on the 103 Jc [xvz [2025-11-29
hash value with the highest weight.

Consistent Hashing is a specialized
form of Rendezvous Hashing.

Yellowbrick ¢g glgf‘“[em ") druid %8 kafka

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing

RENDEZVOUS HASHING

For each key, generate a hash value
per partition by concatenating the »
partition's identifier to hashed key.

Assign key to a partition based on the c
hash value with the highest weight.

Consistent Hashing is a specialized hash(a + nodel) = 100
form of Rendezvous Hashing. hash(a + node2) = 90

hash(a + node3) = 80

Yellowbrick ¢ éléf‘“[em ") druid §8 kafka

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing

RENDEZVOUS HASHING

For each key, generate a hash value Assigned Node
per partition by concatenating the » — ..

partition's identifier to hashed key.

Assign key to a partition based on the c
hash value with the highest weight.

'Eéé

Consistent Hashing is a specialized
form of Rendezvous Hashing.

Yellowbrick ¢ gléf“[em ") druid % kafka

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing

RENDEZVOUS HASHING

For each key, generate a hash value Assigned Node
per partition by concatenating the — i || o [|
partition's identifier to hashed key.

-
Assign key to a partition based on the . |~Z3
hash value with the highest weight. » i ...

Consistent Hashing is a specialized
form of Rendezvous Hashing.

Yellowbrick ¢ gléf“[em ") druid % kafka

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing

RENDEZVOUS HASHING 5

For each key, generate a hash value Assigned Node
per partition by concatenating the - M
partition's identifier to hashed key.

-
Assign key to a partition based on the . |~Z3
hash value with the highest weight. Y

Consistent Hashing is a specialized
form of Rendezvous Hashing.

Yellowbrick ¢ gléf“[em ") druid % kafka

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing

RENDEZVOUS HASHING 5

For each key, generate a hash value Assigned Node
per partition by concatenating the - M
partition's identifier to hashed key.

-
Assign key to a partition based on the . |~Z3
hash value with the highest weight. Y

Consistent Hashing is a specialized
form of Rendezvous Hashing.

Yellowbrick ¢ gléf“[em ") druid % kafka

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing

RENDEZVOUS HASHING 5

For each key, generate a hash value Assigned Node
per partition by concatenating the - M
partition's identifier to hashed key.

-
Assign key to a partition based on the . |~Z3
hash value with the highest weight. Y

Consistent Hashing is a specialized
form of Rendezvous Hashing.

Yellowbrick ¢ gléf“[em ") druid % kafka

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing

RENDEZVOUS HASHING 5

For each key, generate a hash value Assigned Node
per partition by concatenating the —1-

partition's identifier to hashed key.

.
-
Assign key to a partition based on the . |~

hash value with the highest weight. -

Consistent Hashing is a specialized
form of Rendezvous Hashing.

Yellowbrick ¢ gléf“[em ") druid % kafka

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing

REPLICATION

The DBMS can replicate a database across redundant

nodes to increase availability.

— Partitioned vs. Non-Partitioned
— Shared-Nothing vs. Shared-Disk

Design Decisions:

— Replica Configuration
— Propagation Scheme
— Propagation Timing
— Update Method

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

REPLICA CONFIGURATIONS

Approach #1: Primary-Replica

— All updates go to a designated primary for each object.

— The primary propagates updates to its replicas by shipping logs.

— Read-only txns may be allowed to access replicas.

— [f the primary goes down, then hold an election to select a new
primary.

Approach #2: Multi-Primary

— Txns can update data objects at any replica.
— Replicas must synchronize with each other using an atomic
commit protocol.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

REPLICA CONFIGURATIONS

Primary-Replica

| Writes Reads |

Reads
"'
»::‘
.\@

Primary
Replicas

Writes »
Reads MY
Writes » &
Reads

Multi-Primary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

K-SAFETY

K-safety is a threshold for determining the fault
tolerance of the replicated database.

The value K represents the number of replicas per data
object that must always be available.

[f the number of replicas goes below this threshold,
then the DBMS halts execution and takes itself offline.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS decides whether it must wait for that txn's
changes to propagate to other nodes before it can send
the acknowledgement to application.

Propagation levels:
— Synchronous (Strong Consistency)
— Asynchronous (Eventual Consistency)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROPAGATION SCHEME 5

Approach #1: Synchronous

— The primary sends updates to replicas and Commit?l m
then waits for them to acknowledge that I Y > 3 >
they fully applied (i.e., logged) the = @
changes. —

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROPAGATION SCHEME 5

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

X

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Comm l

ir? m Flush!
Y G T 2 >

U N’ PR

Ack l Ack l

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROPAGATION SCHEME 5

Approach #1: Synchronous

— The primary sends updates to replicas and Commit?l
then waits for them to acknowledge that Y <> T %
. i’ S

they fully applied (i.e., logged) the
changes.

Flush!

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PROPAGATION TIMING

Approach #1: Continuous

— The DBMS sends log messages immediately as it generates
them.

— Also need to send a commit/abort message.

Approach #2: On Commit

— The DBMS only sends the log messages for a txn to the replicas
once the txn is commits.

— Do not waste time sending log records for aborted txns.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

UPDATE METHOD

Approach #1: Active-Active

— A txn executes at each replica independently.

— Need to check at the end whether the txn ends up with the
same result at each replica.

Approach #2: Active-Passive

— Each txn executes at a single location and propagates the
changes to the replica.

— Can either do physical or logical replication.

— Not the same as Primary-Replica vs. Multi-Primary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SINGLE-NODE V3. DISTRIBUTED

A single-node txn only accesses data that is contained

on one partition.
— The DBMS may not need check the behavior concurrent txns
running on other nodes.

A distributed txn accesses data at one or more

partitions.
— Requires expensive coordination.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTION COORDINATION

[f our DBMS supports multi-operation and distributed
txns, we need a way to coordinate their execution in the
system.

Two different approaches:
— Centralized: Global "traftic cop".
— Decentralized: Nodes organize themselves.

Most distributed DBMSs use a hybrid approach where
they periodically elect some node to be a temporary
coordinator.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CENTRALIZED COORDINATOR

Partitions

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CENTRALIZED COORDINATOR

-
-
—

OO0
Hlw |IN

-l |-»]

Coordinator
Lock Request

Application
Server

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CENTRALIZED COORDINATOR

-
-
—

Coordinator

OO0
Hlw |IN

Lock Request Partitions

-l |-»]

S

Acknowledgement

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CENTRALIZED COORDINATOR

-
-
—

OO0
Hlw |IN

-l |-»]

Coordinator
Commit Request

Application
Server

Partitions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CENTRALIZED COORDINATOR

Commit Request

Coordinator

P2
@ P3 Partitions
A P4

_—Z

Application

Server

Safe to commit?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CENTRALIZED COORDINATOR

Coordinator

P2
8 P3 Partitions
A P4

Commit Request

S

Al Acknowledgement |:

ZZZZ —

ZZZ

73 :
Application — Z—

Safeto commzt?
Server
T "“\N. TRANSARC®

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CENTRALIZED COORDINATOR

Partitions

Query Requests

21eM31PPIW

Application
Server

{

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CENTRALIZED COORDINATOR

Partitions

=
Query Requests 8_‘
®
AR 2
. 2
e ®
73
Application P1-+ID:1-100
Server P2>ID:101-200

P3>ID:201-300
P4>1ID:301-400

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

=
Query Requests 8_‘
®
AR 2
. 2
e ®
73
Application P1-+ID:1-100
Server P2>ID:101-200

P3>ID:201-300

P4>1ID:301-400

CENTRALIZED COORDINATOR

Partitions

B[] ||

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

=
Query Requests 8_‘
®
AR 2
. 2
e ®
73
Application P1-+ID:1-100
Server P2>ID:101-200

P3>ID:201-300

P4>1ID:301-400

CENTRALIZED COORDINATOR

Partitions

B[] ||

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CENTRALIZED COORDINATOR

< Partitions
8_' Safe to commit?
() LT T
AR S RN \J>
Application P1o1D:1-100

%)
Server P2->ID:101-200
P3+1D:201-300 @

1

P4>1ID:301-400

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Application
Server

DECENTRALIZED COORDINATOR

Partitions

4 N
>

| p1 !/

-

LJ

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DECENTRALIZED COORDINATOR

Partitions
N

7

Booi C

egin Request | p1 f
AR —x _,| el
—— N—
= =

Application e

Server | p3

~

\ J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DECENTRALIZED COORDINATOR

W Leader Node | Partitions

Begin Request

N

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DECENTRALIZED COORDINATOR

W Leader Node | Partitions

m\ Query Request

7
AP D lication X

Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DECENTRALIZED COORDINATOR

W Leader Node | Partitions

Commit Request

N

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DECENTRALIZED COORDINATOR

W Leader Node | Partitions

Commit Request
7 —
Iz Safe to commit?
Application T
Server K

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

We have assumed that the nodes in our distributed
systems are running the same DBMS software.

But organizations often run many different DBMSs in
their applications.

[t would be nice if we could have a single interface for
all our data.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FEDERATED DATABASES 5

Distributed architecture that connects disparate DBMSs

into a single logical system.
— Expose a single query interface that can access data at any
location.

This is hard and nobody does it well

— Different data models, query languages, limitations.
— No easy way to optimize queries

— Lots of data copying (bad).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FEDERATED DATABASE EXAMPLE 5

= Back-end DBMSs
Query Requests Q . ~N /7 N
PN ® :

73 ?, MQS& OMOngODB@
7 e \ J\\ J
Application r N/ N

Server)
\, J\\ J

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FEDERATED DATABASE EXAMPLE 5

Back-end DBMSs

Query Requests

21eM31PPIN

Connectors g i h
| - M DB.
73 7 MysaolL 0 ongo
ZZ \ y
Application \
Server)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DISTRIBUTED CONCURRENCY CONTROL 5

Need to allow multiple txns to execute simultaneously

across multiple nodes.

— Many of the same protocols from single-node DBMSs can be
adapted.

This is harder because of:
— Replication.
— Network Communication Overhead.

— Node Failures (Permanent + Ephemeral).
— Clock Skew.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DISTRIBUTED 2PL

Set A=2 Set B=7 2z
Application Application
Server Server
V

ﬂ

Node 1 Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DISTRIBUTED 2PL

Set A=2 Set B=7 2z
Application Application
Server Server
V

ﬂ

Node 1 Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DISTRIBUTED 2PL

Set A=2 Set B=7 2z
Application Application
Server Set B=9 Set A=0 Server
V

ﬂ

Node 1 Node 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Application
Server

DISTRIBUTED 2PL

73

Zam

7

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DISTRIBUTED 2PL

W aits-For Graph

Application
Server

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONCLUSION

We have barely scratched the surface on distributed
database systems...

[t is hard to get this right.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NEXT CLASS

Distributed OLTP Systems
Distributed OLAP Systems

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Distributed Databases I
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: COURSE OUTLINE
	Slide 5: COURSE OUTLINE
	Slide 6: PARALLEL VS. DISTRIBUTED
	Slide 7: DISTRIBUTED DBMSs
	Slide 8: DESIGN ISSUES
	Slide 9: DESIGN ISSUES
	Slide 10: TODAY'S AGENDA

	System Architectures
	Slide 11: SYSTEM ARCHITECTURE
	Slide 12: SYSTEM ARCHITECTURE
	Slide 13: SYSTEM ARCHITECTURE
	Slide 14: SHARED-NOTHING
	Slide 15: SHARED-NOTHING EXAMPLE
	Slide 16: SHARED-NOTHING EXAMPLE
	Slide 17: SHARED-NOTHING EXAMPLE
	Slide 18: SHARED-NOTHING EXAMPLE
	Slide 19: SHARED-DISK
	Slide 20: SHARED-DISK EXAMPLE
	Slide 21: SHARED-DISK EXAMPLE
	Slide 22: SHARED-DISK EXAMPLE
	Slide 23: SHARED-DISK EXAMPLE
	Slide 24: SHARED-DISK EXAMPLE
	Slide 25: DISTRIBUTED SYSTEM ARCHITECTURE
	Slide 26: PUSH VS. PULL
	Slide 27: PUSH VS. PULL
	Slide 28: PUSH VS. PULL
	Slide 29: PUSH QUERY TO DATA
	Slide 30: PULL DATA TO QUERY
	Slide 31: PULL DATA TO QUERY
	Slide 32: PULL DATA TO QUERY

	Partitioning
	Slide 33: DATABASE PARTITIONING
	Slide 34: NAÏVE TABLE PARTITIONING
	Slide 35: NAÏVE TABLE PARTITIONING
	Slide 36: NAÏVE TABLE PARTITIONING
	Slide 37: NAÏVE TABLE PARTITIONING
	Slide 38: NAÏVE TABLE PARTITIONING
	Slide 39: HORIZONTAL PARTITIONING
	Slide 40: HORIZONTAL PARTITIONING
	Slide 41: HORIZONTAL PARTITIONING
	Slide 42: HORIZONTAL PARTITIONING
	Slide 43: HORIZONTAL PARTITIONING
	Slide 44: HORIZONTAL PARTITIONING
	Slide 45: SHARED-DISK PARTITIONING
	Slide 46: SHARED-DISK PARTITIONING
	Slide 47: SHARED-DISK PARTITIONING
	Slide 48: SHARED-DISK PARTITIONING
	Slide 49: SHARED-NOTHING PARTITIONING
	Slide 50: SHARED-NOTHING PARTITIONING
	Slide 51: SHARED-NOTHING PARTITIONING
	Slide 52: HORIZONTAL PARTITIONING
	Slide 53: HORIZONTAL PARTITIONING
	Slide 54: HORIZONTAL PARTITIONING
	Slide 55: CONSISTENT HASHING
	Slide 56: CONSISTENT HASHING
	Slide 57: CONSISTENT HASHING
	Slide 58: CONSISTENT HASHING
	Slide 59: CONSISTENT HASHING
	Slide 60: CONSISTENT HASHING
	Slide 61: CONSISTENT HASHING
	Slide 62: CONSISTENT HASHING
	Slide 63: CONSISTENT HASHING
	Slide 64: CONSISTENT HASHING
	Slide 65: CONSISTENT HASHING
	Slide 66: CONSISTENT HASHING
	Slide 67: Rendezvous Hashing
	Slide 68: Rendezvous Hashing
	Slide 69: Rendezvous Hashing
	Slide 70: Rendezvous Hashing
	Slide 71: Rendezvous Hashing
	Slide 72: Rendezvous Hashing
	Slide 73: Rendezvous Hashing
	Slide 74: Rendezvous Hashing

	Replication
	Slide 75: REPLICATION
	Slide 76: REPLICA CONFIGURATIONS
	Slide 77: REPLICA CONFIGURATIONS
	Slide 78: K-SAFETY
	Slide 79: PROPAGATION SCHEME
	Slide 80: PROPAGATION SCHEME
	Slide 81: PROPAGATION SCHEME
	Slide 82: PROPAGATION SCHEME
	Slide 83: PROPAGATION SCHEME
	Slide 84: PROPAGATION TIMING
	Slide 85: UPDATE METHOD

	Distributed Concurrency Control
	Slide 86: SINGLE-NODE VS. DISTRIBUTED
	Slide 87: TRANSACTION COORDINATION
	Slide 88: CENTRALIZED COORDINATOR
	Slide 89: CENTRALIZED COORDINATOR
	Slide 90: CENTRALIZED COORDINATOR
	Slide 91: CENTRALIZED COORDINATOR
	Slide 92: CENTRALIZED COORDINATOR
	Slide 93: CENTRALIZED COORDINATOR
	Slide 94: CENTRALIZED COORDINATOR
	Slide 95: CENTRALIZED COORDINATOR
	Slide 96: CENTRALIZED COORDINATOR
	Slide 97: CENTRALIZED COORDINATOR
	Slide 98: CENTRALIZED COORDINATOR
	Slide 99: DECENTRALIZED COORDINATOR
	Slide 100: DECENTRALIZED COORDINATOR
	Slide 101: DECENTRALIZED COORDINATOR
	Slide 102: DECENTRALIZED COORDINATOR
	Slide 103: DECENTRALIZED COORDINATOR
	Slide 104: DECENTRALIZED COORDINATOR

	Federated Databases
	Slide 105: OBSERVATION
	Slide 106: FEDERATED DATABASES
	Slide 107: FEDERATED DATABASE EXAMPLE
	Slide 108: FEDERATED DATABASE EXAMPLE

	Distributed Concurreny Control
	Slide 109: DISTRIBUTED CONCURRENCY CONTROL
	Slide 110: DISTRIBUTED 2PL
	Slide 111: DISTRIBUTED 2PL
	Slide 112: DISTRIBUTED 2PL
	Slide 113: DISTRIBUTED 2PL
	Slide 114: DISTRIBUTED 2PL

	Conclusion
	Slide 115: CONCLUSION
	Slide 116: NEXT CLASS

