
DatabaseSystems

15-445/645 FALL 2025

15- 445/645 FALL 2025
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Advanced DB Speed - Run
LECTURE #24

https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2025
https://www.cs.cmu.edu/~pavlo/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

ADMINISTRIVIA

Project #4 is due Sunday Dec 7th @ 11:59pm
→ Recitation Slides + Video (@300)
→ Office Hours Saturday Dec 6th @ 3:00-5:00pm (GHC 5201)

Homework #6 is due Sunday Dec 7th @ 11:59pm

Final Exam is on Thursday Dec 11th @ 1:00pm
→ Do not make travel plans before this date!

We are recruiting TAs for the next semester
→ Apply at: https://www.ugrad.cs.cmu.edu/ta/S26/

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://piazza.com/class/me9159rcdhm69w/post/300
https://www.ugrad.cs.cmu.edu/ta/S26/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

OFFICE HOURS

Andy:
→ Wednesday Dec 10th @ 10:30-12:00pm (GHC 9019)
→ Wednesday Dec 10th @ 4:00-5:00pm (GHC 9019)

All other TAs will have their office hours up to and
including Saturday Dec 7th

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

FINAL EXAM

Where: McConomy Auditorium (University Center)

When: Thursday Dec 11th @ 1:00-4:00pm

What to bring:
→ CMU ID
→ Pencil + Eraser (!!!)
→ Calculator (cellphone is okay)
→ One 8.5x11" page of handwritten notes (double-sided)

4

https://15445.courses.cs.cmu.edu/fall2025/final-guide.html

https://15445.courses.cs.cmu.edu/fall2025/final-guide.html

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://15445.courses.cs.cmu.edu/fall2022/final-guide.html
https://15445.courses.cs.cmu.edu/fall2025/final-guide.html
https://15445.courses.cs.cmu.edu/fall2025/final-guide.html
https://15445.courses.cs.cmu.edu/fall2025/final-guide.html

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

STUFF BEFORE MID-TERM

SQL

Buffer Pool Management

Data Structures (Hash Tables, B+Trees)

Storage Models

Query Processing Models

Inter-Query Parallelism

Basic Understanding of BusTub Internals

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

JOIN ALGORITHMS

Join Algorithms
→ Naïve Nested Loops
→ Block Nested Loops
→ Index Nested Loops
→ Sort-Merge
→ Hash Join: Simple, Partitioned, Hybrid Hash
→ Optimization using Bloom Filters
→ Cost functions

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

QUERY EXECUTION

Execution Models
→ Iterator
→ Materialized
→ Vector / Batch

Plan Processing: Push vs. Pull

Access Methods
→ Sequential Scan and various optimization
→ Index Scan, including multi-index scan
→ Issues with update queries

Expression Evaluation

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

QUERY EXECUTION

Process Model

Parallel Execution
→ Inter Query Parallelism
→ Intra Query Parallelism: Intra-Operator: horizontal, vertical,

and bushy
Parallel hash join, Exchange operator

→ Intra Query Parallelism: Inter-Operator, aka. pipelined
parallelism

IO Parallelism

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

QUERY OPTIMIZATION

Heuristics
→ Predicate Pushdown
→ Projection Pushdown
→ Nested Sub-Queries: Rewrite and Decompose

Statistics
→ Cardinality Estimation
→ Histograms

Cost-based search
→ Bottom-up vs. Top-Down

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTIONS

ACID

Conflict Serializability:
→ How to check for correctness?
→ How to check for equivalence?

View Serializability
→ Difference with conflict serializability

Isolation Levels / Anomalies

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTIONS

Two-Phase Locking
→ Strict 2PL: Txn holds X locks until it commits or aborts. May

release S locks earlier, during the shrinking phase.
→ Strong Strict 2PL: Txn holds all locks (S and X) until it

commits or aborts. Also called "Rigorous 2PL".

Cascading Aborts Problem

Deadlock Detection & Prevention

Multiple Granularity Locking
→ Intention Locks
→ Understanding performance trade-offs
→ Lock Escalation (i.e., when is it allowed)

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TRANSACTIONS

Optimistic Concurrency Control
→ Read Phase
→ Validation Phase (Backwards vs. Forwards)
→ Write Phase

Multi-Version Concurrency Control
→ Version Storage / Ordering
→ Garbage Collection
→ Index Maintenance

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

TS(T1)=1

TS(T2)=2

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

-1 456A1

TS(T1)=1

TS(T2)=2

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

T2 reads version A0
because T1 has not

committed yet.

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

T2 stalls until T1
commits to acquire

write lock on A.

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

T1 reads version A1 that
it wrote earlier.

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1

TS(T1)=1

TS(T2)=2

Active2T2

Committed1T1

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

begin-ts end-ts value

A0 0 - 123

Schedule
T1 T2

T
IM

E

txnid timestamp status

T1 1 Active

Txn Status Table

MVCC WITH 2PL

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

-1 456A1 2

-2 789A2

TS(T1)=1

TS(T2)=2

Active2T2

Committed1T1Now T2 can create the
new version.

Database

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CRASH RECOVERY

Buffer Pool Policies:
→ STEAL vs. NO-STEAL
→ FORCE vs. NO-FORCE

Shadow Paging

Write-Ahead Logging
→ How it relates to buffer pool management
→ Logging Schemes (Physical vs. Logical)

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CRASH RECOVERY

Checkpoints
→ Non-Fuzzy vs. Fuzzy

ARIES Recovery
→ Dirty Page Table (DPT)
→ Active Transaction Table (ATT)
→ Analyze, Redo, Undo phases
→ Log Sequence Numbers
→ CLRs

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DISTRIBUTED DATABASES

System Architectures

Replication Schemes

Partitioning Schemes

Two-Phase Commit

Paxos

Distributed Query Execution

Distributed Join Algorithms

Semi-Join Optimization

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Node 1

TWO-PHASE COMMIT (ABORT)

Commit Request

P
articipan

t
P

articipan
t

C
oo

rd
in

at
or

Application
Server

Node 4

Node 2

P
articipan

tNode 3

17

Phase1: Prepare

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Node 1

TWO-PHASE COMMIT (ABORT)

Commit Request

OK

ABORT

P
articipan

t
P

articipan
t

C
oo

rd
in

at
or

Application
Server

Node 4

Node 2

P
articipan

tNode 3

17

Phase1: Prepare

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Node 1

TWO-PHASE COMMIT (ABORT)

Commit Request

P
articipan

t
P

articipan
t

C
oo

rd
in

at
or

Application
Server

Node 4

Node 2

P
articipan

tNode 3

17

Phase2: Abort

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Node 1

TWO-PHASE COMMIT (ABORT)
P

articipan
t

P
articipan

t

C
oo

rd
in

at
or

Application
Server

Node 4

Node 2

Aborted

P
articipan

tNode 3

17

Phase2: Abort

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Node 1

TWO-PHASE COMMIT (ABORT)

OK

OK

P
articipan

t
P

articipan
t

C
oo

rd
in

at
or

Application
Server

Node 4

Node 2

OK

Aborted

P
articipan

tNode 3

17

Phase2: Abort

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

TOPICS NOT ON EXAM!

Flash Talks

Seminar Talks

Details of specific database systems (e.g., Postgres)

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CMU 15-721 (Spring 2024)

SPEED RUN

https://15721.courses.cs.cmu.edu/spring2024

https://15721.courses.cs.cmu.edu/spring2024

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://15721.courses.cs.cmu.edu/spring2024

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SEQUENTIAL SCAN: OPTIMIZATIONS

Data Encoding / Compression

Prefetching / Scan Sharing / Buffer Bypass

Task Parallelization / Multi-threading

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation

Lecture #06

Lecture #14

Lecture #14

Lecture #08

Lecture #12

Lecture #05

20

Lecture #13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM table
 WHERE key > $(low)
 AND key < $(high)

SELECTION SCANS

Bogdan Raducanu

Source: Bogdan Raducanu

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/citation.cfm?id=2465292

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECTION SCANS

Scalar (Branching)

i = 0
for t in table:
 key = t.key
 if (key>low) && (key<high):
 copy(t, output[i])
 i = i + 1

Bogdan Raducanu

Source: Bogdan Raducanu

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/citation.cfm?id=2465292

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECTION SCANS

Scalar (Branching)

i = 0
for t in table:
 key = t.key
 if (key>low) && (key<high):
 copy(t, output[i])
 i = i + 1

Scalar (Branchless)

i = 0
for t in table:
 copy(t, output[i])
 key = t.key
 delta = (key>low ? 1 : 0) &
 ⮱(key<high ? 1 : 0)
 i = i + delta

Bogdan Raducanu

Source: Bogdan Raducanu

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/citation.cfm?id=2465292

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECTION SCANS

Source: Bogdan Raducanu

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/citation.cfm?id=2465292
https://dl.acm.org/citation.cfm?id=2465292

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Scalar (Branchless)

i = 0
for t in table:
 copy(t, output[i])
 key = t.key
 m = (key≥low ? 1 : 0) &
 ⮱(key≤high ? 1 : 0)
 i = i + m

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS
23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

tid
100

key
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

tid
100

key
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'

Key Vector A N D Y P I S

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

tid
100

key
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'

Key Vector A N D Y P I S

SIMD Compare

Mask #1 0 1 0 1 1 0 1 0

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

tid
100

key
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'

Key Vector A N D Y P I S

SIMD Compare

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

tid
100

key
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'

Key Vector A N D Y P I S

SIMD Compare

SIMD AND

Mask #3 0 1 0 0 1 0 1 0

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

tid
100

key
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'

Key Vector A N D Y P I S

All Offsets 0 1 2 3 4 5 6 7

SIMD Compare

SIMD AND

Mask #3 0 1 0 0 1 0 1 0

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0

23

Offset

0
1
2
3
4
5
6
7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

tid
100

key
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

SIMD SELECTION SCANS

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= 'N' AND key <= 'U'

Key Vector A N D Y P I S

All Offsets 0 1 2 3 4 5 6 7

Matched Offsets 1 4 6

SIMD Compare

SIMD Compress

SIMD AND

Mask #3 0 1 0 0 1 0 1 0

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0

23

Offset

0
1
2
3
4
5
6
7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PAYLOADKEY

Linear Probing
Hash Table

SIMD HASH TABLE PROBING
24

Scalar

k1

Input Key

h1

Hash Index

#
hash(key)

Make the Most out of Your SIMD Investments: Counter Control Flow Divergence in Compiled Query PipelinesVLDB Journal 2020

MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES
VLDB JOURNAL 2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PAYLOADKEY

Linear Probing
Hash Table

SIMD HASH TABLE PROBING
24

Scalar

k1

Input Key

h1

Hash Index

#
hash(key)

k1 k9=

Make the Most out of Your SIMD Investments: Counter Control Flow Divergence in Compiled Query PipelinesVLDB Journal 2020

MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES
VLDB JOURNAL 2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PAYLOADKEY

Linear Probing
Hash Table

SIMD HASH TABLE PROBING
24

Scalar

k1

Input Key

h1

Hash Index

#
hash(key)

k1

k9=

k3=

k8=

k1=

Make the Most out of Your SIMD Investments: Counter Control Flow Divergence in Compiled Query PipelinesVLDB Journal 2020

MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES
VLDB JOURNAL 2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SIMD HASH TABLE PROBING
24

Scalar

k1

Input Key

h1

Hash Index

#
hash(key)

Vectorized (Horizontal)

KEYS PAYLOAD

Linear Probing
Bucketized Hash Table

Four Keys Four Values
Make the Most out of Your SIMD Investments: Counter Control Flow Divergence in Compiled Query PipelinesVLDB Journal 2020

MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES
VLDB JOURNAL 2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SIMD HASH TABLE PROBING
24

Scalar

k1

Input Key

h1

Hash Index

#
hash(key)

Vectorized (Horizontal)

KEYS PAYLOAD

Linear Probing
Bucketized Hash Table

k1

Input Key

h1

Hash Index

#
hash(key)

Four Keys Four Values
Make the Most out of Your SIMD Investments: Counter Control Flow Divergence in Compiled Query PipelinesVLDB Journal 2020

MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES
VLDB JOURNAL 2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SIMD HASH TABLE PROBING
24

Scalar

k1

Input Key

h1

Hash Index

#
hash(key)

Vectorized (Horizontal)

KEYS PAYLOAD

Linear Probing
Bucketized Hash Table

k1

Input Key

h1

Hash Index

#
hash(key)

k9= k3 k8 k1k1

Four Keys Four Values
Make the Most out of Your SIMD Investments: Counter Control Flow Divergence in Compiled Query PipelinesVLDB Journal 2020

MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES
VLDB JOURNAL 2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SIMD HASH TABLE PROBING
24

Scalar

k1

Input Key

h1

Hash Index

#
hash(key)

Vectorized (Horizontal)

KEYS PAYLOAD

Linear Probing
Bucketized Hash Table

k1

Input Key

h1

Hash Index

#
hash(key)

k9= k3 k8 k1k1

0 0 0 1
Matched Mask

SIMD Compare

Four Keys Four Values
Make the Most out of Your SIMD Investments: Counter Control Flow Divergence in Compiled Query PipelinesVLDB Journal 2020

MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES
VLDB JOURNAL 2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/3211922.3211928
https://dl.acm.org/doi/10.1145/3211922.3211928

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

FILTER REPRESENTATION

Approach #1: Selection Vectors
→ Dense sorted list of tuple identifiers that

indicate which tuples in a batch are valid.
→ Pre-allocate selection vector as the max-

size of the input vector.

25

 Filter Representation in Vectorized Query Execution DAMON 2021

FILTER REPRESENTATION IN VECTORIZED
QUERY EXECUTION
DAMON 2021

WHERE col0 IS NULL OR col1 LIKE 'b%'

Selection Vector

1
3

offset

4

col0: int32

55
66
77
-

data

88

0
0
0
1

null?

0

col1: varchar

aa
bb
-
cc

data

bbb

0
0
1
0

null?

0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://doi.org/10.1145/3465998.3466009
https://doi.org/10.1145/3465998.3466009

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

FILTER REPRESENTATION

Approach #1: Selection Vectors
→ Dense sorted list of tuple identifiers that

indicate which tuples in a batch are valid.
→ Pre-allocate selection vector as the max-

size of the input vector.

25

 Filter Representation in Vectorized Query Execution DAMON 2021

FILTER REPRESENTATION IN VECTORIZED
QUERY EXECUTION
DAMON 2021

WHERE col0 IS NULL OR col1 LIKE 'b%'

Selection Vector

1
3

offset

4

col0: int32

55
66
77
-

data

88

0
0
0
1

null?

0

col1: varchar

aa
bb
-
cc

data

bbb

0
0
1
0

null?

0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://doi.org/10.1145/3465998.3466009
https://doi.org/10.1145/3465998.3466009

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

FILTER REPRESENTATION

Approach #1: Selection Vectors
→ Dense sorted list of tuple identifiers that

indicate which tuples in a batch are valid.
→ Pre-allocate selection vector as the max-

size of the input vector.

Approach #2: Bitmaps
→ Positionally-aligned bitmap that indicates

whether a tuple is valid at an offset.
→ Some SIMD instructions natively use

these bitmaps as input masks.

25

 Filter Representation in Vectorized Query Execution DAMON 2021

FILTER REPRESENTATION IN VECTORIZED
QUERY EXECUTION
DAMON 2021

WHERE col0 IS NULL OR col1 LIKE 'b%'

Selection Vector

1
3

offset

4

col0: int32

55
66
77
-

data

88

0
0
0
1

null?

0

col1: varchar

aa
bb
-
cc

data

bbb

0
0
1
0

null?

0

Bitmapcol0: int32

55
66
77
-

data

88

0
0
0
1

null?

0

col1: varchar

aa
bb
-
cc

data

bbb

0
0
1
0

null?

0

0
1
1
0

active

1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://doi.org/10.1145/3465998.3466009
https://doi.org/10.1145/3465998.3466009

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

HIQUE: HOLISTIC CODE GENERATION

For a given query plan, create a C/C++ program that
implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into a
shared object, link it to the DBMS process, and then
invoke the exec function.

Generating Code for Holistic Query EvaluationICDE 2010

GENERATING CODE FOR HOLISTIC
QUERY EVALUATION
ICDE 2010

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Interpreted Plan

HIQUE: OPERATOR TEMPLATES

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Interpreted Plan

HIQUE: OPERATOR TEMPLATES

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Templated PlanInterpreted Plan

HIQUE: OPERATOR TEMPLATES

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
 tuple = table.data + t ∗ tuple_size
 val = (tuple+predicate_offset)
 if (val == parameter_value + 1):
 emit(tuple)

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Templated PlanInterpreted Plan

HIQUE: OPERATOR TEMPLATES

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
 tuple = table.data + t ∗ tuple_size
 val = (tuple+predicate_offset)
 if (val == parameter_value + 1):
 emit(tuple)

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

Templated PlanInterpreted Plan

HIQUE: OPERATOR TEMPLATES

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
 tuple = table.data + t ∗ tuple_size
 val = (tuple+predicate_offset)
 if (val == parameter_value + 1):
 emit(tuple)

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VECTORWISE: PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that perform
basic operations on typed data.
→ Using simple kernels for each primitive means that they are

easier to vectorize.

The DBMS then executes a query plan that invokes
these primitives at runtime.
→ Function calls are amortized over multiple tuples.
→ The output of a primitive are the offsets of tuples that

Micro Adaptivity in VectorwiseSIGMOD 2013

MICRO ADAPTIVITY IN VECTORWISE
SIGMOD 2013

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VECTORWISE: PRECOMPILED PRIMITIVES

SELECT * FROM foo
WHERE str_col = 'abc'
 AND int_col = 4;

foo

str_col='abc' &&
int_col=4

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VECTORWISE: PRECOMPILED PRIMITIVES

SELECT * FROM foo
WHERE str_col = 'abc'
 AND int_col = 4;

foo

str_col='abc' &&
int_col=4

vec<offset> sel_eq_str(vec<string> col, string val) {
 vec<offset> positions;
 for (offset i = 0; i < col.size(); i++)
 if (col[i] == val) positions.append(i);
 return (positions);
}

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VECTORWISE: PRECOMPILED PRIMITIVES

SELECT * FROM foo
WHERE str_col = 'abc'
 AND int_col = 4;

foo

str_col='abc' &&
int_col=4

vec<offset> sel_eq_str(vec<string> col, string val) {
 vec<offset> positions;
 for (offset i = 0; i < col.size(); i++)
 if (col[i] == val) positions.append(i);
 return (positions);
}

vec<offset> sel_eq_int(vec<int> col, int val,
 vec<offset> positions) {
 vec<offset> res;
 for (offset i : positions)
 if (col[i] == val) res.append(i);
 return (res);
}

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

VECTORWISE: PRECOMPILED PRIMITIVES

SELECT * FROM foo
WHERE str_col = 'abc'
 AND int_col = 4;

foo

str_col='abc' &&
int_col=4

vec<offset> sel_eq_str(vec<string> col, string val) {
 vec<offset> positions;
 for (offset i = 0; i < col.size(); i++)
 if (col[i] == val) positions.append(i);
 return (positions);
}

vec<offset> sel_eq_int(vec<int> col, int val,
 vec<offset> positions) {
 vec<offset> res;
 for (offset i : positions)
 if (col[i] == val) res.append(i);
 return (res);
}

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SYSTEMS

Google BigQuery (2011)

Snowflake (2013)

Amazon Redshift (2014)

Yellowbrick (2014)

Databricks Photon (2022)

ClickHouse (2016)

DB Flash Talk: RelationalAI

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://relational.ai/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

GOOGLE BIGQUERY (2011)

Originally developed as "Dremel" in 2006 as a side-
project for analyzing data artifacts generated from other
tools.
→ The "interactive" goal means that they want to support ad hoc

queries on in-situ data files.
→ Did not support joins in the first version.

Rewritten in the late 2010s to shared-disk architecture
built on top of GFS.

Released as public commercial product (BigQuery) in
2012.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://cloud.google.com/bigquery

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage

Vectorized Query Processing

Shuffle-based Distributed Query Execution

Columnar Storage
→ Zone Maps / Filters
→ Dictionary + RLE Compression
→ Only Allows "Search" Inverted Indexes

Hash Joins Only

Heuristic Optimizer + Adaptive Optimizations

33

Dremel: A Decade of Interactive SQL Analysis at Web ScaleVLDB 2020

DREMEL: A DECADE OF INTERACTIVE
SQL ANALYSIS AT WEB SCALE
VLDB 2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/abs/10.14778/3415478.3415568
https://dl.acm.org/doi/abs/10.14778/3415478.3415568

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: IN-MEMORY SHUFFLE

The shuffle phases represent checkpoints in a query's
lifecycle where that the coordinator makes sure that all
tasks are completed.

Fault Tolerance / Straggler Avoidance:
→ If a worker does not produce a task's results within a deadline,

the coordinator speculatively executes a redundant task.

Dynamic Resource Allocation:
→ Scale up / down the number of workers for the next stage

depending size of a stage's output.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: IN-MEMORY SHUFFLE

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: IN-MEMORY SHUFFLE

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: IN-MEMORY SHUFFLE

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: IN-MEMORY SHUFFLE

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: IN-MEMORY SHUFFLE

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: IN-MEMORY SHUFFLE

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: IN-MEMORY SHUFFLE

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer
Statistics

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: IN-MEMORY SHUFFLE

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer
Statistics

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: IN-MEMORY SHUFFLE

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer
Statistics

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme. WorkerWorker

Partition #1

Coordinator

H.Ahmadi + A.Surna

Source: H.Ahmadi + A.Surna

Partition #2

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme. WorkerWorker

Partition #1

Coordinator

H.Ahmadi + A.Surna

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key)

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme. WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key)

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme. WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key)

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme. WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme. WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme. WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme. WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme. WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme. WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Source: H.Ahmadi + A.Surna

Statistics

hash1(key) hash2(key)

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNOWFLAKE (2013)

Managed OLAP DBMS written in C++.
→ Shared-disk architecture with aggressive compute-side local

caching.
→ Written from scratch. Did not borrow components from

existing systems.
→ Custom SQL dialect and client-server network protocols.

The OG cloud-native data warehouse.

The Snowflake Elastic Data WarehouseSIGMOD 2016

THE SNOWFLAKE ELASTIC DATA
WAREHOUSE
SIGMOD 2016

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://dl.acm.org/doi/10.1145/2882903.2903741
https://dl.acm.org/doi/10.1145/2882903.2903741

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNOWFLAKE: OVERVIEW

Cloud-native OLAP DBMS written in C++

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Precompiled Operator Primitives

Separate Table Data from Meta-Data

No Buffer Pool

PAX Columnar Storage

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNOWFLAKE: QUERY PROCESSING

Snowflake is a push-based vectorized engine that uses
precompiled primitives for operator kernels.
→ Pre-compile variants using C++ templates for different vector

data types.
→ Only uses codegen (via LLVM) for tuple

serialization/deserialization between workers.

Does not support partial query retries
→ If a worker fails, then the entire query has to restart.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Bowei Chen

Source: Bowei Chen

Aggregation

TableScan(b)TableScan(a)

Join

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/bowei-chen-9a2b54126/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Bowei Chen

Source: Bowei Chen

Aggregation

TableScan(b)TableScan(a)

Join

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/bowei-chen-9a2b54126/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Bowei Chen

Source: Bowei Chen

Aggregation

TableScan(b)

TableScan(a)

Join

AggChild

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/bowei-chen-9a2b54126/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Bowei Chen

Source: Bowei Chen

Aggregation

TableScan(b)

TableScan(a)

Join

AggParent

AggChild

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/bowei-chen-9a2b54126/

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Bowei Chen

Source: Bowei Chen

Aggregation

TableScan(b)

TableScan(a)

Join

AggParent

AggChild

38

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/bowei-chen-9a2b54126/
https://medium.com/snowflake/aggregation-placement-an-adaptive-query-optimization-for-snowflake-ab1e2c6af2e4

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a
large amount of data, then the DBMS
can temporarily deploy additional
worker nodes to accelerate its
performance.

Flexible compute worker nodes write
results to storage as if it was a table.

Libo Wang

Source: Libo Wang

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

Large
Scan

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/xnuv6vr8USE

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a
large amount of data, then the DBMS
can temporarily deploy additional
worker nodes to accelerate its
performance.

Flexible compute worker nodes write
results to storage as if it was a table.

Libo Wang

Source: Libo Wang

Filter

JoinFilter

GroupBy

TableScan

Insert

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

TableScan

GroupBy

UnionAll

Scale Out on
Flexible Compute

Materialize
Result to Storage

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/xnuv6vr8USE

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

AMAZON REDSHIFT (2014)

Amazon's flagship OLAP DBaaS.
→ Based on ParAccel's original shared-nothing architecture.
→ Switched to support disaggregated storage (S3) in 2017.
→ Added serverless deployments in 2022.

Redshift is a more traditional data warehouse
compared to BigQuery/Spark where it wants to control
all the data.

Overarching design goal is to remove as much
administration + configuration choices from users.

Amazon Redshift Re-InventedSIGMOD 2022

AMAZON REDSHIFT RE - INVENTED
SIGMOD 2022

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://aws.amazon.com/about-aws/whats-new/2022/07/amazon-redshift-serverless-generally-available/
https://doi.org/10.1145/3514221.3526045
https://doi.org/10.1145/3514221.3526045

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

REDSHIFT: OVERVIEW

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Precompiled Primitives

Compute-side Caching

PAX Columnar Storage

Sort-Merge + Hash Joins

Hardware Acceleration (AQUA)

Stratified Query Optimizer

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

REDSHIFT: COMPILATION SERVICE

Separate nodes to compile query plans using GCC and
aggressive caching.
→ DBMS checks whether a compiled version of each templated

fragment already exists in customer's local cache.
→ If fragment does not exist in the local cache, then it checks a

global cache for the entire fleet of Redshift customers.

Background workers proactively recompile plans when
new version of DBMS is released.

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

YELLOWBRICK (2014)

OLAP DBMS written on C++ and derived from a
hardfork of PostgreSQL v9.5.
→ Uses PostgreSQL's front-end (networking, parser, catalog) to

handle incoming SQL requests.
→ They hate the OS as much as I do.

Originally started as an on-prem appliance with FPGA
acceleration. Switched to DBaaS in 2021.

Cloud-version uses Kubernetes for all components.

Yellowbrick: An Elastic Data Warehouse on KubernetesCIDR 2024

YELLOWBRICK : AN ELASTIC DATA
WAREHOUSE ON KUBERNETES
CIDR 2024

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.cidrdb.org/cidr2024/papers/p2-cusack.pdf
https://www.cidrdb.org/cidr2024/papers/p2-cusack.pdf

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

YELLOWBRICK

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Compute-side Caching

Separate Row + PAX Columnar Storage

Sort-Merge + Hash Joins

PostgreSQL Query Optimizer++

Insane Systems Engineering

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

YELLOWBRICK: ARCHITECTURE

Object Store

Mark Cusack

Source: Mark Cusack

Worker Nodes

Compiler
Service

Bulk Loader Service

Row-Store

Scheduler

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/macusack

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

YELLOWBRICK: ARCHITECTURE

Object Store

Mark Cusack

Source: Mark Cusack

Worker Nodes

Compiler
Service

Bulk Loader Service

Row-Store

Scheduler

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/macusack

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

YELLOWBRICK: ARCHITECTURE

Object Store

Mark Cusack

Source: Mark Cusack

Worker Nodes

Compiler
Service

Bulk Loader Service

Row-Store

Scheduler

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/macusack

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

YELLOWBRICK: ARCHITECTURE

Object Store

Mark Cusack

Source: Mark Cusack

Worker Nodes

Compiler
Service

Bulk Loader Service

Custom S3 Client

Custom
UDP Protocol

Custom
NVMe Driver

Row-Store

Scheduler

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/macusack

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

YELLOWBRICK: QUERY EXECUTION

Pushed-based vectorized query processing that supports
both row- and columnar-oriented data with early
materialization.
→ Introduces transpose operators to convert data back and forth

between row and columnar formats.

Holistic query compilation via source-to-source
transpilation.

Yellowbrick's architecture goal is for workers to always
process data residing in the CPU's L3 cache and not
memory.

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

YELLOWBRICK: MEMORY ALLOCATOR

Custom NUMA-aware, latch-free allocator that gets all
the memory needed upfront at start-up
→ Using mmap with mlock with huge pages.
→ Allocations are grouped by query to avoid fragmentation.
→ Claims their allocator is 100x faster than libc malloc.

Each worker also has a buffer pool manager that uses
MySQL-style approximate LRU-K to store cached data
files.

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://wiki.debian.org/Hugepages
https://15445.courses.cs.cmu.edu/fall2023/schedule.html#sep-18-2023

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

YELLOWBRICK: DEVICE DRIVERS

Custom NVMe / NIC drivers that run
in user-space to avoid memory copy
overheads.
→ Falls back to Linux drivers if necessary.

Custom reliable UDP network
protocol with kernel-bypass (DPDK)
for internal communication.
→ Each CPU has its own receive/transmit

queues that it polls asynchronously.
→ Only sends data to a "partner" CPU at

other workers.

2430

1626

1222

1976

1358

995

0

1000

2000

3000

2-Workers 3-Workers 4-Workers

T
P

C
-D

S
R

u
n

ti
m

e

Cluster Size

TCP DPDK

54

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DATABRICKS PHOTON (2022)

JNI

Single-threaded C++ execution engine embedded into
Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's

DataFrame API.
→ Seamlessly handle impedance mismatch between row-oriented

DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

Photon: A Fast Query Engine for Lakehouse SystemsSIGMOD 2022

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

56

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

DATABRICKS PHOTON (2022)

JNI

Single-threaded C++ execution engine embedded into
Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's

DataFrame API.
→ Seamlessly handle impedance mismatch between row-oriented

DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

Photon: A Fast Query Engine for Lakehouse SystemsSIGMOD 2022

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022

10

56

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054
https://twitter.com/andy_pavlo/status/1536843474925981697

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PHOTON: OVERVIEW

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion

Shuffle-based Distributed Query Execution

Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

57

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

PHOTON: VECTORIZED PROCESSING

Photon is a pull-based vectorized engine that uses
precompiled operator kernels (primitives).
→ Converts physical plan into a list of pointers to functions that

perform low-level operations on column batches.

Databricks: It is easier to build/maintain a vectorized
engine than a JIT engine.
→ Engineers spend more time creating specialized codepaths to

get closer to JIT performance.
→ With codegen, engineers write tooling and observability hooks

instead of writing the engine.

58

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM foo
 WHERE cdate BETWEEN '2024-01-01' AND '2024-04-01';

PHOTON: EXPRESSION FUSION
59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
 AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

foo

cdate >= '2024-01-01'
 AND
cdate <= '2024-04-01'



59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
 AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

foo

cdate >= '2024-01-01'
 AND
cdate <= '2024-04-01'



vec<offset> sel_geq_date(vec<date> batch, date val) {
 vec<offset> positions;
 for (offset i = 0; i < batch.size(); i++)
 if (batch[i] >= val) positions.append(i);
 return (positions);
}

vec<offset> sel_leq_date(vec<date> batch, date val) {
 vec<offset> positions;
 for (offset i = 0; i < batch.size(); i++)
 if (batch[i] <= val) positions.append(i);
 return (positions);
}

59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
 AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

foo

cdate >= '2024-01-01'
 AND
cdate <= '2024-04-01'



vec<offset> sel_between_dates(vec<date> batch,
 date low, date high) {
 vec<offset> positions;
 for (offset i = 0; i < batch.size(); i++)
 if (batch[i] >= low && batch[i] <= high)
 positions.append(i);
 return (positions);
}

59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
 AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

foo

cdate >= '2024-01-01'
 AND
cdate <= '2024-04-01'



vec<offset> sel_between_dates(vec<date> batch,
 date low, date high) {
 vec<offset> positions;
 for (offset i = 0; i < batch.size(); i++)
 if (batch[i] >= low && batch[i] <= high)
 positions.append(i);
 return (positions);
}

59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Worker

Maryann Xue

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Xb2zm4-F1HI

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Worker

Maryann Xue

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Xb2zm4-F1HI

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Worker

Maryann Xue

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Xb2zm4-F1HI

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Worker

Maryann Xue

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Xb2zm4-F1HI

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Worker

Maryann Xue

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1 Partition #2 Partition #5

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Xb2zm4-F1HI

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

61

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CLICKHOUSE (2016)

MergeTree

C++ OLAP DBMS that supports different table engines
→ Default: MergeTree with SSTable-like immutable files

Shared-Nothing Architecture

Pull-Based Vectorized Query Processing

Operator-at-a-Time Execution

Compiled Expression Evaluator (LLVM)

Sort-Merge + Hash Joins

Heuristic Optimizer + Rule-Based Rewriting

ClickHouse - Lightning Fast Analytics for EveryoneVLDB 2024

CLICKHOUSE - LIGHTNING FAST
ANALYTICS FOR EVERYONE
VLDB 2024

62

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://clickhouse.com/docs/engines/table-engines/mergetree-family/mergetree
https://www.vldb.org/pvldb/vol17/p3731-schulze.pdf
https://www.vldb.org/pvldb/vol17/p3731-schulze.pdf

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CLICKHOUSE: STRING HASH TABLES
63

109

69 66
59

48
35 35 33 31 30 30 25

16

0

40

80

120

2× Intel Xeon CPU E5-2460v4 (10 cores)
Join + Group By Microbenchmark

R
un

ti
m

e
(s

ec
)

↓ Lower is Better

SAHA: A String Adaptive Hash Table for Analytical DatabasesAppl. Sci. 2020

SAHA: A STRING ADAPTIVE HASH TABLE FOR ANALYTICAL DATABASES
APPL. SCI. 2020

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://doi.org/10.3390/app10061915
https://doi.org/10.3390/app10061915

DATABASE SYSTEMS (FALL 2025)

DATABASE SYSTEMS (FALL 2025)

CONCLUDING REMARKS

Databases are awesome.
→ They cover all facets of computer science.
→ We have barely scratched the surface…

Going forth, you should now have a good
understanding how these systems work.

This will allow you to make informed decisions
throughout your entire career.
→ Avoid premature optimizations.

64

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

	Introduction
	Slide 1: Advanced DB Speed-Run
	Slide 2: ADMINISTRIVIA
	Slide 3: OFFICE HOURS

	Final Exam Review
	Slide 4: FINAL EXAM
	Slide 5: STUFF BEFORE MID-TERM
	Slide 6: JOIN ALGORITHMS
	Slide 7: QUERY EXECUTION
	Slide 8: QUERY EXECUTION
	Slide 9: QUERY OPTIMIZATION
	Slide 10: TRANSACTIONS
	Slide 11: TRANSACTIONS
	Slide 12: TRANSACTIONS
	Slide 13: MVCC WITH 2PL
	Slide 14: MVCC WITH 2PL
	Slide 15: MVCC WITH 2PL
	Slide 16: MVCC WITH 2PL
	Slide 17: MVCC WITH 2PL
	Slide 18: MVCC WITH 2PL
	Slide 19: MVCC WITH 2PL
	Slide 20: MVCC WITH 2PL
	Slide 21: MVCC WITH 2PL
	Slide 22: CRASH RECOVERY
	Slide 23: CRASH RECOVERY
	Slide 24: DISTRIBUTED DATABASES
	Slide 25: TWO-PHASE COMMIT (ABORT)
	Slide 26: TWO-PHASE COMMIT (ABORT)
	Slide 27: TWO-PHASE COMMIT (ABORT)
	Slide 28: TWO-PHASE COMMIT (ABORT)
	Slide 29: TWO-PHASE COMMIT (ABORT)
	Slide 30: TOPICS NOT ON EXAM!

	Optimizations
	Slide 31
	Slide 32: SEQUENTIAL SCAN: OPTIMIZATIONS
	Slide 33: SELECTION SCANS
	Slide 34: SELECTION SCANS
	Slide 35: SELECTION SCANS
	Slide 36: SELECTION SCANS
	Slide 37: SIMD SELECTION SCANS
	Slide 38: SIMD SELECTION SCANS
	Slide 39: SIMD SELECTION SCANS
	Slide 40: SIMD SELECTION SCANS
	Slide 41: SIMD SELECTION SCANS
	Slide 42: SIMD SELECTION SCANS
	Slide 43: SIMD SELECTION SCANS
	Slide 44: SIMD SELECTION SCANS
	Slide 45: SIMD SELECTION SCANS
	Slide 46: SIMD SELECTION SCANS
	Slide 47: SIMD SELECTION SCANS
	Slide 48: SIMD SELECTION SCANS
	Slide 49: SIMD SELECTION SCANS
	Slide 50: SIMD SELECTION SCANS
	Slide 51: SIMD HASH TABLE PROBING
	Slide 52: SIMD HASH TABLE PROBING
	Slide 53: SIMD HASH TABLE PROBING
	Slide 54: SIMD HASH TABLE PROBING
	Slide 55: SIMD HASH TABLE PROBING
	Slide 56: SIMD HASH TABLE PROBING
	Slide 57: SIMD HASH TABLE PROBING
	Slide 58: FILTER REPRESENTATION
	Slide 59: FILTER REPRESENTATION
	Slide 60: FILTER REPRESENTATION
	Slide 61: HIQUE: HOLISTIC CODE GENERATION
	Slide 62: HIQUE: OPERATOR TEMPLATES
	Slide 63: HIQUE: OPERATOR TEMPLATES
	Slide 64: HIQUE: OPERATOR TEMPLATES
	Slide 65: HIQUE: OPERATOR TEMPLATES
	Slide 66: HIQUE: OPERATOR TEMPLATES
	Slide 67: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 68: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 69: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 70: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 71: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 72: SYSTEMS

	BigQuery
	Slide 73
	Slide 74: GOOGLE BIGQUERY (2011)
	Slide 75: BIGQUERY: OVERVIEW
	Slide 76: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 77: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 78: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 79: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 80: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 81: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 82: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 83: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 84: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 85: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 86: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 87: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 88: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 89: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 90: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 91: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 92: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 93: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 94: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 95: BIGQUERY: DYNAMIC REPARTITIONING

	Snowflake
	Slide 96
	Slide 97: SNOWFLAKE (2013)
	Slide 98: SNOWFLAKE: OVERVIEW
	Slide 99: SNOWFLAKE: QUERY PROCESSING
	Slide 100: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 101: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 102: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 103: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 104: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 105: SNOWFLAKE: FLEXIBLE COMPUTE
	Slide 106: SNOWFLAKE: FLEXIBLE COMPUTE

	Redshift
	Slide 107
	Slide 108: AMAZON REDSHIFT (2014)
	Slide 109: REDSHIFT: OVERVIEW
	Slide 110: REDSHIFT: COMPILATION SERVICE

	Yellowbrick
	Slide 111
	Slide 112: YELLOWBRICK (2014)
	Slide 113: YELLOWBRICK
	Slide 114: YELLOWBRICK: ARCHITECTURE
	Slide 115: YELLOWBRICK: ARCHITECTURE
	Slide 116: YELLOWBRICK: ARCHITECTURE
	Slide 117: YELLOWBRICK: ARCHITECTURE
	Slide 118: YELLOWBRICK: QUERY EXECUTION
	Slide 119: YELLOWBRICK: MEMORY ALLOCATOR
	Slide 120: YELLOWBRICK: DEVICE DRIVERS

	Databricks
	Slide 121
	Slide 122: DATABRICKS PHOTON (2022)
	Slide 123: DATABRICKS PHOTON (2022)
	Slide 124: PHOTON: OVERVIEW
	Slide 125: PHOTON: VECTORIZED PROCESSING
	Slide 126: PHOTON: EXPRESSION FUSION
	Slide 127: PHOTON: EXPRESSION FUSION
	Slide 128: PHOTON: EXPRESSION FUSION
	Slide 129: PHOTON: EXPRESSION FUSION
	Slide 130: PHOTON: EXPRESSION FUSION
	Slide 131: SPARK: PARTITION COALESCING
	Slide 132: SPARK: PARTITION COALESCING
	Slide 133: SPARK: PARTITION COALESCING
	Slide 134: SPARK: PARTITION COALESCING
	Slide 135: SPARK: PARTITION COALESCING

	ClickHouse
	Slide 136
	Slide 137: CLICKHOUSE (2016)
	Slide 138: CLICKHOUSE: STRING HASH TABLES

	Conclusion
	Slide 139: CONCLUDING REMARKS

