Carnegie Mellon University

LECTURE #24)) 15-445/645 FALL 2025)) PROF. ANDY PAVLO

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

ADMINISTRIVIA

Project #4 is due Sunday Dec 7" @ 11:59pm
— Recitation Slides + Video (@300)
— Office Hours Saturday Dec 6™ @ 3:00-5:00pm (GHC 5201)

Homework #6 is due Sunday Dec 7" @ 11:59pm

Final Exam is on Thursday Dec 11% @ 1:00pm

— Do not make travel plans before this date!

We are recruiting TAs for the next semester
— Apply at: https://www.ugrad.cs.cmu.edu/ta/S26/

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/300
https://www.ugrad.cs.cmu.edu/ta/S26/

OFFICE HOURS

Andy:
— Wednesday Dec 10% @ 10:30-12:00pm (GHC 9019)
— Wednesday Dec 10% @ 4:00-5:00pm (GHC 9019)

All other TAs will have their office hours up to and
including Saturday Dec 7t

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

FINAL EXAM

Where: McConomy Auditorium (University Center)
When: Thursday Dec 11% @ 1:00-4:00pm

What to bring:

— CMU ID

— Pencil + Eraser (!!!)

— Calculator (cellphone is okay)

— One 8.5x11" page of handwritten notes (double-sided)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2022/final-guide.html
https://15445.courses.cs.cmu.edu/fall2025/final-guide.html
https://15445.courses.cs.cmu.edu/fall2025/final-guide.html
https://15445.courses.cs.cmu.edu/fall2025/final-guide.html

STUFF BEFORE MID-TERM

SQL

Buffer Pool Management

Data Structures (Hash Tables, B+Trees)
Storage Models

Query Processing Models

Inter-Query Parallelism

Basic Understanding of BusTub Internals

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

JOIN AL6ORITHMS

Join Algorithms

— Naive Nested Loops

— Block Nested Loops

— Index Nested Loops

— Sort-Merge

— Hash Join: Simple, Partitioned, Hybrid Hash
— Optimization using Bloom Filters

— Cost functions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

QUERY EXECUTION

Execution Models
— [terator

— Materialized

— Vector / Batch

Plan Processing: Push vs. Pull
Access Methods

— Sequential Scan and various optimization
— Index Scan, including multi-index scan
— [ssues with update queries

Expression Evaluation

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

QUERY EXECUTION

Process Model

Parallel Execution

— Inter Query Parallelism

— Intra Query Parallelism: Intra-Operator: horizontal, vertical,
and bushy
Parallel hash join, Exchange operator

— Intra Query Parallelism: Inter-Operator, aka. pipelined
parallelism

IO Parallelism

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

QUERY OPTIMIZATION

Heuristics

— Predicate Pushdown

— Projection Pushdown

— Nested Sub-Queries: Rewrite and Decompose

Statistics
— Cardinality Estimation
— Histograms

Cost-based search
— Bottom-up vs. Top-Down

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTIONS

ACID

Conflict Serializability:
— How to check for correctness?
— How to check for equivalence?

View Serializability
— Difference with conflict serializability

I[solation Levels / Anomalies

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTIONS

Two-Phase Locking
— Strict 2PL: Txn holds X locks until it commits or aborts. May

release S locks earlier, during the shrinking phase.
— Strong Strict 2PL: Txn holds all locks (S and X) until it
commits or aborts. Also called "Rigorous 2PL".

Cascading Aborts Problem
Deadlock Detection & Prevention

Multiple Granularity Locking

— Intention Locks

— Understanding performance trade-offs
— Lock Escalation (i.e., when is it allowed)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TRANSACTIONS

Optimistic Concurrency Control
— Read Phase

— Validation Phase (Backwards vs. Forwards)
— Write Phase

Multi-Version Concurrency Control
— Version Storage / Ordering

— Garbage Collection

— Index Maintenance

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule "

TS(T)-1 T, Joadase B \
R(A) TS(Tz) 2 ‘ AO 2 ~ 123 :
W(A) BEGIN q i

R(A) ! |
W(A) I I
R(A) Ve ——————— /
COMMIT
Txn Status Table
COMMIT | e e

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule Datab
TS(T)-=1 T, e \
TBEGIN ' - |
=2 egin-ts end-ts value
ERN IS e o o e
A, 1 - 456
R(A) q, :
W(A) I I
R(A) N e e e e e e)
COMMIT
Txn Status Table
COMMIT e \
i |
: T, 1 Active :
I I
I I
I I
! !

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule Datab
TS(T)-=1 T, e \
SBEGIN '] i
TS(T,)=2 I
m% BEGIN L : A : L 123 :
I -
R(A) : A, 456 :
W(A) I I
R(A) N e ———————)
COMMIT
Txn Status Table
COMMIT PR —— \
| :
: T, 1 Active :
I I
I I
I I
I !

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule
TS(T)=1 2 Dasabase _______ 4 \
e e |
R(A) mp A 0 1 123 I
W(A) BEGIN A 1 - " i
1A I
»Ru\) ! .
W(A) I I
R(A) Ve —————— /
, a
COMMLT T, reads version A, Tabl
because T hasnot [I1Us 1 avle
COMMIT Rall Rbtetdi N PR ———
committed yet.
T, 1 Active

T, 2 Active

l—---
----l

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule "

TS(T)-1 T, Joadase B \
SSEoin ' - |

TS(T.)=2 begin-ts end-ts value
&Eﬁ% BEGIN L | a : 1 123 i
RCA) i A, 1 - 456 :
»wm i]
R(A) m N e !

COMMIT m N

M T, stalls until T, tus Table

COMMIT , 1 o o om o \
commits to acquire I

write lock on A. : I

T Active |

I

| T, 2 Active |

| |

1 |

i]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule Datab
TS(T)-1 T, e \
Seon sz b :
R(A) 2 1la, o 1 123 I
W(A) BEGIN o 1 - yen |
R(A) : I
W(A) I I
R(A) m N e o o e e Y
COMMIT o g
v Txn Status Table
COMMIT PRyt —— \
| |
| .
: T, 1 Active :
I, 2 Active |
| |
| |
|)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule Datab
TS(T)-1 T, e \
Seon saz) ! :
m% BEGIN q' Bl : = :
A 1 - 456 1
W(A) i -
[| L —— !
s X
v Txn Status Table
COMMIT [e \
: i
T, reads version A, that | ——
it wrote earlier. L Active :
I, 2 Active |
I i
I i
I [

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

Schedule Datab
TS(T)-1 T, e \
Seon sz b :
R(A) 2 1la, o 1 123 I
W(A) BEGIN i 1 - yen |
R(A) : I
W(A) I |
R(A) m N e o o e e Y
COMMIT = g
v Txn Status Table

COMMIT PRyt —— \

| 1

| -

: T, 1 Committed :

I, 2 Active |

| 1

| |

|)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

MVCC WITH 2PL

new version.

Active

Schedule Datab
TS(T,)-1 T, e
B ' -
TS(T.)=2 begin-ts end-ts value
R(A) (1) : A, 0 123
W(A) BEGIN an] 5 456
RCA) :
W(AY »I A, 2 - 789
R(A) A N ——————
COMMIT i g
» v Txn Status Table
COM i o
Now T, can create the Commi tted

----l

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CRASH RECOVERY

Buffer Pool Policies:
— STEAL vs. NO-STEAL
— FORCE vs. NO-FORCE

Shadow Paging

Write-Ahead Logging
— How it relates to buffer pool management
— Logging Schemes (Physical vs. Logical)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

CRASH RECOVERY

Checkpoints

— Non-Fuzzy vs. Fuzzy

ARIES Recovery

— Dirty Page Table (DPT)

— Active Transaction Table (ATT)
— Analyze, Redo, Undo phases

— Log Sequence Numbers
— CLRs

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DISTRIBUTED DATABASES

System Architectures
Replication Schemes
Partitioning Schemes
Two-Phase Commit

Paxos

Distributed Query Execution
Distributed Join Algorithms

Semi-Join Optimization

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (ABORT)

18
3.
m; Commit Request g -*§'
T e L Node2 d &
B

Application g’
Server |2
Phasel: Prepare ~§'
TN Node3 J &

g p—
S —— ~
: B
O L Nodel §
Node 4 2 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Application
Server

Coordinator

———

TWO-PHASE COMMIT (ABORT)

=

3.

Commit Request g -*§'
Node2 4 &

~

3

Phasel: Prepare -'-§'
TN Node3 4 &
OK l .

@ 3

L &°

,.g.

=

Node 4 1 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (ABORT)

Commit Request

— 7

1und1.;;und

Node 2 -

Application
Server

]
| |
juvdidgavg

Phase2: Abort Node 3 -

L Node 1

Coordinator
|
Y J
juvdivg

Node 4 -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TWO-PHASE COMMIT (ABORT)

S

AR 3

Aborted -2

ZZ _, :

I Node 2 2 =
g

Application <

Server @ 2

-

%o

S

& Phase2: Abort Node 3 J =

g 1~

T 3

S — 5

O L Nodel ~§

Node 4 2 =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Application

Server

Coordinator

TWO-PHASE COMMIT (ABORT)

Aborted

== =]

|
juvdidngavg

|
juvdidgavg

|
Juvdidnguvg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

TOPICS NOT ON EXAM!

Flash Talks
Seminar Talks
Details of specific database systems (e.g., Postgres)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

=

CMU 15-721 (Spring 2024)
SPEED RUN

https://15721.courses.cs.cmu.edu/spring2024

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://15721.courses.cs.cmu.edu/spring2024

SEQUENTIAL SCAN: OPTIMIZATIONS

Data Encoding / Compression
Prefetching / Scan Sharing / Buffer Bypass
Task Parallelization / Multi-threading
Clustering / Sorting
Late Materialization
Materialized Views / Result Caching
Data Skipping
Data Parallelization / Vectorization

Code Specialization / Compilation

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SELECTION SCANS

SELECT * FROM table
WHERE key > $(low)
AND key < $(high)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/citation.cfm?id=2465292

SELECTION SCANS

Scalar (Branching)

i=0

for t in table:

key = t.key

if (key>low) && (key<high):
copy(t, outputl[il])
i=1+1

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/citation.cfm?id=2465292

SELECTION SCANS

Scalar (Branching) Scalar (Branchless)
i=20 i=20
for t in table: for t in table:
key = t.key copy(t, output[il])
if (key>low) && (key<high): key = t.key
copy(t, outputl[il]) delta = (key>low ? 1 : 0) &
i=1+1 Y (key<high ? 1 : 0)
i =i + delta

Source: Bogdan Raducanu

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/citation.cfm?id=2465292

SELECTION SCANS

CPU cycles / tuple

12

1 g : e - hobranching
4
2
0

o ~ branching

- ~ .

—~ -
~—
/”Z__'_ — T ———— SIS -

0 20 40 60 80
Selectivity

100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/citation.cfm?id=2465292
https://dl.acm.org/citation.cfm?id=2465292

SIMD SELECTION SCANS

Scalar (Branchless)

i=20
for t in table:
copy(t, outputl[il])
key = t.key
m = (key=low ? 1 : 0) &
Y (keyshigh 7 1 : 0)
i=1+m

SELECT * FROM table
WHERE key >= $low AND key <= $high

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMD SELECTION SCANS

Vectorized

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 @ 0) &
Y (vshigh 7 1 : 0)
simdStore(v,, v,, output[i])
i =1+ |v#false]

SELECT * FROM table
WHERE key >= $low AND key <= $high

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMD SELECTION SCANS

Vectorized

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 @ 0) &
Y (vshigh 7 1 : 0)
simdStore(v,, v,, output[i])
i =1+ |v#false]

SELECT * FROM table
WHERE key >= $low AND key <= $high

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMD SELECTION SCANS

Vectorized

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 @ 0) &

Y (vshigh 7 1 : 0)
simdStore(v,, v,, output[i])
i =1+ |v#false]

SELECT * FROM table
WHERE key >= $low AND key <= $high

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMD SELECTION SCANS

Vectorized

i=20

for v, in table:

simdLoad(v,.key, v,)

v, = (vy2low 7 1 @ 0) &
S (v,shigh 7 1 : 9)

simdStore(v,, v,, output[i])

i =1+ |v#false]

SELECT * FROM table
WHERE key >= $low AND key <= $high

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMD SELECTION SCANS

Vectorized

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 @ 0) &

Y (v,shigh 7 1 : 0)
simdStore(v,, v,, output[i])
i=1+ |v#false]

SELECT * FROM table
WHERE key >= $low AND key <= $high

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMD SELECTION SCANS

Vectorized

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 @ 0) &
Y (vshigh 7 1 : 0)
simdStore(v,, v,, output[i])
i =1+ |v#false]

SELECT * FROM table
WHERE key >= 'N' AND key <= 'U'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMD SELECTION SCANS

Vectorized

i=0 100] A
for v, in table: 1011 N
simdLoad(v,.key, v,) 102 D
v, = (v,zlow ? 1 : 0) & 103 Y
% (veshigh 2 1 @ 0) 104| P
simdStore(v,, v,, output[i]) 1051 I
i = i 106] S

i =1+ |v#false]

107 & |

SELECT * FROM table
WHERE key >= 'N' AND key <= 'U'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIMD SELECTION SCANS

- KeyVector | AINIDIY|P|I|S|&

Vectorized

i=o0 100] A
for v, in table: 101] N
simdLoad(v,.key, v,) 102] D

v, = (vizlow 2 1 : 0) & 193] Y |-
% (v,<high ? 1 : 0) 104] P
simdStore(v,, v,, output[i]) 105] I
i =i+ |v#false] 13673 S

SELECT * FROM table
WHERE key >= 'N' AND key <= 'U'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Vectorized

SIMD SELECTION SCANS

i=20
for v, in table:

v, = (v,=2low ? 1
Y (v, shigh 7 1

i =1+ |v#false]

simdLoad(v,.key, v,)
:0) &

: 0)

simdStore(v,, v,, output[il)

SELECT * FROM table

WHERE key >= 'N' AND key <= 'U'

100

101

102

103

- Key Vector

Mask #1

104

105

106

nNHITI<IO|IZ >

107

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Vectorized

SIMD SELECTION SCANS

i=20
for v, in table:

v, = (v,=2low ? 1
Y (v, shigh 7 1

i =1+ |v#false]

simdLoad(v,.key, v,)
:0) &

: 0)

simdStore(v,, v,, output[il)

SELECT * FROM table

WHERE key >= 'N' AND key <= 'U'

100

101

102

103

- Key Vector

Mask #1

104

105

106

nNHITI<IO|IZ >

107

Mask #2

=

A

N

D

Y

P

I

S

a

SIMD Compare

Y

1

Y

1

1

Y

1

Y

1

1

1

0

1

1

1

0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Vectorized

SIMD SELECTION SCANS

i=20
for v, in table:

v, = (v,=2low ? 1
Y (v, shigh 7 1

i =1+ |v#false]

simdLoad(v,.key, v,)
:0) &

: 0)

simdStore(v,, v,, output[il)

SELECT * FROM table

WHERE key >= 'N' AND key <= 'U'

100

101

102

103

- Key Vector

Mask #1

104

105

106

nNHITI<IO|IZ >

107

Mask #2

=

A

N

D

Y

P

I

S

a

SIMD Compare

0

1

Y

1

1

Y

1

Y

1(1]1]of1]1|1]0
MY e
SIMD AND

— { \ NS
Mask#3 |g|1|0|0[1]0]|1]0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Vectorized

SIMD SELECTION SCANS

i=20
for v, in table:

v, = (v,=2low ? 1
Y (v, shigh 7 1

i =1+ |v#false]

simdLoad(v,.key, v,)
:0) &

: 0)

simdStore(v,, v,, output[il)

- Key Vector
offet
0 [100] A
1T [101] N Mask #1
2 [102] D
3 [103] v H Mask #2
4 |104] P
5 [105] I
6 [106] S
7 1107 Mask #3
All Offsets

SELECT * FROM table

WHERE key >= 'N' AND key <= 'U'

=

A

N

D

Y

P

I

S

a

SIMD Compare

0

1

Y

1

1

Y

1

Y

111]11]10[1[1]1]0
SNV
SIMD AND

el AN

o[1Telo[1To[1]o

0

1

2

3

4

5

6

/

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Vectorized

SIMD SELECTION SCANS

i=20
for v, in table:

v, = (v,=2low ? 1
Y (v, shigh 7 1

i =1+ |v#false]

simdLoad(v,.key, v,)
:0) &

: 0)

simdStore(v,, v,, output[il)

SELECT * FROM table

WHERE key >= 'N' AND key <= 'U'

=

A

N

D

Y

P

I

S

a

SIMD Compare

0

1

Y

1

1

Y

1

Y

111]11]10[1[1]1]0
SNV
SIMD AND

el AN

o[1Telo[1To[1]o

0

1

2

3

4

5

6

/

- Key Vector
offet
0 [100] A
1T [101] N Mask #1
2 [102] D
3 [103] v H Mask #2
4 1104 P
5 [105] I
6 [106] S
7 1107 Mask #3
All Offsets
Matched Offsets

SIMD Compress

1

4

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Scalar

Input Key hash(key) Hash Index

SIMD HASH TABLE PROBING

k1

—f—

VLDB JOURNAL 2020

hi

= MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES

Linear Probing
Hash Table

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

Scalar

Input Key hash(key) Hash Index

SIMD HASH TABLE PROBING

k1

—f—

VLDB JOURNAL 2020

hi

= MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES

—__

Linear Probing
Hash Table

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

Scalar

Input Key hash(key) Hash Index

SIMD HASH TABLE PROBING

k1

—f—

VLDB JOURNAL 2020

hi

= MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES

—__

=| k9

=1 k3

k8

kil | =] k1

Linear Probing
Hash Table

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

Scalar

Input Key hash(key) Hash Index

SIMD HASH TABLE PROBING

k1

—f—

hi

Vectorized (Horizontal)

VLDB JOURNAL 2020

—'| MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES

Linear Probing

Bucketized Hash Table

KEYS PAYLOAD

Four Keys Four Values

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

Scalar

SIMD HASH TABLE PROBING

Input Key hash(key) Hash Index

k1

—f—

hi

Vectorized (Horizontal)

Input Key hash(key) Hash Index

k1

hi

—'| MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER

CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES

VLDB JOURNAL 2020

Linear Probing

Bucketized Hash Table

KEYS PAYLOAD

Four Keys Four Values

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

Scalar

Input Key

SIMD HASH TABLE PROBING

k1

hash(key) Hash Index

—f—

hi

Vectorized (Horizontal)

Input Key

k1

hash(key) Hash Index

k1

k9

k3

k8

k1

Linear Probing

Bucketized Hash Table

KEYS PAYLOAD

VLDB JOURNAL 2020

hi

—'| MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES

Four Keys Four Values

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

Scalar

Input Key

SIMD HASH TABLE PROBING

k1

hash(key) Hash Index

—f—

hi

Vectorized (Horizontal)

Input Key

k1

hash(key) Hash Index

hi

='| MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER

CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES

VLDB JOURNAL 2020

k1

k9

k3

k8

k1

Linear Probing

Bucketized Hash Table

KEYS PAYLOAD

SIMD Compare

0

0

0

1

Matched Mask

Four Keys Four Values

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

FILTER REPRESENTATION 5

WHERE col® IS NULL OR coll LIKE 'b%'

App roaCh #1: SeleCtlon VECtOI’S col0: int32 coll: varchar Selection Vector
— Dense sorted list of tuple identifiers that

indicate which tuples in a batch are valid. (521 ¢ 2 | 0 ;

— Pre-allocate selection vector as the max- 77| | 4
. . - 1 cc 0
size of the input vector. e bbb e

FILTER REPRESENTATION IN VECTORIZED
QUERY EXECUTION
DAMON 2021

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://doi.org/10.1145/3465998.3466009
https://doi.org/10.1145/3465998.3466009

FILTER REPRESENTATION 5

WHERE col@ IS NULL OR coll LIKE 'b%'
App roaCh #1: SeleCtlon Vectors col0: int32 coll: varchar Selection Vector
— Dense sorted list of tuple identifiers that
indicate which tuples in a batch are valid. =240 o =
— Pre-allocate selection vector as the max- T 1 / 4
size of the input vector. = Z 1 /

FILTER REPRESENTATION IN VECTORIZED
QUERY EXECUTION
DAMON 2021

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://doi.org/10.1145/3465998.3466009
https://doi.org/10.1145/3465998.3466009

FILTER REPRESENTATION

Approach #1: Selection Vectors

— Dense sorted list of tuple identifiers that
indicate which tuples in a batch are valid.

— Pre-allocate selection vector as the max-
size of the input vector.

Approach #2: Bitmaps

— Positionally-aligned bitmap that indicates
whether a tuple is valid at an offset.

— Some SIMD instructions natively use
these bitmaps as input masks.

FILTER REPRESENTATION IN VECTORIZED
QUERY EXECUTION
DAMON 2021

=

WHERE col® IS NULL OR coll LIKE 'b%'

col0: int32 coll: varchar Selection Vector

55 U] aa 2 1
66 1| o e —
7z 1 o e] / 4
-] cc 9 /
88 Il o bbb I| 0
: col0: int32 coll: varchar Bitmap
55 0 aa 9 |[¢———— 0
66 || o bb || o [1
77 || o - 1 [——
- 1 cc 0 |« 0
88 |0 bbb |[0 |etmmm]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://doi.org/10.1145/3465998.3466009
https://doi.org/10.1145/3465998.3466009

HIQUE: HOLISTIC CODE GENERATION

For a given query plan, create a C/C++ program that

implements that query’s execution.
— Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into a
shared object, link it to the DBMS process, and then
invoke the exec function.

GENERATING CODE FOR HOLISTIC
QUERY EVALUATION
ICDE 2010

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892

HIQUE: OPERATOR TEMPLATES

Interpreted Plan

for t in range(table.num_tuples):
tuple =|get_tuple(table, t)
if eval(predicate ,wjple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate of fset based on tuple size.
3. Return pointer to tuple.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HIQUE: OPERATOR TEMPLATES

Interpreted Plan

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if|eval(predicate, tuple, params):
emit(tuple)

1. Get schema in catalog foNtable.
. Calculate offset based on typle size.
Return pointer to tuple.

w N

Traverse predicate tree and pull values up.

If tuple value, calculate the of fset of the target attribute.
Perform casting as needed for comparison operators.
Return true / false.

N s N =

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HIQUE: OPERATOR TEMPLATES

Interpreted Plan Templated Plan

for t in range(table.num_tuples): tuple_size = ###

tuple = get_tuple(table, t) predicate_offset = #i##

if eval(predicate, tuple, params): parameter_value = #it#

emit(tuple)
for t in range(table.num_tuples):
1. Get schema in catalog for table. tuple = table.data + t * tuple_size
2. Calculate of fset based on tuple size. val = (tuple+predicate_offset)
3. Return pointer to tuple. if (val == parameter_value + 1):
emit(tuple)

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the of fset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Returntrue / false.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HIQUE: OPERATOR TEMPLATES

Interpreted Plan

for t in range(table.num_tuples):

tuple = get_tuple(table, t)
if eval(predicate, tuple, params):
emit(tuple)

w N

Get schema in catalog for table.

. Calculate offset based on tuple size.

Return pointer to tuple.

N s N =

Traverse predicate tree and pull values up.

If tuple value, calculate the of fset of the target attribute.

Perform casting as needed for comparison operators.
Return true / false.

Templated Plan

tuple_size = #i#t#
predicate_offset = #i##
parameter_value = #i##

for t in range(table.num_tuples):

tuple = table.data + t * [tuple_size]

val = (tupleﬂgredicate_offseth
if (val ==|parameter=va1ua + 1):

emit(tuple)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

HIQUE: OPERATOR TEMPLATES

Interpreted Plan Templated Plan

for t in range(table.num_tuples): tuple_size = ###

tuple = get_tuple(table, t) predicate_offset = #i##

if eval(predicate, tuple, params): parameter_value = #it#

emit(tuple)
for t in range(table.num_tuples):
1. Get schema in catalog for table. tuple = table.data + t * tuple_size
2. Calculate of fset based on tuple size. val = (tuple+predicate_offset)
3. Return pointer to tuple. if (val == paramete r_value + 1)]
emit(tuple)

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the of fset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Returntrue / false.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SIGMOD 2013

VECTORWISE: PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that perform

basic operations on typed data.
— Using simple kernels for each primitive means that they are
easier to vectorize.

The DBMS then executes a query plan that invokes

these primitives at runtime.
— Function calls are amortized over multiple tuples.
— The output of a primitive are the offsets of tuples that

~ | MICRO ADAPTIVITY IN VECTORWISE

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

VECTORWISE: PRECOMPILED PRIMITIVES 5

SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

G str_col='abc' &&
int_col=4

=

foo

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VECTORWISE: PRECOMPILED PRIMITIVES 5

SELECT * FROM foo | vec<offset> sel_eq_str(vec<string> col, string val) {
WHERE str_col = 'a vec<offset> positions;
AND int_col = A, for (offset i = 0; i < col.size(); i++)

V4 if (col[i] == val) positions.append(i);
L return (positions);
Gstr_col='abc' && }
int_col=4

|

foo

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VECTORWISE: PRECOMPILED PRIMITIVES 5

SELECT * FROM foo vec<offset> sel_eq_str(vec<string> col, string val) {
WHERE str_col = 'abc' vec<offset> positions;
AND int_col = 4; for (offset i = 0; i < col.size(); i++)

if (col[i] == val) positions.append(i);

return (positions);

G str_col='abc' && }

int_col=4
-

—p| vec<offset> sel_eq_int(vec<int> col, int val,
vec<offset> positions) {
vec<offset> res;
f for (offset i : positions)
oo if (col[i] == val) res.append(i);

return (res);

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

VECTORWISE: PRECOMPILED PRIMITIVES 5

SELECT * FROM foo vec<offset> sel_eq_str(vec<string> col, string val) {
WHERE str_col = 'abc' vec<offset> positions;
AND int_col = 4; for (offset i = 0; i < col.size(); i++)

if (col[i] == val) positions.append(i);

return (positions);

G str_col='abc' && }

int_col=4
-

—p| vec<offset> sel_eq_int(vec<int> col,™t val,
vec<offset> positions) {
vec<offset> res;
f for (offset i : positions)
oo if (col[i] == val) res.append(i);

return (res);

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SYSTEMS

Google BigQuery (2011)
Snowflake (2013)

Amazon Redshift (2014)
Yellowbrick (2014)

Databricks Photon (2022)
ClickHouse (2016)

$DB Flash Talk: Relational Al

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://relational.ai/

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Google
Big Query

b0O0GLE BIGAUERY (2011)

Originally developed as "Dremel" in 2006 as a side-
project for analyzing data artifacts generated from other

tools.

— The "interactive" goal means that they want to support ad hoc
queries on in-situ data files.
— Did not support joins in the first version.

Rewritten in the late 2010s to shared-disk architecture
built on top of GFS.

Released as public commercial product (BigQuery) in
2012.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://cloud.google.com/bigquery

BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage
Vectorized Query Processing
Shuffle-based Distributed Query Execution

Columnar Storage

— Zone Maps / Filters

— Dictionary + RLE Compression

— Only Allows "Search" Inverted Indexes

Hash Joins Only
Heuristic Optimizer + Adaptive Optimizations

~— |DREMEL: A DECADE OF INTERACTIVE
SQL ANALYSIS AT WEB SCALE
VLDB 2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/abs/10.14778/3415478.3415568
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

Google
Big Query

BIGAUERY: IN-MEMORY SHUFFLE

The shuftle phases represent checkpoints in a query's
lifecycle where that the coordinator makes sure that all
tasks are completed.

Fault Tolerance / Straggler Avoidance:

— If a worker does not produce a task's results within a deadline,
the coordinator speculatively executes a redundant task.

Dynamic Resource Allocation:

— Scale up / down the number of workers for the next stage
depending size of a stage's output.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Google
Big Query

BIGAUERY: IN-MEMORY SHUFFLE

: Worker :

: Worker :

In-Memory
Storage

H i

H =
L

=58

Distributed
File System

: Worker ¢

o 3
: Worker :

Stage n+1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

© BIGQUERY: IN-MEMORY SHUFFLE

In-Memory
Storage

B 3
F 7
LN\ i B Worker :
‘ M : Worker :

Stage n @ @ Stage n+1

Distributed
File System

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

© BIGQUERY: IN-MEMORY SHUFFLE

In-Memory
Storage

B 3
F 7
LN\ i B Worker :
‘ M : Worker :

Stage n @ @ Stage n+1

Distributed
File System

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

Google
Big Query

BIGAUERY: IN-MEMORY SHUFFLE

: Worker :

: Worker :

In-Memory
Storage

H i

H =
L

=58

Distributed
File System

: Worker ¢

o 3
: Worker :

Stage n+1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

© BIGQUERY: IN-MEMORY SHUFFLE

In-Memory
Storage

§ — g % i

: Worker :

B 3

F 7

i B Worker :
‘ M : Worker :

@ @ Stage n+1

Distributed
File System

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

© BIGQUERY: IN-MEMORY SHUFFLE

In-Memory
Storage

§ — g % i

: Worker :

B 3

F 7

i B Worker :
‘ M : Worker :

@ @ Stage n+1

Distributed
File System

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

© BIGQUERY: IN-MEMORY SHUFFLE

In-Memory

: Worker :

B -
B :
‘ M Worker :

@ @ Stage n+1

Distributed
File System

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

© BIGQUERY: IN-MEMORY SHUFFLE

In-Memory

: Worker ¢ . Worker |

‘ o . Worker :

@ @ Stage n+1

Distributed
File System

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

BIGAUERY: IN-MEMORY SHUFFLE
’"gﬁ‘g:;"gf;ry M

: Worker : |l % Statistics

: Worker : : Worker :

% i Worker :

@ @ Stage n+1

Distributed
File System

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

P2 BIGQUERY: DYNAMIC REPARTITIONING 5

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew. purtitionst Partition 12

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their

partitioning scheme.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

P2 BIGQUERY: DYNAMIC REPARTITIONING 5

BigQuery dynamically load balances L
and adjusts intermediate result /‘ Statistic

partitioning to adapt to data skew. PR

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme. Worker

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

P2 BIGQUERY: DYNAMIC REPARTITIONING 5
W

Statistics

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew. Parsionst Paribonss Partinss Pasvons

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

- BIGAUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

- BIGAUERY: DYNAMIC REPARTITIONING
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partltlonlng tO adapt tO data SkeW. Partition #1 Partition #2 Partition #3 Partition #4

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

- BIGAUERY: DYNAMIC REPARTITIONING
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partltlonlng tO adapt tO data SkeW. Partition #1 Partition #2 Partition #3 Partition #4

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

®5 DIGUUERY: DYNAMIC REPARTITIONNS
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning tO adapt tO data Skew' Partition #1 Partition #2 Partition #3 Partition #4

B RE
DBMS detects whether shuffle

partition gets too full and then hash,(key) hash,(key)
instructs workers to adjust their

partitioning scheme. Worker

Source: H.Ahmadi + A.Surna

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

®5 DIGUUERY: DYNAMIC REPARTITIONNS
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning tO adapt tO data Skew' Partition #1 Partition #2 Partition #3 Partition #4

DBMS detects whether shuffle i

partition gets too full and then hash,(key)
instructs workers to adjust their

partitioning scheme.

Repartition

Source: H.Ahmadi + A.Surna

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

®5 DIGUUERY: DYNAMIC REPARTITIONNS
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning tO adapt tO data Skew' Partition #1 Partition #2 Partition #3 Partition #4

DBMS detects whether shuffle i

partition gets too full and then hash,(key)
instructs workers to adjust their

partitioning scheme.

Repartition

Source: H.Ahmadi + A.Surna

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

®5 DIGUUERY: DYNAMIC REPARTITIONNS
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning to adapt to data skew. P o

DBMS detects whether shuffle i

partition gets too full and then hash,(key)
instructs workers to adjust their

partitioning scheme.

Repartition

Source: H.Ahmadi + A.Surna

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

snow flake

4

~

)
¢

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SNOWFLAKE (2013)

Managed OLAP DBMS written in C++.

— Shared-disk architecture with aggressive compute-side local
caching.

— Written from scratch. Did not borrow components from
existing systems.

— Custom SQL dialect and client-server network protocols.

The OG cloud-native data warehouse.

= | THE SNOWFLAKE ELASTIC DATA

WAREHOUSE
SIGMOD 2016

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/2882903.2903741
https://dl.acm.org/doi/10.1145/2882903.2903741

SHOWFLAKE: OVERVIEW

Cloud-native OLAP DBMS written in C++
Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing
Precompiled Operator Primitives

Separate Table Data from Meta-Data

No Buffer Pool

PAX Columnar Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

S SNOWFLAKE: QUERY PROCESSING

Snowflake is a push-based vectorized engine that uses

precompiled primitives for operator kernels.

— Pre-compile variants using C++ templates for different vector
data types.

— Only uses codegen (via LLVM) for tuple
serialization/deserialization between workers.

Does not support partial query retries
— If a worker fails, then the entire query has to restart.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SNOWFLAKE: ADAPTIVE OPTIMIZATION 5

After dete1:m1n1pg .]om.ordermg,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

TableScan(a) TableScan(b)

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/bowei-chen-9a2b54126/

SNOWFLAKE: ADAPTIVE OPTIMIZATION 5

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

Aggregation

TableScan(a) TableScan(b)

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/bowei-chen-9a2b54126/

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining joi '

' ng .]om.ordermg,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

TableScan(a) AggChild

The optimizer adds the downstream TableScant(b)

aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/bowei-chen-9a2b54126/

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After dete1:m1n1pg .]om.orde%‘mg,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

TableScan(a) AggChild

The optimizer adds the downstream TableScant(b)

aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/bowei-chen-9a2b54126/

SNOWFLAKE: A

After determining join order;
Snowflake's optimizer identif
aggregation operators to pus]
into the plan below joins.

The optimizer adds the dOW]J

aggregations but then the DJ
enables them at runtime accq
statistics observed during ex

Source: Bowei Chen

®¥ Medium O [Z write

Aggregation Placement — An
Adaptive Query Optimization
for Snowflake

G‘P Bowei Chen - Follow
e Published in Snowflake - 8 min read - Aug 10,2023

Snowflake’s Data Cloud is backed by a data platform designed from the
ground up to leverage cloud computing technology. The platform is delivered
as a fully managed service, providing a user-friendly experience to run
complex analytical workloads easily and efficiently without the burden of
managing on-premise infrastructure, Snowflake’s architecture separates the
compute layer from the storage layer. Compute workloads on the same
dataset can scale independently and run in isolation without interfering with
each other, and compute resources could be allocated and scaled on demand
within seconds. The cloud-native architecture makes Snowflake a powerful
platform for data warehousing, data engineering, data science, and many
other types of applications. More about Snowflake architecture can be found

in Key Concepts & Architecture documentation and the Snowflake Elastic
PLS & Architecture documentation
Data Warehouse research paper.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/bowei-chen-9a2b54126/
https://medium.com/snowflake/aggregation-placement-an-adaptive-query-optimization-for-snowflake-ab1e2c6af2e4

B SHOWFLAKE: FLEXIBLE COMPUTE *

Hashj]oinProbe

[f a query plan fragment will process a
large amount of data, then the DBMS HoshjoimBuild Groupsy [}

can temporarily deploy additional
worker nodes to accelerate its >Is‘gf"
performance. TableScan

TableScan j

Flexible compute worker nodes write
results to storage as if it was a table.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/xnuv6vr8USE

B SHOWFLAKE: FLEXIBLE COMPUTE *

HashJoinProbe

[f a query plan fragment will process a
large amount of data, then the DBMS HashJoinBuild

can temporarily deploy additional Filter UnionAll
worker nodes to accelerate its *
TableScan TableScan
performance. 2 Materialize
‘._Result to Storage
Flexible compute worker nodes write |

GroupBy

TableScan

Scale Out on »

results to storage as if it was a table.

Flexible Compute TableScan

Source: Libo Wang

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/xnuv6vr8USE

amazon
REDSHIFT

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

amazon
REDSHIFT

AMAZON REDSHIFT (2014)

Amazon's flagship OLAP DBaaS.

— Based on ParAccel's original shared-nothing architecture.
— Switched to support disaggregated storage (S3) in 2017.
— Added serverless deployments in 2022.

Redshift is a more traditional data warehouse
compared to BigQuery/Spark where it wants to control
all the data.

Overarching design goal is to remove as much
administration + configuration choices from users.

AMAZON REDSHIFT RE-INVENTED

SIGMOD 2022

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://aws.amazon.com/about-aws/whats-new/2022/07/amazon-redshift-serverless-generally-available/
https://doi.org/10.1145/3514221.3526045
https://doi.org/10.1145/3514221.3526045

Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Precompiled Primitives

Compute-side Caching
PAX Columnar Storage
Sort-Merge + Hash Joins

Hardware Acceleration (AQUA)
Stratified Query Optimizer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

7 REDSHIFT: COMPILATION SERVICE K

Separate nodes to compile query plans using GCC and

aggressive caching.

— DBMS checks whether a compiled version of each templated
fragment already exists in customer's local cache.

— [f fragment does not exist in the local cache, then it checks a
global cache for the entire fleet of Redshift customers.

Background workers proactively recompile plans when
new version of DBMS is released.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

: =
Yellowbrick ¢g

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

YELLOWBRICK (201)

OLAP DBMS written on C++ and derived from a
hardfork of PostgreSQL v9.5.

— Uses PostgreSQL's front-end (networking, parser, catalog) to
handle incoming SQL requests.
— They hate the OS as much as I do.

Originally started as an on-prem appliance with FPGA
acceleration. Switched to DBaaS in 2021.

Cloud-version uses Kubernetes for all components.

YELLOWBRICK: AN ELASTIC DATA
WAREHOUSE ON KUBERNETES
CIDR 2024

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.cidrdb.org/cidr2024/papers/p2-cusack.pdf
https://www.cidrdb.org/cidr2024/papers/p2-cusack.pdf

YELLOWBRICK

Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Compute-side Caching

Separate Row + PAX Columnar Storage
Sort-Merge + Hash Joins

PostgreSQL Query Optimizer++

Insane Systems Engineering

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

YELLOWBRICK: ARCHITECTURE
__ "

Compiler
Service

(0 (@ [[@

W orker Nodes Object Store

Source: Mark Cusack

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/macusack

“# YELLOWBRICK: ARCHITECTURE
B

Compiler
Service

(0 (@ [[@

W orker Nodes Object Store

Source: Mark Cusack

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/macusack

YELLOWBRICK: ARCHITECTURE

Compiler
Service

(0 (@ [[@

W orker Nodes Object Store

Source: Mark Cusack

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/macusack

YELLONBRICK ARCHITECTURE

Custom S3 Client

NVMe Driver

 uorbioma b 1

@ PostgreSQL

Compiler
Service

(0 (@ [[@

...

W orker Nodes Object Store

Source: Mark Cusack

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/macusack

Yellowbrick €'

YELLOWBRICK: QUERY EXECUTION

Pushed-based vectorized query processing that supports
both row- and columnar-oriented data with early

materialization.
— Introduces transpose operators to convert data back and forth
between row and columnar formats.

Holistic query compilation via source-to-source
transpilation.

Yellowbrick's architecture goal is for workers to always
process data residing in the CPU's L3 cache and not
memory.

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

YELLOWBRICK: MEMORY ALLOCATOR

Custom NUMA -aware, latch-free allocator that gets all

the memory needed upfront at start-up

— Using mmap with mlock with huge pages.

— Allocations are grouped by query to avoid fragmentation.
— Claims their allocator is 100x faster than libc malloc.

Each worker also has a buffer pool manager that uses
MySQL-style approximate LRU-K to store cached data
files.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://wiki.debian.org/Hugepages
https://15445.courses.cs.cmu.edu/fall2023/schedule.html#sep-18-2023

YELLOWBRICK: DEVICE DRIVERS 5

Custom NVMe / NIC drivers that run TCP B DPDK
in user-space to avoid memory copy 2000

overheads.
— Falls back to Linux drivers if necessary.

2430

1976
2000 —+— 1626

1358 1222,

995

Custom reliable UDP network
protocol with kernel-bypass (DPDK)

1000 —+
for internal communication. 0 | , [
— Each CPU has its own receive/transmit 2-Workers 3-Workers 4 KELSy
: Cluster Size
queues that it polls asynchronously.
— Only sends data to a "partner” CPU at
other workers.

TPC-DS Runtime

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

=

< databricks

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded into
Databricks Runtime (DBR) via JNI.

— Overrides existing engine when appropriate.

— Support both Spark's earlier SQL engine and Spark's
DataFrame API.

— Seamlessly handle impedance mismatch between row-oriented
DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054

DATABRICKS PHOTON (2022)

Photon: A Fast Query Engine for Lakehouse Systems

Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cashman, Ankur
Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind Sai Krishnan, Paul Leventis, Ala
Luszczak, Prashanth Menon, Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart

Samwel, Tom van Bussel, Herman van Hovell, Maryann Xue, Reynold Xin, Matei Zaharia
photon-paper-authors@databricks.com
Databricks Inc.

ABSTRACT from SQL to machine learning. Traditionally, for the most demand-
Many organizations are shifting to a data management paradigm ing SQL workloads, enterprises have also moved a curated subset
called the “Lakehouse,” which implements the functionality of struc- of their data into data warehouses to get high performance, gov-
tiired data wareholices An tan of unctructired data lakec Thig ernance and Concurrency. HOWCVCI', thlS tWO"tier arChiteCture iS

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054
https://twitter.com/andy_pavlo/status/1536843474925981697

< databricks

PHOTON: QVERVIEW

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion
Shuffle-based Distributed Query Execution
Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

< databricks

PHOTON: VECTORIZED PROCESSING

Photon is a pull-based vectorized engine that uses

precompiled operator kernels (primitives).
— Converts physical plan into a list of pointers to functions that
perform low-level operations on column batches.

Databricks: It is easier to build/maintain a vectorized

engine than a JI'T engine.

— Engineers spend more time creating specialized codepaths to
get closer to JIT performance.

— With codegen, engineers write tooling and observability hooks
instead of writing the engine.

=

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

domss PHOTON: EXPRESSION FUSION

SELECT * FROM foo
WHERE cdate BETWEEN '2024-01-01' AND '2024-04-01';

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

s PHOTON: EXPRESSION FUSION

SELECT * FROM foo
WHERE cdate >= '2024-01-01"'
AND cdate <= '2024-04-01';

cdate >= '2024-01-01"
AND
cdate <= '2024-04-01'

foo

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHOTON: EXPRESSION FUSION 5

SELECT * FROM foo vec<offset> sel_geq_date(vec<date> batch, date val) {

WHERE cdate >= '2024-01-01" vec<offset> positions;
AND cdate <= '2024-04-01"'; for (offset i = 0; i < batch.size(); i++)

if (batch[i] >= val) positions.append(i);
return (positions);

cdate >= '2024-01-01"
AND
cdate <= '2024-04-01'

vec<offset> sel_leq_date(vec<date> batch, date val) {
vec<offset> positions;
for (offset i = 0; i < batch.size(); i++)
f if (batch[i] <= val) positions.append(i);
return (positions);

}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHOTON: EXPRESSION FUSION 5

SELECT * FROM foo
WHERE cdate >= '2024-01-01"'
AND cdate <= '2024-04-01";

vec<offset> sel_between_dates(vec<date> batch,

date low, date high) {
cdate >= '2024-01-01" vec<offset> positions;
AND e for (offset i = 0; i < batch.size(); i++)
cdate <= '2024-04-01' if (batch[i] >= low && batch[i] <= high)
positions.append(i);
return (positions);

}

foo

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

PHOTON: EXPRESSION FUSION 5

SELECT * FROM foo
WHERE cdate >= '2024-01-01"'
AND cdate <= '2024-04-01";

vec<offset> sel_between_dates(vec<date> batch,
date low, date high)| {

cdate >= '2024-01-01" vec<offset> positions;
AND e for (offset i = 0; i < batch.size(); it++)
cdate <= '2024-04-01' if (batch[i] >= low && batch[i] <= high)
positions.append(i);
return (positions);

}

foo

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Xb2zm4-F1HI

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Xb2zm4-F1HI

G GPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue

Partition #1

Partition #1

Partition #2

Partition #3

Partition #4

Partition #5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Xb2zm4-F1HI

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number P

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Xb2zm4-F1HI

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number S —

of shuffle partitions for each stage. . I

— Number needs to be large enough to avoid
Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Xb2zm4-F1HI

ClickHouse

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

e CLICKHOUSE (2016)

C++ OLAP DBMS that supports different table engines
— Default;: MergeTree with SSTable-like immutable files

Shared-Nothing Architecture
Pull-Based Vectorized Query Processing

Operator-at-a-Time Execution
Compiled Expression Evaluator (LLVM)
Sort-Merge +|Hash Joins

Heuristic Optimizer + Rule-Based Rewriting

CLICKHOUSE - LIGHTNING FAST
ANALYTICS FOR EVERYONE
VLDB 2024

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://clickhouse.com/docs/engines/table-engines/mergetree-family/mergetree
https://www.vldb.org/pvldb/vol17/p3731-schulze.pdf
https://www.vldb.org/pvldb/vol17/p3731-schulze.pdf

CLICKHOUSE: STRING HASH TABLES 5

2% Intel Xeon CPU E5-2460v4 (10 cores)
Join + Group By Microbenchmark

120

| Lower is Better

oo
-
|

Runtime (sec)
5

25
16
0 - m
> 2
& &

= SAHA: A STRING ADAPTIVE HASH TABLE FOR ANALYTICAL DATABASES
APPL. SCI. 2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://doi.org/10.3390/app10061915
https://doi.org/10.3390/app10061915

CONCLUDING REMARKS

Databases are awesome.
— They cover all facets of computer science.
— We have barely scratched the surface...

Going forth, you should now have a good
understanding how these systems work.

This will allow you to make informed decisions

throughout your entire career.
— Avoid premature optimizations.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Advanced DB Speed-Run
	Slide 2: ADMINISTRIVIA
	Slide 3: OFFICE HOURS

	Final Exam Review
	Slide 4: FINAL EXAM
	Slide 5: STUFF BEFORE MID-TERM
	Slide 6: JOIN ALGORITHMS
	Slide 7: QUERY EXECUTION
	Slide 8: QUERY EXECUTION
	Slide 9: QUERY OPTIMIZATION
	Slide 10: TRANSACTIONS
	Slide 11: TRANSACTIONS
	Slide 12: TRANSACTIONS
	Slide 13: MVCC WITH 2PL
	Slide 14: MVCC WITH 2PL
	Slide 15: MVCC WITH 2PL
	Slide 16: MVCC WITH 2PL
	Slide 17: MVCC WITH 2PL
	Slide 18: MVCC WITH 2PL
	Slide 19: MVCC WITH 2PL
	Slide 20: MVCC WITH 2PL
	Slide 21: MVCC WITH 2PL
	Slide 22: CRASH RECOVERY
	Slide 23: CRASH RECOVERY
	Slide 24: DISTRIBUTED DATABASES
	Slide 25: TWO-PHASE COMMIT (ABORT)
	Slide 26: TWO-PHASE COMMIT (ABORT)
	Slide 27: TWO-PHASE COMMIT (ABORT)
	Slide 28: TWO-PHASE COMMIT (ABORT)
	Slide 29: TWO-PHASE COMMIT (ABORT)
	Slide 30: TOPICS NOT ON EXAM!

	Optimizations
	Slide 31
	Slide 32: SEQUENTIAL SCAN: OPTIMIZATIONS
	Slide 33: SELECTION SCANS
	Slide 34: SELECTION SCANS
	Slide 35: SELECTION SCANS
	Slide 36: SELECTION SCANS
	Slide 37: SIMD SELECTION SCANS
	Slide 38: SIMD SELECTION SCANS
	Slide 39: SIMD SELECTION SCANS
	Slide 40: SIMD SELECTION SCANS
	Slide 41: SIMD SELECTION SCANS
	Slide 42: SIMD SELECTION SCANS
	Slide 43: SIMD SELECTION SCANS
	Slide 44: SIMD SELECTION SCANS
	Slide 45: SIMD SELECTION SCANS
	Slide 46: SIMD SELECTION SCANS
	Slide 47: SIMD SELECTION SCANS
	Slide 48: SIMD SELECTION SCANS
	Slide 49: SIMD SELECTION SCANS
	Slide 50: SIMD SELECTION SCANS
	Slide 51: SIMD HASH TABLE PROBING
	Slide 52: SIMD HASH TABLE PROBING
	Slide 53: SIMD HASH TABLE PROBING
	Slide 54: SIMD HASH TABLE PROBING
	Slide 55: SIMD HASH TABLE PROBING
	Slide 56: SIMD HASH TABLE PROBING
	Slide 57: SIMD HASH TABLE PROBING
	Slide 58: FILTER REPRESENTATION
	Slide 59: FILTER REPRESENTATION
	Slide 60: FILTER REPRESENTATION
	Slide 61: HIQUE: HOLISTIC CODE GENERATION
	Slide 62: HIQUE: OPERATOR TEMPLATES
	Slide 63: HIQUE: OPERATOR TEMPLATES
	Slide 64: HIQUE: OPERATOR TEMPLATES
	Slide 65: HIQUE: OPERATOR TEMPLATES
	Slide 66: HIQUE: OPERATOR TEMPLATES
	Slide 67: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 68: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 69: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 70: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 71: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 72: SYSTEMS

	BigQuery
	Slide 73
	Slide 74: GOOGLE BIGQUERY (2011)
	Slide 75: BIGQUERY: OVERVIEW
	Slide 76: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 77: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 78: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 79: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 80: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 81: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 82: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 83: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 84: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 85: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 86: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 87: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 88: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 89: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 90: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 91: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 92: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 93: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 94: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 95: BIGQUERY: DYNAMIC REPARTITIONING

	Snowflake
	Slide 96
	Slide 97: SNOWFLAKE (2013)
	Slide 98: SNOWFLAKE: OVERVIEW
	Slide 99: SNOWFLAKE: QUERY PROCESSING
	Slide 100: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 101: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 102: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 103: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 104: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 105: SNOWFLAKE: FLEXIBLE COMPUTE
	Slide 106: SNOWFLAKE: FLEXIBLE COMPUTE

	Redshift
	Slide 107
	Slide 108: AMAZON REDSHIFT (2014)
	Slide 109: REDSHIFT: OVERVIEW
	Slide 110: REDSHIFT: COMPILATION SERVICE

	Yellowbrick
	Slide 111
	Slide 112: YELLOWBRICK (2014)
	Slide 113: YELLOWBRICK
	Slide 114: YELLOWBRICK: ARCHITECTURE
	Slide 115: YELLOWBRICK: ARCHITECTURE
	Slide 116: YELLOWBRICK: ARCHITECTURE
	Slide 117: YELLOWBRICK: ARCHITECTURE
	Slide 118: YELLOWBRICK: QUERY EXECUTION
	Slide 119: YELLOWBRICK: MEMORY ALLOCATOR
	Slide 120: YELLOWBRICK: DEVICE DRIVERS

	Databricks
	Slide 121
	Slide 122: DATABRICKS PHOTON (2022)
	Slide 123: DATABRICKS PHOTON (2022)
	Slide 124: PHOTON: OVERVIEW
	Slide 125: PHOTON: VECTORIZED PROCESSING
	Slide 126: PHOTON: EXPRESSION FUSION
	Slide 127: PHOTON: EXPRESSION FUSION
	Slide 128: PHOTON: EXPRESSION FUSION
	Slide 129: PHOTON: EXPRESSION FUSION
	Slide 130: PHOTON: EXPRESSION FUSION
	Slide 131: SPARK: PARTITION COALESCING
	Slide 132: SPARK: PARTITION COALESCING
	Slide 133: SPARK: PARTITION COALESCING
	Slide 134: SPARK: PARTITION COALESCING
	Slide 135: SPARK: PARTITION COALESCING

	ClickHouse
	Slide 136
	Slide 137: CLICKHOUSE (2016)
	Slide 138: CLICKHOUSE: STRING HASH TABLES

	Conclusion
	Slide 139: CONCLUDING REMARKS

