Carnegie Mellon University

LECTURE #24)) 15-445/645 FALL 2025)) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #4 is due Sunday Dec 7" @ 11:59pm
— Recitation Slides + Video (@300)

Homework #6 is due Sunday Dec 7" @ 11:59pm

Final Exam is on Thursday Dec 11" @ 1:00pm

— Do not make travel plans before this date!

We are recruiting TAs for the next semester
— Apply at: https://www.ugrad.cs.cmu.edu/ta/S26/

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/300
https://www.ugrad.cs.cmu.edu/ta/S26/

UPCOMING DATABASE TALKS

Apache Polaris (DB Seminar) APACHE
— Monday Dec 1** @ 12:00pm POLARIS
— Zoom

Apache Fluss (DB Seminar)

— Monday Dec 7% @ 12:00pm F ’ uss
— Zoom

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://db.cs.cmu.edu/events/futuredata-apache-polaris/
https://db.cs.cmu.edu/events/futuredata-apache-polaris/
https://db.cs.cmu.edu/events/future-data-apache-fluss-a-streaming-storage-for-real-time-lakehouse/

LAST CLASS

System Architectures
— Shared-Nothing vs. Shared-Disk

Partitioning
— Horizontal: Hash, Range, Round Robin

Replication
— Primary-Replica vs. Multi-Primary

Transaction Coordination
— Centralized vs. Decentralized

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OLTP V5. OLAP

On-line Transaction Processing (OLTP):
— Short-lived read/write txns.

— Small footprint.

— Repetitive operations.

On-line Analytical Processing (OLAP):
— Long-running, read-only queries.

— Complex joins.

— Exploratory queries.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TODAY'S AGENDA

Atomic Commit Protocols
Consistency Issues (CAP / PACELC)
Distributed Join Algorithms

Shuffle

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

Recall that our goal is to have multiple physical nodes
appear as a single logical DBMS.

We have not discussed how to ensure that all nodes
agree to commit a txn and then to make sure it does

commit if the DBMS decides it should.

— What happens if a node fails?

— What happens if messages show up late?

— What happens if the system does not wait for every node to
agree to commit?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

IMPORTANT ASSUMPTION

W e assume all nodes in a distributed DBMS are well-

behaved and under the same administrative domain.

— If we tell a node to commit a txn, then it will commit the txn (if
there is not a failure).

[f you do not trust the other nodes in a distributed

ooe¢ DBMS, then you need to use a Byzantine Fault Tolerant
’Q’» protocol for txns (blockchain).

— Blockchains are not good for high-throughput workloads.

Don't
Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Byzantine_fault

ATOMIC COMMIT PROTOCOL

Coordinating the commit order of txns across nodes in
a distributed DBMS.

— Commit Order = State Machine
— It does not matter whether the database's contents are
replicated or partitioned.

Examples:

+ Two-Phase Commit (1970s)
— Three-Phase Commit (1983)
— Viewstamped Replication (1988)
1> Paxos (1989)
— ZAB (2008?)
— Raft (2013)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://dl.acm.org/doi/10.1145/62546.62549
https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Apache_ZooKeeper
https://en.wikipedia.org/wiki/Raft_(algorithm)
https://en.wikipedia.org/wiki/Raft_(algorithm)

ATOMIC COMMIT PROTOCOL

Resource Managers (R Ms):

— Execute on different nodes
— Coordinate to decide fate of a txn.

Properties of the Commit Protocol:

— Stability: Once fate is decided, it cannot be changed.
— Consistency: All RMs end in the same state.

Assumes Liveness:
— There is some way of progressing forward.

working

prepared

— Enough nodes are alive and connected for the duration of the

protocol.

Source: Jim Gray + Lesile Lamport

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/

TWO-PHASE COMMIT (SUCCESS) 5

(((

m‘- wit Request
7 Node 2
7
Application
Server @
Node 3

S

Node 1

(0

Node 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (SUCCESS)

m; Commit Request
ZZZ3K
B
Application
Server
§ _ \
.§ | g
]
S
O L Nodel

@0.

|
juvdidngavg

Node 2 -

(((

|
juvdidgavg

Node 3 -

(0

|
Juvdidnguvg

Node 4 -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (SUCCESS)

18
3,
m; Commit Request g -é'
< [Node2 J =
7

Application 1S
Server | §
Phasel: Prepare ~§'
TN Node3 J &

g p—
S — 1=
: B
O L Nodel §
Node 4 2 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Application
Server

Coordinator

———

TWO-PHASE COMMIT (SUCCESS)

Commit Request

Phasel: Prepare

Node 4 -

|
juvdidngavg

|
juvdidgavg

|
Juvdidnguvg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (SUCCESS)

5
S
a
N
\

Phase2: Commit

Coordinator

Commit Request g
—_—
Application |
Server @
‘b @
. Node 1

|
juvdidngavg

|
juvdidgavg

|
Juvdidnguvg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (SUCCESS)

1S
3
m; Commit Request -é'
- DR Node 2 1 &
ZR
Application =
Server @ | §
E.
Node 3 2 =
S
S ~
3- 3
: B
O L Nodel §
Node 4 2 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (SUCCESS)

Success!

AR
73
73

Application

Server

L Node 1

Coordinator

@0.

|
juvdidngavg

Node 2 -

(((

|
juvdidgavg

Node 3 -

(0

|
Juvdidnguvg

Node 4 -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (ABORT)

m‘- wit Request
ZZZ3K
B
Application
Server
§ _ \
.§ | g
]
S
O L Nodel

@0.

|
juvdidngavg

Node 2 -

(((

|
juvdidgavg

Node 3 -

(0

|
Juvdidnguvg

Node 4 -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (ABORT)

18
3.
m; Commit Request g -*§'
T e L Node2 d &
B

Application g’
Server |2
Phasel: Prepare ~§'
TN Node3 J &

g p—
S —— ~
: B
O L Nodel §
Node 4 2 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Application
Server

Coordinator

———

TWO-PHASE COMMIT (ABORT)

=

3.

Commit Request g -*§'
Node2 4 &

~

3

Phasel: Prepare -'-§'
TN Node3 4 &
OK l .

@ 3

L &°

,.g.

=

Node 4 1 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (ABORT)

S

AR 3

Aborted -2

ZZ _, :

I Node 2 2 =
g

Application <

Server @ 2

-

%o

S

& Phase2: Abort Node 3 J =

g 1~

T 3

S — 5

O L Nodel ~§

Node 4 2 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Application

Server

Coordinator

TWO-PHASE COMMIT (ABORT)

Aborted

== =]

|
juvdidngavg

|
juvdidgavg

|
Juvdidnguvg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (ABORT)

18
3.
m; Commit Request g -*§'
T e L Node2 d &
B

Application g’
Server |2
Phasel: Prepare ~§'
TN Node3 J &

g p—
S —— ~
: B
O L Nodel §
Node 4 2 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (ABORT)

AR Commit Request
IZZ Node 2
ZZ3K
Application
Server

Phasel: Prepare

Coordinator
[|
| |

=]
-]

Node 3 -

juvdidngavg

Juvdidngavg

Node 4 -

|
Juvdidnguvg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (ABORT)

18

3,

m‘- Commit Request m @ ",_§.

T e L ' Node2 d &
ZZZ3K

Application g S

Server =

Phasel: Prepare ~§'

TN Node 34 &

: B

O L Nodel §

Node 4 2 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (ABORT)

18
3.
m; wit Request "..§-
- R Node2 J =
ZZ3K
Application S
Server §
3
S
“ Phase2: Abort
S
3 S
N 3
S — -5
O L Nodel §
Node 4 J &

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AR
73
73
73

Application
Server

Coordinator

TWO-PHASE COMMIT (ABORT)

Aborted

—

Phase2: Abort

|
juvdidngavg

|
Juvdidngavg

|
Juvdidnguvg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT

Each node records the inbound/outbound messages and
outcome of each phase in a non-volatile storage log.

On recovery, examine the log for 2PC messages:

— If local txn in prepared state, contact coordinator.

— If local txn not in prepared, abort it.

— [f local txn was committing and node is the coordinator, send
COMMIT message to nodes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT FAILURES

What happens if the coordinator crashes?
— Participants must decide what to do after a timeout

(this only applies if the participants know of all other participants).
— System is not available during this time.

What happens if the participant crashes?

— Coordinator assumes that it responded with an abort if it has
not sent an acknowledgement yet.

— Again, nodes use a timeout to determine whether a participant

is dead.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ZPC OPTIMIZATIONS

Early Prepare Voting (Rare)

— If you send a query/request to a remote node that you know
will be the last one to execute in this txn, then that node will
also return their vote for the prepare phase with the query
result.

Early Ack After Prepare (Common)

— If all nodes vote to commit a txn, the coordinator can send the
client an acknowledgement that their txn was successful before
the commit phase finishes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EARLY ACKNOWLEDGEMENT

18
3.
m‘- Commit Request g -é'
T L Node2 d &
R

Application g
Server |2
Phasel: Prepare ..§-
1_\ Node3 4 &

g p—
S -8
O L Nodel §
Node 4 J &

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Application
Server

Coordinator

———

EARLY ACKNOWLEDGEMENT

Commit Request

Phasel: Prepare

Node 4 -

|
juvdidngavg

|
juvdidgavg

|
Juvdidnguvg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EARLY ACKNOWLEDGEMENT

1S
3
AR Success! -'~§'
Z | - — S
ZR Node 2 2 =
g
Application =
Server @ 3.
)
%o
g
Node 3 2 =
S
S T~
;§ | g §|.
S -8
O L Nodel §
Node 4 2 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EARLY ACKNOWLEDGEMENT

S

3

AR Success! ",g.

ZZ _, :

I Node 2 2 =
g

Application 1

Server @ 2

-

%o

S

& Phase2: Commit Node 3 1 &

s 13

T =

S — 5

O L Nodel ~§

Node 4 2 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Application

Server

Coordinator

EARLY ACKNOWLEDGEMENT

Success!

== S

|
juvdidngavg

|
juvdidgavg

|
Juvdidnguvg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EARLY ACKNOWLEDGEMENT

Application

Server

" Nodel

A

Coordinator

<

|
uvdingan g

Node 2 ~

s

Node3

|
juvdidngavg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

EARLY ACKNOWLEDGEMENT

AR Commit Request .
Zam - -
3K
3K
Application
Server |
Node 2

e S

" Nodel Node3

A

Coordinator

v

uvdingan g

v

juvdidngavg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

Consensus protocol where a
coordinator proposes an outcome

e.g., commit or abort) and then the
participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has
provably minimal message delays in
the best case.

The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Recent archaeological discoveries on the island of Paxos reveal that the parliament functioned de-
spite the peripatetic propensity of its part-time legislators. The legislators maintained consistent
copies of the parliamentary record, despite their frequent forays from the chamber and the forget-
fulness of their messengers. The Paxon parliament’s protocol provides a new way of implementing
the state-machine approach to the design of distributed ssems

Categories and Subject Descriptors: C2.4 [C Distributed
Systems—Netuork operuting systems D4.5 [Operating Systems}: Relabilty— Fuult-tolerance;
J1[A Data

General Terms: Design, Reliability

Additional Key Words and Phrases: State machines, three-phase commit, voting

This submission was recently discovered behind a filing cabinet in the TOCS editorial
office. Despite its age, the editor-in-chief felt that it was worth publishing, Because the
authar is currently doing field work in the Greek isles and cannot be reached, I was asked
to prepare it for publication.

The author appears o be an ardiealogist with only a passing interest in computer sci-
ence. This is even though the obscure ancient Paxon civilization he describs
is of little interest to most computer scientists, its legislative system is an excellent model
for how to implement a distributed computer system in an asynchronous environment.
Indeed, some of the refinements the Paxons made to their protocol appear to be unknown
in the systems literature.

The author does give a brief discussion of the Paxon Parliament’s relevance to dis-
tributed computing in Section 4. Computer scientists will probably want to read that
section first. Even before that, they might want to read the explanation of the algorithm
for computer scientists by Lampson [1996]. The algorithm is also described more formally
by De Prisco et al. [1997]. I have added further comments on the relation between the
ancient protocols and more recent work at the end of Section 4.

Keith Marzullo
University of California, San Diego

Authors” addzess: Systems Research Center, Digital Equipment Corporation, 130 Lytton Avenue,
Palo Alto, CA 9430L.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

© 1998 ACM 0000-0000/98/0000-0000 $00.00

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf

Consensus on Transaction Commit

JIM GRAY and LESLIE LAMPORT
Microsoft Research

Consensus protocol where a

coordinator proposes an outlclomi
e.g., commit or abort) and t ellll ;
participants vote on whether tha

outcome should succeed.

The distributed transaction commit problem requires reaching agreement. on whether a transaction
is committed or aborted. The classic Two-Phase Commit protoco] blocks if the coordinator fals,
Fault-tolerant consensus algorithms also reach agreement, byt do not block whenever any majority
of the processes are working. The Paxos Commit algorithm runsa Paxos consensus algorithm on the
commit/abort decision of each participant to obtain a transaction commit protocol that uses 25 +1
coordinators and makes Progress if at least F 4 1 of them are working properly. Payos Commit
has the same stable-storage write delay, and can be implemented to have the same message delay
in the fault-free case as Two-Phase Commit, but jt uses more messages, The classic Two-Phase
Commit algorithm is obtained as the special F' = 0 case of the Paxos Commit algorithm.

Categories and Subject Descriptors: D.4.1 [Operating Systems].
ourrency; D.4.5 [Operating Systems; Reliability—Fault-tolerance;
Organization and Deslgn-Dmnbum \ystems

General Terms: Algorithms, Reliability
Additional Key Words and Phrases: Consensus, Paxos, two-phase commit

Process Management—con.
.4.7 IOpernting Systems]:

1. INTRODUCTION

Adistributed transaction consists of a number of operations, performed at my]-
tiple sites, terminated by a request to commit or abort the transaction. The
sites then use a transaction commit protocol to decide whether the transac-
tion is committeq or aborted. The transaction can be committed only if a1 sites
are willing to commit it. Achieving this all-or—nothing atomicity Property in a
distributed System is not trivial, The requirements for transaction commit are
stated precisely in Section 2.

The classic transaction commit protocol jg Two-Phase Commit [Gray 1978,
described in Section 3. It uses asingle coordinator to reach agreement. The fail-
ure of that coordinator can cauge the protocol to block, with no process knowing
the outcome, until the coordinator is repaired. In Section 4, we use the Paxos
consensus algorithm [Lamport 1998] to obtain a transaction commit Pprotocol

Does not block if a majority of
participants are available and has

provably minimal message delay
the best case.

Authors’ addresses; J, Gray, Microsoft Research, 455 Market St., San Francisco, CA 94105; email:
Jim.Grayemicrosoft. con; I, Lamport, Microsoft Research, 1065 Lo Avenida, Mountain View, CA
94043,

Permission to make digital or harg €OPies of part or all of this work for personal or classroom use js
granted without fee provided that coptes gee not made or distributed for profit or diroct commercial
advantage and that copies show e, notice on the first page or initial sereey. of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be

to redistribute to lists, or to yse Sy component of this work in other works requires prior specific
permission and/or a fee, Permissions ™ay be requested from Publications Dept., ACM, Inc, 1515
Broadway, New York, NY 10036 USA, fax: +1(212) 869.048], op permissions@acm,org,

© 2006 ACM 0362.5915/06/0300.01 35 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006, Pages 133160, p—

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf
https://dl.acm.org/doi/10.1145/1132863.1132867

PAX0S

m‘- wit Request
ZZZ3K
B
Application
Server
_ \
S
S
S
. Node 1

(((

v

401d220y

Node 2 -

(((

v

401d320y

Node 3 -

(0

v

401d220y

Node 4 -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Application
Server

Proposer
|

PAX0S

———

Commit Request

Propose

(((

v

401d220y

Node 2 -

(((

v

401d220y

Node 3 -

v

401d220y

Node 4 -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Application
Server

Proposer
|

PAX0S

———

Commit Request

Propose

| |
401d220y

401d220y

| |
401d220y

Node 4 -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

AR :
TR wtt Request
73
73
Application
Server
Propose

Proposer
|

401d220y

401d220y

| |
401d220y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

| |
401d220y

| |
401d220y

m-‘ wit Request
7
e
Application
Server
Propose
\
_ V| Commit -
S \
%;_ - ‘,'
é ~
L Node 1

| |
401d220y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

Commit Request

———

Application
Server
. 7

Agree

Accept

Proposer
|

v

401d220y

v

401d220y

v

401d220y

Node 4 -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AR
73
73
73
Application
Server

Proposer
|

Success!

—

=

Node 1

PAX0S

v

401d220y

Node 2 -

L 2

v

401d220y

v

401d220y

Node 4 -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Proposer
—
g

PAX0S

Proposer
N’
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

Acceptors

Proposer

\r/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v

Proposer

Propose(n)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

Proposer

) SSRSRS— v
<
S
< v_\n/ >
S N
< S
So
<
[5 ———— >
)
N
g
5 &
m.Llr. I 1 >
&

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

1
Y)
S (Y ~
0))); m% >
S
= g
3
o
) | S——— v
£
=)=\ | SN >
Q s
(Y N
< %
on
= |
) - >
)
E
| g
gl & !
S ["Y) Bttt >
&

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

W) IIIIIIIIIIIIII v
S) HM
3 E
S QL
r (7<)
P (=)
[
S
<1
.......... >
I —
)
: N \
S L | Ll
e v_\/
S e
S I
= s !
<t4i 9
| F-
~
E~
W /.Hw\
3 =)
1y mN
Sl & e C
S &
S
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

~ ~ |
1) m%
p A
2 Q
r (7<)
P (=)
[
S
<1
......... >
v B _BR B] L B] JIIII
) w
S =\l g
w IIIII M - .
S= {n,
& N S
(&Y > s
< & S 4
So 1 |
A —— = R - -—— -
| F-
~
& £
~ =
3 = i
(i /|
Sl & . C
Sf =
S
R

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

Proposer Acceptors Proposer
P
ropose(n) | (= = = =
Agree(n) N T
| 1 4_V:' #: Propose(n+1)
Commit(n) ! : E‘?Vr

/

|

Reject(n,n+1) i

Agree(n+1)

/

Z%

€-------- -

€
€=
€= —m———
€mm—m————

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

Proposer Acceptors Proposer
P
ropose(n) | (= = = =
Agree(n) N T
l 7 4_V:' — | Propose(n+1)
Commit(n) ! ! E‘?Vr
™~ Reject(n,n+1) i

|

(""1&""'["
i

Agree(n+1)

; | Commit(n+1)
1 1
|

€

I 1 1
I I I
I 1 1
]]]

v v v

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PAX0S

Proposer Acceptors Proposer
P
ropose(n) | (= = = =
Agree(n) N T
| 1 4_V:' #: Propose(n+1)
Commit(n) ! ! E‘%
™\ Reject(n,n+1) ! i
] | ']
— : Agree(n+1) !
1 T 1
i E‘ : | Commit(n+1)
i i Accept(n+1) ot
: — 1 1 :
| | I = 1
]]] P —
v v v % %

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MULTI-PAX0S

[f the system elects a single leader that oversees
proposing changes for some period, then it can skip the

Propose phase.
— Fall back to full Paxos whenever there is a failure.

The system periodically renews the leader (known as a

lease) using another Paxos round.
— Nodes must exchange log entries during leader election to make
sure that everyone is up-to-date.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

ZPC VS. PAXOS VS. RAFT

Two-Phase Commit:

— Blocks if coordinator fails after the prepare message is sent,
until coordinator recovers.

Paxos:

— Non-blocking if a majority participants are alive, provided
there is a sufficiently long period without further failures.

Raft:

— Similar to Paxos but with fewer node types.
— Only nodes with most up-to-date log can become leaders.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CAP THEOREM

Proposed in the late 1990s that is impossible for a

distributed database to always be:
— Consistent

— Always Available

— Network Partition Tolerant

Whether a DBMS provides Consistency or Availability
during a Network partition.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENCY

Set A=2 §
Application Application
Server Server
v
A= L LA=T [

J B=3 [4
~

Primary Replica

\| B=3 [,
~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENCY

Set A=2 §
Application Application
Server Server
v
LA=2 [LA=T [

J B=3 [4
~

Primary Replica

\| B=3 [,
~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENCY

Set A=2 §
Application Application
Server Server
y
.................. g’

N =8 | \y
~ ~

Primary Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENCY

AR
I
73 Set A=2
Application Application
Server ACK Server
.................. E:
— ~

Primary Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENCY

AR AR
Zzam Set A=2 Read A Iz
Application Application
Server ACK Server

\4
.................. E:
— —

Primary Replica

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CONSISTENCY

If Primary says the txn
committed, then it should be

ﬁ | immediately visible on replicas.
T | \
ZE Set A=2 Read A
Application Application
Server ACK A=2 Server

Primary Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AVAILABILITY

Application Application
Server Server
\Sis \IS1s
— —

Primary Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AVAILABILITY

Application Application
Server Server

=l \. ¥ 4

J B=3 [4
~

Vv _ ¢
; 4D
Primary Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AVAILABILITY

Read B g
Application Application
Server Server
v :
=l \. ¥ /

Vv _ ¢
; 4D
Primary Replica

J B=3 [4
~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AVAILABILITY

AR

IZZE

iz Read B

Application Application

Server B=8 Server
=l \ ¥ 4
=3 v .
— -

Primary Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AVAILABILITY

Application Application
Server Server

=l \. ¥ 4

J B=3 [4
~

Vv _ ¢
; 4D
Primary Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AVAILABILITY

g Read A
Application Application
Server Server
v :
=l \. ¥ /

Vv _ ¢
; 4D
Primary Replica

J B=3 [4
~

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

AVAILABILITY

>

g Read A
Application Application
Server A1 Server

=l \. ¥ 4

J B=3 [4
~

Vv _ ¢
; 4D
Primary Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARTITION TOLERANCE

Application
Server
aall
=
~

Primary

Application
Server
C S
-
—
Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARTITION TOLERANCE

Application Application
Server Server
C iy
> -
B=8
— —
Primary Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARTITION TOLERANCE

Application Application

Server Server
) fa)
\ y \ y
N B=8 [/ N B=8 [/
— —
Primary Replica

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARTITION TOLERANCE

Application Application

Server Server
- ey
N y \ y
N B=8 [/ N B=8 [/
— —
Primary Primary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARTITION TOLERANCE

Application Application
Server Server
C iy
B=8
— —
Primary Primary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARTITION TOLERANCE

Set A=2
Application
Server
v
C)
| y
\=)s
~

Primary

AR
s
73
Set A=3 ZZ
Application
Server
v
C S
N y
N B=8 |4
—
Primary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARTITION TOLERANCE

Set A=2
Application
Server
v
C)
| y
| B=3 [
~

Primary

Set A=3

Primary

Application
Server

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARTITION TOLERANCE

o —
Iz Set A=2 Set A=3 (i
Application Application
Server ACK ACK Server

B=8
— —
Primary Primary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARTITION TOLERANCE

o —
Iz Set A=2 Set A=3 (i
Application Application
Server ACK ACK Server

=y Y A3

y
\=1v \=3
Y erwork Nt

Primary Primary

(

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PARTITION TOLERANCE

AR AR
- N -
ZZa Set A=2 Set A=3 ZZa
Application Application
Server ACK ACK Server
ol Al
(] A=2 [h oo a=3 [

N B=8 [/

Primary Primary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Don't
Do This!

O»

PARTITION TOLERANCE

Choice #1: Halt the System

— Stop accepting updates in any partition that does not have a
majority of the nodes.

Choice #2: Allow Split, Reconcile Changes

— Allow each side of partition to keep accepting updates.

— Upon reconnection, perform reconciliation to determine the
"correct” version of any updated record

— Server-side: Last Update Wins

— Client-side: Vector Clocks

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Vector_clock

PACELC THEOREM

Extension to CAP proposed in 2010 to include

consistency vs. latency trade-offs:
— Partition Tolerant

— Always Available

— Consistent

— Else, choose during normal operations
— Latency

— Consistency

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/PACELC_theorem

LATENCY V3. CONSISTENCY

A

D
o =
Iz ~

Application —

Server Replica
(us-west)

Primary Replica
(us-east) (eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LATENCY V3. CONSISTENCY

| |
L]

Set A=2

Application
Server

®

Primary
(us-east)

C =
Vit I,
—
Replica

(us-west)

u
—
Replica

(eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LATENCY V3. CONSISTENCY

| |
L]

Set A=2

Application
Server

\
C_
A=2

(((2

Primary
(us-east)

C =
Vit I,
—
Replica

(us-west)

u
—
Replica

(eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LATENCY V3. CONSISTENCY

Set A=2
Application
Server
v
C D
‘ p s8iiannnnns
o
—
Primary

(us-east)

Replica

Replica

(eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LATENCY V3. CONSISTENCY

ACK

)
=1y
Application N’

Server Replica
? (us-west)

Primary Replica
(us-east) (eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LATENCY V3. CONSISTENCY

ACK C_
\IEy
N’

Trade-of f between how long to Replica

wait for acknowledgements and (us-west)
the latency of the DBMS. ST

| ACK -

= =2

Primary ; Replica

(us-east)

(eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LATENCY V3. CONSISTENCY

ACK

C
“-“ -l"l
Application —
Server Replica
. (us-west)

Primary Replica
(us-east) (eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LATENCY V3. CONSISTENCY

ACK -

Application —

Server Replica
. (us-west)

Primary Replica
(us-east) (eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

LATENCY V3. CONSISTENCY

AR . | ACK C
m .0"“‘ u
Application
Server ACK Replica
; (us-west)
— . ACK -
‘ g -0 e : ’
Primary Replica

(us-east) (eu-east)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single node

and then perform the join.
— You lose the parallelism of a distributed DBMS.
— Costly data transfer over the network.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then executes
the same join algorithms that we discussed earlier in the

semester.
— Need to produce the correct answer as if all the data is located
in a single node system.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARID #1 %

The entire copy of one data set is

replicated at every node. CE R] R T
— Think of it as a small dimension table. ONR.id = S.id

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARID #1 %

The entire copy of one data set is

replicated at every node. CE R] R T
— Think of it as a small dimension table. ONR.id = S.id

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

id:1-100

id:101-200

Replicated Replicated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARID #1 %

The entire copy of one data set is

replicated at every node. CE R] R T
— Think of it as a small dimension table. ONR.id = S.id

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key
id:1-100 id:101-200
Replicated Replicated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARID #1 %

The entire copy of one data set is

replicated at every node. SELECT » EROM R JOIN <
— Think of it as a small dimension table. ONR.id = S.id

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key
id:1-100 id:101-200
Replicated Replicated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARID #1 5

The entire copy of one data set is

replicated at every node. SELECT » EROM R JOIN <
— Think of it as a small dimension table. ONR.id = S.id

Each node joins its local data in
parallel and then sends their results to

a coordinating node. P1:RIIS
P2:RPXS

=» =T

Partition Key
id:1-100 id:101-200
Replicated Replicated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARID #2 %

Both data sets are partitioned on the

].o¥n attribute. Each node performs the SELECT * FROM R JOIN S
join on local data and then sends to a ON R.id = S.id

coordinator node for coalescing.

id:101-200

id:1-100

id:101-200

id:1-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARID #2 %

Both data sets are partitioned on the

].o%n attribute. Each node performs the SELECT * FROM R JOIN S
join on local data and then sends to a ON R.id = S.id

coordinator node for coalescing.

id:101-200

id:1-100

id:101-200

id:1-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARID #2 %

Both data sets are partitioned on the

].o%n attribute. Each node performs the SELECT * FROM R JOIN S
join on local data and then sends to a ON R.id = S.id

coordinator node for coalescing.

id:101-200

id:1-100

id:101-200

id:1-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARIO #3: BROADCAST JOIN %

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARIO #3: BROADCAST JOIN %

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARIO #3: BROADCAST JOIN %

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARIO #3: BROADCAST JOIN %

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARID #3: BROADCAST JOIN %

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARID #3: BROADCAST JOIN %

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

SELECT * FROM R JOIN S
ON R.id = S.1id

O~

P2:RPXS

id:101-200

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARID #4: SHUFFLE JOIN 5

Both data sets are not partitioned on

the join key. The DBMS copies/re- SELECT * FROM R JOIN S
partitions the data on-the-fly across ON R.id = S.id
nodes.

— The repartitioned data copy is generally
deleted when the query is done.

name:A-M name:N-Z

val:1-50 val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARIO #:4: SHUFFLE JOIN %

Both data sets are not partitioned on

the join key. The DBMS copies/re- SELECT * FROM R JOIN S
partitions the data on-the-fly across ON R.id = S.id
nodes.

— The repartitioned data copy is generally
deleted when the query is done.

id:101-200
name:A-M name:N-Z
val:1-50 val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARIO #:4: SHUFFLE JOIN %

Both data sets are not partitioned on

the join key. The DBMS copies/re- SELECT * FROM R JOIN S
partitions the data on-the-fly across ON R.id = S.id
nodes.

— The repartitioned data copy is generally
deleted when the query is done.

id:1-100 id:101-200
name:A-M name:N-Z
val:1-50 val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARIO #:4: SHUFFLE JOIN %

Both data sets are not partitioned on

the join key. The DBMS copies/re- SELECT * FROM R JOIN S
partitions the data on-the-fly across ON R.id = S.id
nodes.

— The repartitioned data copy is generally
deleted when the query is done.

id:1-100 1id:101-200
id:101-200

name:A-M name : N-Z

val:1-50 val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARIO #4: SHUFFLE JOIN 5

Both data sets are not partitioned on

the join key. The DBMS copies/re-
partitions the data on-the-fly across
nodes.

— The repartitioned data copy is generally

deleted when the query is done.

id:1-100 R{id}
id:1-100

name:A-M

val:1-50

L4
....

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARIO #:4: SHUFFLE JOIN %

Both data sets are not partitioned on

the join key. The DBMS copies/re- SELECT * FROM R JOIN S
partitions the data on-the-fly across ON R.id = S.id
nodes.

— The repartitioned data copy is generally

deleted when the qujji=RE=1SIS P2:RPS

id:1-100 ety | id:101-200
id:1-100 id:101-200
name:A-M name:N-Z
val:1-50 val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SCENARIO #:4: SHUFFLE JOIN %

Both data sets are not partitioned on
the join key. The DBMS copies/re-
partitions the data on-the-fly across
nodes.

— The repartitioned data copy is generally HBRPS

deleted when the query is done.

id:1-100 R{id}
id:1-100

name:A-M

val:1-50

R{1id}

SELECT * FROM R JOIN S
ON R.id = S.1id

=» N

id:101-200

id:101-200

name:N-Z

val:51-100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SEMI-JOIN OPTIMIZATION 5

Before pulling da‘Ea.fr.om .alnother SELECT Fact.price, Dim.=
node, send a semi-join filter to FROM Fact JOIN Dim
reduce data movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom
Join).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SEMI-JOIN OPTIMIZATION 5

Before pulling da‘Ea.fr.om .alnother SELECT Fact.price, Dim.=
node, send a semi-join filter to FROM Fact JOIN Dim
reduce data movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom
Join).

Dimg, ;=14 (Gzip _ 15213 Dim)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SEMI-JOIN OPTIMIZATION 5

Before pulling da‘Ea.fr.om .alnother SELECT Fact.price, Dim.=
node, send a semi-join filter to FROM Fact JOIN Dim
reduce data movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom
Join).

Dimg, ;=14 (Gzip _ 15213 Dim)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SEMI-JOIN OPTIMIZATION 5

Before pulling da‘Ea.fr.om .alnother SELECT Fact.price, Dim.=
node, send a semi-join filter to FROM Fact JOIN Dim
reduce data movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom
Join).

Dimg, ;=14 (Gzip _ 15213 Dim)

F-small = Fact X Dim

semi

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SEMI-JOIN OPTIMIZATION 5

Before pulling da‘Ea.fr.om .alnother SELECT Fact.price, Dim.=
node, send a semi-join filter to FROM Fact JOIN Dim
reduce data movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom
Join).

Fact 1 =]
small Dlmsemi = Hld (Ozip =15213 Dlm)

F-small = Fact X Dim

semi

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SEMI-JOIN OPTIMIZATION 5

Before pulling da‘Ea.fr.om .alnother SELECT Fact.price, Dim.=
node, send a semi-join filter to FROM Fact JOIN Dim
reduce data movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom
Join).

Result =11 (Dim 4 FaCtsmall)

price

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

OBSERVATION

Direct communication between compute nodes means
the DBMS knows which nodes will participate in query
execution ahead of time.

But data skew can cause imbalances...

A better approach is to dynamically adjust compute
resources on the fly as a query executes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHUFFLE PHASE 5

Redistribute of intermediate data Goo gle ““”E‘AZ
across nodes between query plan Big Query SpQr K

pipelines.
— Can repartition / rebalance data based on
observed data characteristics.

Some DBMSs support standalone

fault-tolerant shuffle services. APACHE
— Example: You can replace Spark's built-in Cel eborn
in-memory shuffle implementation or

replace it with a separate service. .v Apache Uniffle

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHUFFLE PHASE

Shuffle Nodes

H i
H

=58

Shared-Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHUFFLE PHASE

: Worker :
g O\

: Worker : =
§ §

g)/
: Worker : 4

Stagen @ @

Shared-Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHUFFLE PHASE

: Worker :
§ O\

: Worker : <
5 §

g 1/
: Worker : &

Shared-Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHUFFLE PHASE

Shuffle Nodes
hash(key) % n

Stagen @ @

Shared-Disk

. Worker :

g 3
: Worker :

Stage n+1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHUFFLE PHASE

Shuffle Nodes
hash(key) % n

Stagen @ @

Shared-Disk

Stage n+1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Stage n

hash(key) % n

SHUFFLE PHASE

Shuffle Nodes

Shared-Disk

Stage n+1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SHUFFLE PHASE
EXCHANGE OPERATOR

Exchange Type #1 - Gather

— Combine the results from multiple workers
into a single outpyt Stream,

n W orker

Exchange Type #2 — Distribute

— Split a single input Stream into multiple
Output streams,

n W orker

Exchange Type #3 - Repartition
— Shuffle multiple inpyt Streams acrogg

: multiple output streams,

_* ! Worke: — Some DBMS; always perform this step after

€very pipeline (e.g,, Google BigQuery).

Source: ¢ raig Freedman

Shared-Disk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2024/schedule.html#oct-23-2024

CONCLUSION

Maintaining transactional consistency across multiple
nodes is hard. Bad things will happen.

— Don't let the "unwashed masses" go without txns!

2PC / Paxos / Raft are the most common protocols to
ensure correctness in a distributed DBMS.

Moving data during distributed joins is expensive.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

NEXT CLASS

Final Review

15-721 in a single lecture!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Distributed Databases II
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: OLTP VS. OLAP
	Slide 6: TODAY'S AGENDA

	Atomic Commit Protocol
	Slide 7: OBSERVATION
	Slide 8: IMPORTANT ASSUMPTION
	Slide 9: ATOMIC COMMIT PROTOCOL
	Slide 10: ATOMIC COMMIT PROTOCOL
	Slide 11: TWO-PHASE COMMIT (SUCCESS)
	Slide 12: TWO-PHASE COMMIT (SUCCESS)
	Slide 13: TWO-PHASE COMMIT (SUCCESS)
	Slide 14: TWO-PHASE COMMIT (SUCCESS)
	Slide 15: TWO-PHASE COMMIT (SUCCESS)
	Slide 16: TWO-PHASE COMMIT (SUCCESS)
	Slide 17: TWO-PHASE COMMIT (SUCCESS)
	Slide 18: TWO-PHASE COMMIT (ABORT)
	Slide 19: TWO-PHASE COMMIT (ABORT)
	Slide 20: TWO-PHASE COMMIT (ABORT)
	Slide 21: TWO-PHASE COMMIT (ABORT)
	Slide 22: TWO-PHASE COMMIT (ABORT)
	Slide 23: TWO-PHASE COMMIT (ABORT)
	Slide 24: TWO-PHASE COMMIT (ABORT)
	Slide 25: TWO-PHASE COMMIT (ABORT)
	Slide 26: TWO-PHASE COMMIT (ABORT)
	Slide 27: TWO-PHASE COMMIT (ABORT)
	Slide 28: TWO-PHASE COMMIT
	Slide 29: TWO-PHASE COMMIT FAILURES
	Slide 30: 2PC OPTIMIZATIONS
	Slide 31: EARLY ACKNOWLEDGEMENT
	Slide 32: EARLY ACKNOWLEDGEMENT
	Slide 33: EARLY ACKNOWLEDGEMENT
	Slide 34: EARLY ACKNOWLEDGEMENT
	Slide 35: EARLY ACKNOWLEDGEMENT
	Slide 36: EARLY ACKNOWLEDGEMENT
	Slide 37: EARLY ACKNOWLEDGEMENT

	Paxos
	Slide 38: PAXOS
	Slide 39: PAXOS
	Slide 40: PAXOS
	Slide 41: PAXOS
	Slide 42: PAXOS
	Slide 43: PAXOS
	Slide 44: PAXOS
	Slide 45: PAXOS
	Slide 46: PAXOS
	Slide 47: PAXOS
	Slide 48: PAXOS
	Slide 49: PAXOS
	Slide 50: PAXOS
	Slide 51: PAXOS
	Slide 52: PAXOS
	Slide 53: PAXOS
	Slide 54: PAXOS
	Slide 55: PAXOS
	Slide 56: MULTI-PAXOS
	Slide 57: 2PC VS. PAXOS VS. RAFT

	CAP
	Slide 58: CAP THEOREM
	Slide 59: CONSISTENCY
	Slide 60: CONSISTENCY
	Slide 61: CONSISTENCY
	Slide 62: CONSISTENCY
	Slide 63: CONSISTENCY
	Slide 64: CONSISTENCY
	Slide 65: AVAILABILITY
	Slide 66: AVAILABILITY
	Slide 67: AVAILABILITY
	Slide 68: AVAILABILITY
	Slide 69: AVAILABILITY
	Slide 70: AVAILABILITY
	Slide 71: AVAILABILITY
	Slide 72: PARTITION TOLERANCE
	Slide 73: PARTITION TOLERANCE
	Slide 74: PARTITION TOLERANCE
	Slide 75: PARTITION TOLERANCE
	Slide 76: PARTITION TOLERANCE
	Slide 77: PARTITION TOLERANCE
	Slide 78: PARTITION TOLERANCE
	Slide 79: PARTITION TOLERANCE
	Slide 80: PARTITION TOLERANCE
	Slide 81: PARTITION TOLERANCE
	Slide 82: PARTITION TOLERANCE
	Slide 83: PACELC THEOREM
	Slide 84: LATENCY VS. CONSISTENCY
	Slide 85: LATENCY VS. CONSISTENCY
	Slide 86: LATENCY VS. CONSISTENCY
	Slide 87: LATENCY VS. CONSISTENCY
	Slide 88: LATENCY VS. CONSISTENCY
	Slide 89: LATENCY VS. CONSISTENCY
	Slide 90: LATENCY VS. CONSISTENCY
	Slide 91: LATENCY VS. CONSISTENCY
	Slide 92: LATENCY VS. CONSISTENCY

	Distributed Join Algorithms
	Slide 93: OBSERVATION
	Slide 94: DISTRIBUTED JOIN ALGORITHMS
	Slide 95: SCENARIO #1
	Slide 96: SCENARIO #1
	Slide 97: SCENARIO #1
	Slide 98: SCENARIO #1
	Slide 99: SCENARIO #1
	Slide 100: SCENARIO #2
	Slide 101: SCENARIO #2
	Slide 102: SCENARIO #2
	Slide 103: SCENARIO #3: BROADCAST JOIN
	Slide 104: SCENARIO #3: BROADCAST JOIN
	Slide 105: SCENARIO #3: BROADCAST JOIN
	Slide 106: SCENARIO #3: BROADCAST JOIN
	Slide 107: SCENARIO #3: BROADCAST JOIN
	Slide 108: SCENARIO #3: BROADCAST JOIN
	Slide 109: SCENARIO #4: SHUFFLE JOIN
	Slide 110: SCENARIO #4: SHUFFLE JOIN
	Slide 111: SCENARIO #4: SHUFFLE JOIN
	Slide 112: SCENARIO #4: SHUFFLE JOIN
	Slide 113: SCENARIO #4: SHUFFLE JOIN
	Slide 114: SCENARIO #4: SHUFFLE JOIN
	Slide 115: SCENARIO #4: SHUFFLE JOIN
	Slide 116: SEMI-JOIN OPTIMIZATION
	Slide 117: SEMI-JOIN OPTIMIZATION
	Slide 118: SEMI-JOIN OPTIMIZATION
	Slide 119: SEMI-JOIN OPTIMIZATION
	Slide 120: SEMI-JOIN OPTIMIZATION
	Slide 121: SEMI-JOIN OPTIMIZATION

	Shuffle
	Slide 122: OBSERVATION
	Slide 123: SHUFFLE PHASE
	Slide 124: SHUFFLE PHASE
	Slide 125: SHUFFLE PHASE
	Slide 126: SHUFFLE PHASE
	Slide 127: SHUFFLE PHASE
	Slide 128: SHUFFLE PHASE
	Slide 129: SHUFFLE PHASE
	Slide 130: SHUFFLE PHASE

	Conclusion
	Slide 131: CONCLUSION
	Slide 132: NEXT CLASS

