
DatabaseSystems

15-445/645 FALL 2025

15- 445/645 FALL 2025  
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Advanced DB Speed - Run
LECTURE #24

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ADMINISTRIVIA

Project #4 is due Sunday Dec 7th @ 11:59pm
→ Recitation Slides + Video (@300)
→ Office Hours Saturday Dec 6th @ 3:00-5:00pm (GHC 5201)

Homework #6 is due Sunday Dec 7th @ 11:59pm

Final Exam is on Thursday Dec 11th @ 1:00pm
→ Do not make travel plans before this date!

We are recruiting TAs for the next semester
→ Apply at: https://www.ugrad.cs.cmu.edu/ta/S26/
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OFFICE HOURS

Andy:
→ Wednesday Dec 10th @ 10:30-12:00pm (GHC 9019)
→ Wednesday Dec 10th @ 4:00-5:00pm (GHC 9019)

All other TAs will have their office hours up to and 
including Saturday Dec 7th
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FINAL EXAM

Where: McConomy Auditorium (University Center)

When: Thursday Dec 11th @ 1:00-4:00pm

What to bring:
→ CMU ID
→ Pencil + Eraser (!!!)
→ Calculator (cellphone is okay)
→ One 8.5x11" page of handwritten notes (double-sided)
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STUFF BEFORE MID-TERM

SQL

Buffer Pool Management

Data Structures (Hash Tables, B+Trees)

Storage Models

Query Processing Models

Inter-Query Parallelism

Basic Understanding of BusTub Internals
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JOIN ALGORITHMS

Join Algorithms
→ Naïve Nested Loops 
→ Block Nested Loops
→ Index Nested Loops
→ Sort-Merge 
→ Hash Join: Simple, Partitioned, Hybrid Hash
→ Optimization using Bloom Filters
→ Cost functions 
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QUERY EXECUTION

Execution Models
→ Iterator
→ Materialized
→ Vector / Batch

Plan Processing: Push vs. Pull

Access Methods
→ Sequential Scan and various optimization
→ Index Scan, including multi-index scan
→ Issues with update queries

Expression Evaluation
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QUERY EXECUTION

Process Model

Parallel Execution
→ Inter Query Parallelism
→ Intra Query Parallelism: Intra-Operator: horizontal, vertical, 

and bushy
Parallel hash join, Exchange operator

→ Intra Query Parallelism: Inter-Operator, aka. pipelined 
parallelism

IO Parallelism
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QUERY OPTIMIZATION

Heuristics
→ Predicate Pushdown
→ Projection Pushdown
→ Nested Sub-Queries: Rewrite and Decompose

Statistics
→ Cardinality Estimation
→ Histograms

Cost-based search
→ Bottom-up vs. Top-Down
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TRANSACTIONS

ACID

Conflict Serializability:
→ How to check for correctness?
→ How to check for equivalence?

View Serializability
→ Difference with conflict serializability

Isolation Levels / Anomalies
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TRANSACTIONS

Two-Phase Locking
→ Strict 2PL: Txn holds X locks until it commits or aborts. May 

release S locks earlier, during the shrinking phase.
→ Strong Strict 2PL: Txn holds all locks (S and X) until it 

commits or aborts. Also called "Rigorous 2PL".

Cascading Aborts Problem

Deadlock Detection & Prevention

Multiple Granularity Locking
→ Intention Locks
→ Understanding performance trade-offs
→ Lock Escalation (i.e., when is it allowed)
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TRANSACTIONS

Optimistic Concurrency Control
→ Read Phase
→ Validation Phase (Backwards vs. Forwards)
→ Write Phase

Multi-Version Concurrency Control
→ Version Storage / Ordering
→ Garbage Collection
→ Index Maintenance
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CRASH RECOVERY

Buffer Pool Policies:
→ STEAL vs. NO-STEAL
→ FORCE vs. NO-FORCE

Shadow Paging

Write-Ahead Logging
→ How it relates to buffer pool management
→ Logging Schemes (Physical vs. Logical)
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CRASH RECOVERY

Checkpoints
→ Non-Fuzzy vs. Fuzzy

ARIES Recovery
→ Dirty Page Table (DPT)
→ Active Transaction Table (ATT)
→ Analyze, Redo, Undo phases
→ Log Sequence Numbers
→ CLRs
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DISTRIBUTED DATABASES

System Architectures

Replication Schemes

Partitioning Schemes

Two-Phase Commit

Paxos

Distributed Query Execution

Distributed Join Algorithms

Semi-Join Optimization
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TOPICS NOT ON EXAM!

Flash Talks

Seminar Talks

Details of specific database systems (e.g., Postgres)
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CMU 15-721 (Spring 2024)

SPEED RUN

https://15721.courses.cs.cmu.edu/spring2024

https://15721.courses.cs.cmu.edu/spring2024 

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://15721.courses.cs.cmu.edu/spring2024


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SEQUENTIAL SCAN: OPTIMIZATIONS

Data Encoding / Compression

Prefetching / Scan Sharing / Buffer Bypass

Task Parallelization / Multi-threading

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation

Lecture #06

Lecture #14

Lecture #14

Lecture #08

Lecture #12

Lecture #05
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SELECT * FROM table
 WHERE key > $(low)
   AND key < $(high)

SELECTION SCANS

Bogdan Raducanu

Source: Bogdan Raducanu
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SELECTION SCANS

Scalar (Branching)

i = 0
for t in table:
  key = t.key
  if (key>low) && (key<high):
    copy(t, output[i])
    i = i + 1

Bogdan Raducanu

Source: Bogdan Raducanu
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SELECTION SCANS

Scalar (Branching)

i = 0
for t in table:
  key = t.key
  if (key>low) && (key<high):
    copy(t, output[i])
    i = i + 1

Scalar (Branchless)

i = 0
for t in table:
  copy(t, output[i])
  key = t.key
  delta = (key>low ? 1 : 0) &
      ⮱(key<high ? 1 : 0)
  i = i + delta

Bogdan Raducanu

Source: Bogdan Raducanu
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SELECTION SCANS

Source: Bogdan Raducanu
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Scalar (Branchless)

i = 0
for t in table:
  copy(t, output[i])
  key = t.key
  m = (key≥low ? 1 : 0) &
      ⮱(key≤high ? 1 : 0)
  i = i + m

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS
23
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SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|
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SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'
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Key Vector A N D Y P I S
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SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'

Key Vector A N D Y P I S

SIMD Compare

Mask #1 0 1 0 1 1 0 1 0
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SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'

Key Vector A N D Y P I S

SIMD Compare

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0
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SIMD SELECTION SCANS
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i = 0
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      ⮱(vk≤high ? 1 : 0)
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for vt in table:
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  i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'

Key Vector A N D Y P I S
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SIMD Compare
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Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
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SELECT * FROM table
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FILTER REPRESENTATION

Approach #1: Selection Vectors
→ Dense sorted list of tuple identifiers that 

indicate which tuples in a batch are valid.
→ Pre-allocate selection vector as the max-

size of the input vector.
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FILTER REPRESENTATION

Approach #1: Selection Vectors
→ Dense sorted list of tuple identifiers that 

indicate which tuples in a batch are valid.
→ Pre-allocate selection vector as the max-

size of the input vector.

Approach #2: Bitmaps
→ Positionally-aligned bitmap that indicates 

whether a tuple is valid at an offset.
→ Some SIMD instructions natively use 

these bitmaps as input masks. 
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HIQUE: HOLISTIC CODE GENERATION

For a given query plan, create a C/C++ program that 
implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into a 
shared object, link it to the DBMS process, and then 
invoke the exec function.

Generating Code for Holistic Query EvaluationICDE 2010

GENERATING CODE FOR HOLISTIC 
QUERY EVALUATION
ICDE 2010
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Interpreted Plan

HIQUE: OPERATOR TEMPLATES

for t in range(table.num_tuples):
  tuple = get_tuple(table, t)
  if eval(predicate, tuple, params):
    emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.
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Templated PlanInterpreted Plan

HIQUE: OPERATOR TEMPLATES

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
    tuple = table.data + t ∗ tuple_size
    val = (tuple+predicate_offset)
    if (val == parameter_value + 1):
      emit(tuple)

for t in range(table.num_tuples):
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1. Get schema in catalog for table.
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VECTORWISE: PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that perform 
basic operations on typed data.
→ Using simple kernels for each primitive means that they are 

easier to vectorize.

The DBMS then executes a query plan that invokes 
these primitives at runtime.
→ Function calls are amortized over multiple tuples.
→ The output of a primitive are the offsets of tuples that 

Micro Adaptivity in VectorwiseSIGMOD 2013

MICRO ADAPTIVITY  IN VECTORWISE
SIGMOD 2013
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VECTORWISE: PRECOMPILED PRIMITIVES

SELECT * FROM foo
WHERE str_col = 'abc'
  AND int_col = 4;

foo

str_col='abc' &&
int_col=4
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VECTORWISE: PRECOMPILED PRIMITIVES

SELECT * FROM foo
WHERE str_col = 'abc'
  AND int_col = 4;

foo

str_col='abc' &&
int_col=4

vec<offset> sel_eq_str(vec<string> col, string val) {
  vec<offset> positions;   
  for (offset i = 0; i < col.size(); i++)
    if (col[i] == val) positions.append(i);
  return (positions);
}
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  return (res);
}
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SYSTEMS

Google BigQuery (2011)

Snowflake (2013)

Amazon Redshift (2014)

Yellowbrick (2014)

Databricks Photon (2022)

ClickHouse (2016)

DB Flash Talk: RelationalAI
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GOOGLE BIGQUERY (2011)

Originally developed as "Dremel" in 2006 as a side-
project for analyzing data artifacts generated from other 
tools.
→ The "interactive" goal means that they want to support ad hoc 

queries on in-situ data files.
→ Did not support joins in the first version.

Rewritten in the late 2010s to shared-disk architecture 
built on top of GFS.

Released as public commercial product (BigQuery) in 
2012.

32
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BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage

Vectorized Query Processing

Shuffle-based Distributed Query Execution

Columnar Storage
→ Zone Maps / Filters
→ Dictionary + RLE Compression
→ Only Allows "Search" Inverted Indexes

Hash Joins Only

Heuristic Optimizer + Adaptive Optimizations

33

Dremel: A Decade of Interactive SQL Analysis at Web ScaleVLDB 2020

DREMEL: A DECADE OF INTERACTIVE 
SQL ANALYSIS AT WEB SCALE
VLDB 2020
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BIGQUERY: IN-MEMORY SHUFFLE

The shuffle phases represent checkpoints in a query's 
lifecycle where that the coordinator makes sure that all 
tasks are completed.

Fault Tolerance / Straggler Avoidance:
→ If a worker does not produce a task's results within a deadline, 

the coordinator speculatively executes a redundant task.

Dynamic Resource Allocation:
→ Scale up / down the number of workers for the next stage 

depending size of a stage's output.

34
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BIGQUERY: IN-MEMORY SHUFFLE
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BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme. WorkerWorker

Partition #1

Coordinator

H.Ahmadi + A.Surna

Source: H.Ahmadi  + A.Surna

Partition #2
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SNOWFLAKE (2013)

Managed OLAP DBMS written in C++.
→ Shared-disk architecture with aggressive compute-side local 

caching.
→ Written from scratch. Did not borrow components from 

existing systems.
→ Custom SQL dialect and client-server network protocols.

The OG cloud-native data warehouse.

The Snowflake Elastic Data WarehouseSIGMOD 2016

THE SNOWFLAKE ELASTIC DATA 
WAREHOUSE
SIGMOD 2016

38
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SNOWFLAKE: OVERVIEW

Cloud-native OLAP DBMS written in C++

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Precompiled Operator Primitives

Separate Table Data from Meta-Data

No Buffer Pool

PAX Columnar Storage

39
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SNOWFLAKE: QUERY PROCESSING

Snowflake is a push-based vectorized engine that uses 
precompiled primitives for operator kernels.
→ Pre-compile variants using C++ templates for different vector 

data types.
→ Only uses codegen (via LLVM) for tuple 

serialization/deserialization between workers.

Does not support partial query retries
→ If a worker fails, then the entire query has to restart.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering, 
Snowflake's optimizer identifies 
aggregation operators to push down 
into the plan below joins.

The optimizer adds the downstream 
aggregations but then the DBMS only 
enables them at runtime according to 
statistics observed during execution.

Bowei Chen

Source: Bowei Chen

Aggregation

TableScan(b)TableScan(a)

Join

41
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SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a 
large amount of data, then the DBMS 
can temporarily deploy additional 
worker nodes to accelerate its 
performance.

Flexible compute worker nodes write 
results to storage as if it was a table.

Libo Wang

Source: Libo Wang

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

Large
Scan
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AMAZON REDSHIFT (2014)

Amazon's flagship OLAP DBaaS.
→ Based on ParAccel's original shared-nothing architecture. 
→ Switched to support disaggregated storage (S3) in 2017.
→ Added serverless deployments in 2022.

Redshift is a more traditional data warehouse  
compared to BigQuery/Spark where it wants to control 
all the data.

Overarching design goal is to remove as much 
administration + configuration choices from users.

Amazon Redshift Re-InventedSIGMOD 2022

AMAZON REDSHIFT RE - INVENTED
SIGMOD 2022
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REDSHIFT: OVERVIEW

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Precompiled Primitives

Compute-side Caching

PAX Columnar Storage

Sort-Merge + Hash Joins

Hardware Acceleration (AQUA)

Stratified Query Optimizer

45
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REDSHIFT: COMPILATION SERVICE

Separate nodes to compile query plans using GCC and 
aggressive caching. 
→ DBMS checks whether a compiled version of each templated 

fragment already exists in customer's local cache.
→ If fragment does not exist in the local cache, then it checks a 

global cache for the entire fleet of Redshift customers.

Background workers proactively recompile plans when 
new version of DBMS is released.

46
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YELLOWBRICK (2014)

OLAP DBMS written on C++ and derived from a 
hardfork of PostgreSQL v9.5.
→ Uses PostgreSQL's front-end (networking, parser, catalog) to 

handle incoming SQL requests.
→ They hate the OS as much as I do.

Originally started as an on-prem appliance with FPGA 
acceleration. Switched to DBaaS in 2021.

Cloud-version uses Kubernetes for all components.

Yellowbrick: An Elastic Data Warehouse on KubernetesCIDR 2024

YELLOWBRICK : AN ELASTIC DATA 
WAREHOUSE ON KUBERNETES
CIDR 2024
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YELLOWBRICK

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Compute-side Caching

Separate Row + PAX Columnar Storage

Sort-Merge + Hash Joins

PostgreSQL Query Optimizer++

Insane Systems Engineering

50
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YELLOWBRICK: ARCHITECTURE

Object Store

Mark Cusack

Source: Mark Cusack

Worker Nodes

Compiler
Service

Bulk Loader Service

Row-Store

Scheduler
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YELLOWBRICK: QUERY EXECUTION

Pushed-based vectorized query processing that supports 
both row- and columnar-oriented data with early 
materialization.
→ Introduces transpose operators to convert data back and forth 

between row and columnar formats.

Holistic query compilation via source-to-source 
transpilation.

Yellowbrick's architecture goal is for workers to always 
process data residing in the CPU's L3 cache and not 
memory.

52
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YELLOWBRICK: MEMORY ALLOCATOR

Custom NUMA-aware, latch-free allocator that gets all 
the memory needed upfront at start-up
→ Using mmap with mlock with huge pages.
→ Allocations are grouped by query to avoid fragmentation.
→ Claims their allocator is 100x faster than libc malloc.

Each worker also has a buffer pool manager that uses 
MySQL-style approximate LRU-K to store cached data 
files.
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YELLOWBRICK: DEVICE DRIVERS

Custom NVMe / NIC drivers that run 
in user-space to avoid memory copy 
overheads.
→ Falls back to Linux drivers if necessary.

Custom reliable UDP network 
protocol with kernel-bypass (DPDK) 
for internal communication.
→ Each CPU has its own receive/transmit 

queues that it polls asynchronously.
→ Only sends data to a "partner" CPU at 

other workers.
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DATABRICKS PHOTON (2022)

JNI

Single-threaded C++ execution engine embedded into 
Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's 

DataFrame API.
→ Seamlessly handle impedance mismatch between row-oriented 

DBR and column-oriented Photon.

Accelerate execution of query plans over "raw / 
uncurated" files in a data lake.

Photon: A Fast Query Engine for Lakehouse SystemsSIGMOD 2022

PHOTON: A FAST QUERY ENGINE 
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022
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PHOTON: OVERVIEW

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion

Shuffle-based Distributed Query Execution

Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations
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PHOTON: VECTORIZED PROCESSING

Photon is a pull-based vectorized engine that uses 
precompiled operator kernels (primitives).
→ Converts physical plan into a list of pointers to functions that 

perform low-level operations on column batches.

Databricks: It is easier to build/maintain a vectorized 
engine than a JIT engine.
→ Engineers spend more time creating specialized codepaths to 

get closer to JIT performance.
→ With codegen, engineers write tooling and observability hooks 

instead of writing the engine.
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SELECT * FROM foo
 WHERE cdate BETWEEN '2024-01-01' AND '2024-04-01';

PHOTON: EXPRESSION FUSION
59
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SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
   AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

foo

cdate >= '2024-01-01'
  AND
cdate <= '2024-04-01'


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SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
   AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

foo

cdate >= '2024-01-01'
  AND
cdate <= '2024-04-01'



vec<offset> sel_geq_date(vec<date> batch, date val) {
  vec<offset> positions;   
  for (offset i = 0; i < batch.size(); i++)
    if (batch[i] >= val) positions.append(i);
  return (positions);
}

vec<offset> sel_leq_date(vec<date> batch, date val) {
  vec<offset> positions;   
  for (offset i = 0; i < batch.size(); i++)
    if (batch[i] <= val) positions.append(i);
  return (positions);
}
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SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
   AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

foo

cdate >= '2024-01-01'
  AND
cdate <= '2024-04-01'



vec<offset> sel_between_dates(vec<date> batch,
                              date low, date high) {
  vec<offset> positions;   
  for (offset i = 0; i < batch.size(); i++)
    if (batch[i] >= low && batch[i] <= high)
      positions.append(i);
  return (positions);
}
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SPARK: PARTITION COALESCING

Spark (over-)allocates a large number 
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid 

one partitioning from filling up too much.

After the shuffle completes, the 
DBMS then combines underutilized 
partitions using heuristics.

Worker

Maryann Xue

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5
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CLICKHOUSE (2016)

MergeTree

C++ OLAP DBMS that supports different table engines
→ Default: MergeTree with SSTable-like immutable files

Shared-Nothing Architecture

Pull-Based Vectorized Query Processing

Operator-at-a-Time Execution

Compiled Expression Evaluator (LLVM)

Sort-Merge + Hash Joins

Heuristic Optimizer + Rule-Based Rewriting

ClickHouse - Lightning Fast Analytics for EveryoneVLDB 2024

CLICKHOUSE  -  LIGHTNING FAST 
ANALYTICS FOR EVERYONE
VLDB 2024

62

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://clickhouse.com/docs/engines/table-engines/mergetree-family/mergetree
https://www.vldb.org/pvldb/vol17/p3731-schulze.pdf
https://www.vldb.org/pvldb/vol17/p3731-schulze.pdf


DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CLICKHOUSE: STRING HASH TABLES
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SAHA: A STRING ADAPTIVE HASH TABLE FOR ANALYTICAL DATABASES
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CONCLUDING REMARKS

Databases are awesome.
→ They cover all facets of computer science.
→ We have barely scratched the surface…

Going forth, you should now have a good 
understanding how these systems work.

This will allow you to make informed decisions 
throughout your entire career.
→ Avoid premature optimizations.
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