Carnegie Mellon University

LECTURE #24 )) 15-445/645 FALL 2025 )) PROF. ANDY PAVLO
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ADMINISTRIVIA

Project #4 is due Sunday Dec 7" @ 11:59pm
— Recitation Slides + Video (@300)
— Office Hours Saturday Dec 6™ @ 3:00-5:00pm (GHC 5201)

Homework #6 is due Sunday Dec 7" @ 11:59pm

Final Exam is on Thursday Dec 11% @ 1:00pm

— Do not make travel plans before this date!

We are recruiting TAs for the next semester
— Apply at: https://www.ugrad.cs.cmu.edu/ta/S26/



https://db.cs.cmu.edu/
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OFFICE HOURS

Andy:
— Wednesday Dec 10% @ 10:30-12:00pm (GHC 9019)
— Wednesday Dec 10% @ 4:00-5:00pm (GHC 9019)

All other TAs will have their office hours up to and
including Saturday Dec 7t
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FINAL EXAM

Where: McConomy Auditorium (University Center)
When: Thursday Dec 11% @ 1:00-4:00pm

What to bring:

— CMU ID

— Pencil + Eraser (!!!)

— Calculator (cellphone is okay)

— One 8.5x11" page of handwritten notes (double-sided)
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STUFF BEFORE MID-TERM

SQL

Buffer Pool Management

Data Structures (Hash Tables, B+Trees)
Storage Models

Query Processing Models

Inter-Query Parallelism

Basic Understanding of BusTub Internals
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JOIN AL6ORITHMS

Join Algorithms

— Naive Nested Loops

— Block Nested Loops

— Index Nested Loops

— Sort-Merge

— Hash Join: Simple, Partitioned, Hybrid Hash
— Optimization using Bloom Filters

— Cost functions
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QUERY EXECUTION

Execution Models
— [terator

— Materialized

— Vector / Batch

Plan Processing: Push vs. Pull
Access Methods

— Sequential Scan and various optimization
— Index Scan, including multi-index scan
— [ssues with update queries

Expression Evaluation
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QUERY EXECUTION

Process Model

Parallel Execution

— Inter Query Parallelism

— Intra Query Parallelism: Intra-Operator: horizontal, vertical,
and bushy
Parallel hash join, Exchange operator

— Intra Query Parallelism: Inter-Operator, aka. pipelined
parallelism

IO Parallelism
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QUERY OPTIMIZATION

Heuristics

— Predicate Pushdown

— Projection Pushdown

— Nested Sub-Queries: Rewrite and Decompose

Statistics
— Cardinality Estimation
— Histograms

Cost-based search
— Bottom-up vs. Top-Down
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TRANSACTIONS

ACID

Conflict Serializability:
— How to check for correctness?
— How to check for equivalence?

View Serializability
— Difference with conflict serializability

I[solation Levels / Anomalies
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TRANSACTIONS

Two-Phase Locking
— Strict 2PL: Txn holds X locks until it commits or aborts. May

release S locks earlier, during the shrinking phase.
— Strong Strict 2PL: Txn holds all locks (S and X) until it
commits or aborts. Also called "Rigorous 2PL".

Cascading Aborts Problem
Deadlock Detection & Prevention

Multiple Granularity Locking

— Intention Locks

— Understanding performance trade-offs
— Lock Escalation (i.e., when is it allowed)
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TRANSACTIONS

Optimistic Concurrency Control
— Read Phase

— Validation Phase (Backwards vs. Forwards)
— Write Phase

Multi-Version Concurrency Control
— Version Storage / Ordering

— Garbage Collection

— Index Maintenance
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MVCC WITH 2PL
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CRASH RECOVERY

Buffer Pool Policies:
— STEAL vs. NO-STEAL
— FORCE vs. NO-FORCE

Shadow Paging

Write-Ahead Logging
— How it relates to buffer pool management
— Logging Schemes (Physical vs. Logical)
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CRASH RECOVERY

Checkpoints

— Non-Fuzzy vs. Fuzzy

ARIES Recovery

— Dirty Page Table (DPT)

— Active Transaction Table (ATT)
— Analyze, Redo, Undo phases

— Log Sequence Numbers
— CLRs
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DISTRIBUTED DATABASES

System Architectures
Replication Schemes
Partitioning Schemes
Two-Phase Commit

Paxos

Distributed Query Execution
Distributed Join Algorithms

Semi-Join Optimization
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TOPICS NOT ON EXAM!

Flash Talks
Seminar Talks
Details of specific database systems (e.g., Postgres)
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=

CMU 15-721 (Spring 2024)
SPEED RUN

https://15721.courses.cs.cmu.edu/spring2024
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SEQUENTIAL SCAN: OPTIMIZATIONS

Data Encoding / Compression
Prefetching / Scan Sharing / Buffer Bypass
Task Parallelization / Multi-threading
Clustering / Sorting
Late Materialization
Materialized Views / Result Caching
Data Skipping
Data Parallelization / Vectorization

Code Specialization / Compilation
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SELECTION SCANS

SELECT * FROM table
WHERE key > $(low)
AND key < $(high)
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SELECTION SCANS

Scalar (Branching)

i=0

for t in table:

key = t.key

if (key>low) && (key<high):
copy(t, outputl[il])
i=1+1

Source: Bogdan Raducanu
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SELECTION SCANS

Scalar (Branching) Scalar (Branchless)
i=20 i=20
for t in table: for t in table:
key = t.key copy(t, output[il])
if (key>low) && (key<high): key = t.key
copy(t, outputl[il]) delta = (key>low ? 1 : 0) &
i=1+1 Y (key<high ? 1 : 0)
i =i + delta

Source: Bogdan Raducanu
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SELECTION SCANS
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SIMD SELECTION SCANS

Scalar (Branchless)

i=20
for t in table:
copy(t, outputl[il])
key = t.key
m = (key=low ? 1 : 0) &
Y (keyshigh 7 1 : 0)
i=1+m

SELECT * FROM table
WHERE key >= $low AND key <= $high
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SIMD SELECTION SCANS

Vectorized

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 @ 0) &
Y (vshigh 7 1 : 0)
simdStore(v,, v,, output[i])
i =1+ |v#false]

SELECT * FROM table
WHERE key >= $low AND key <= $high
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SIMD SELECTION SCANS

Vectorized

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 @ 0) &
Y (vshigh 7 1 : 0)
simdStore(v,, v,, output[i])
i =1+ |v#false]

SELECT * FROM table
WHERE key >= $low AND key <= $high
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SIMD SELECTION SCANS

Vectorized

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 @ 0) &

Y (vshigh 7 1 : 0)
simdStore(v,, v,, output[i])
i =1+ |v#false]

SELECT * FROM table
WHERE key >= $low AND key <= $high
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SIMD SELECTION SCANS

Vectorized

i=20

for v, in table:

simdLoad(v,.key, v,)

v, = (vy2low 7 1 @ 0) &
S (v,shigh 7 1 : 9)

simdStore(v,, v,, output[i])

i =1+ |v#false]

SELECT * FROM table
WHERE key >= $low AND key <= $high
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SIMD SELECTION SCANS

Vectorized

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 @ 0) &

Y (v,shigh 7 1 : 0)
simdStore(v,, v,, output[i])
i=1+ |v#false]

SELECT * FROM table
WHERE key >= $low AND key <= $high
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SIMD SELECTION SCANS

Vectorized

i=20
for v, in table:
simdLoad(v,.key, v,)
v, = (vy2low 7 1 @ 0) &
Y (vshigh 7 1 : 0)
simdStore(v,, v,, output[i])
i =1+ |v#false]

SELECT * FROM table
WHERE key >= 'N' AND key <= 'U'
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SIMD SELECTION SCANS

Vectorized

i=0 100] A
for v, in table: 1011 N
simdLoad(v,.key, v,) 102 D
v, = (v,zlow ? 1 : 0) & 103 Y
% (veshigh 2 1 @ 0) 104| P
simdStore(v,, v,, output[i]) 1051 I
i = i 106] S

i =1+ |v#false]

107 & |

SELECT * FROM table
WHERE key >= 'N' AND key <= 'U'
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SIMD SELECTION SCANS

- KeyVector | AINIDIY|P|I|S|&
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SELECT * FROM table
WHERE key >= 'N' AND key <= 'U'
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Vectorized

SIMD SELECTION SCANS

i=20
for v, in table:

v, = (v,=2low ? 1
Y (v, shigh 7 1

i =1+ |v#false]

simdLoad(v,.key, v,)
:0) &

: 0)

simdStore(v,, v,, output[il)

SELECT * FROM table

WHERE key >= 'N' AND key <= 'U'
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Vectorized

SIMD SELECTION SCANS

i=20
for v, in table:

v, = (v,=2low ? 1
Y (v, shigh 7 1

i =1+ |v#false]

simdLoad(v,.key, v,)
:0) &

: 0)

simdStore(v,, v,, output[il)

SELECT * FROM table

WHERE key >= 'N' AND key <= 'U'
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Vectorized

SIMD SELECTION SCANS

i=20
for v, in table:

v, = (v,=2low ? 1
Y (v, shigh 7 1

i =1+ |v#false]

simdLoad(v,.key, v,)
:0) &

: 0)

simdStore(v,, v,, output[il)

SELECT * FROM table

WHERE key >= 'N' AND key <= 'U'
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Vectorized

SIMD SELECTION SCANS

i=20
for v, in table:

v, = (v,=2low ? 1
Y (v, shigh 7 1

i =1+ |v#false]

simdLoad(v,.key, v,)
:0) &

: 0)

simdStore(v,, v,, output[il)
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Vectorized

SIMD SELECTION SCANS

i=20
for v, in table:
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Scalar

Input Key  hash(key) Hash Index

SIMD HASH TABLE PROBING

k1
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VLDB JOURNAL 2020
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CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES

Linear Probing
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Scalar

Input Key  hash(key) Hash Index

SIMD HASH TABLE PROBING
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Scalar

Input Key  hash(key) Hash Index

SIMD HASH TABLE PROBING

k1

—f—

hi

Vectorized (Horizontal)

VLDB JOURNAL 2020

—'| MAKE THE MOST OUT OF YOUR SIMD INVESTMENTS: COUNTER
CONTROL FLOW DIVERGENCE IN COMPILED QUERY PIPELINES

Linear Probing

Bucketized Hash Table

KEYS PAYLOAD

Four Keys Four Values
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Scalar

SIMD HASH TABLE PROBING
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FILTER REPRESENTATION 5

WHERE col® IS NULL OR coll LIKE 'b%'

App roaCh #1: SeleCtlon VECtOI’S col0: int32 coll: varchar Selection Vector
— Dense sorted list of tuple identifiers that

indicate which tuples in a batch are valid. (521 ¢ 2 | 0 ;

— Pre-allocate selection vector as the max- 77| | 4
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FILTER REPRESENTATION

Approach #1: Selection Vectors

— Dense sorted list of tuple identifiers that
indicate which tuples in a batch are valid.

— Pre-allocate selection vector as the max-
size of the input vector.

Approach #2: Bitmaps

— Positionally-aligned bitmap that indicates
whether a tuple is valid at an offset.

— Some SIMD instructions natively use
these bitmaps as input masks.

FILTER REPRESENTATION IN VECTORIZED
QUERY EXECUTION
DAMON 2021

=

WHERE col® IS NULL OR coll LIKE 'b%'

col0: int32 coll: varchar Selection Vector
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HIQUE: HOLISTIC CODE GENERATION

For a given query plan, create a C/C++ program that

implements that query’s execution.
— Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into a
shared object, link it to the DBMS process, and then
invoke the exec function.

GENERATING CODE FOR HOLISTIC
QUERY EVALUATION
ICDE 2010
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HIQUE: OPERATOR TEMPLATES

Interpreted Plan

for t in range(table.num_tuples):
tuple =|get_tuple(table, t)
if eval(predicate ,wjple, params):

emit(tuple)

1. Get schema in catalog for table.
2. Calculate of fset based on tuple size.
3. Return pointer to tuple.
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HIQUE: OPERATOR TEMPLATES

Interpreted Plan

for t in range(table.num_tuples):
tuple = get_tuple(table, t)
if|eval(predicate, tuple, params):
emit(tuple)

1. Get schema in catalog foNtable.
. Calculate offset based on typle size.
Return pointer to tuple.

w N

Traverse predicate tree and pull values up.

If tuple value, calculate the of fset of the target attribute.
Perform casting as needed for comparison operators.
Return true / false.

N s N =
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HIQUE: OPERATOR TEMPLATES

Interpreted Plan Templated Plan

for t in range(table.num_tuples): tuple_size = ###

tuple = get_tuple(table, t) predicate_offset = #i##

if eval(predicate, tuple, params): parameter_value = #it#

emit(tuple)
for t in range(table.num_tuples):
1. Get schema in catalog for table. tuple = table.data + t * tuple_size
2. Calculate of fset based on tuple size. val = (tuple+predicate_offset)
3. Return pointer to tuple. if (val == parameter_value + 1):
emit(tuple)

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the of fset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Returntrue / false.
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HIQUE: OPERATOR TEMPLATES

Interpreted Plan

for t in range(table.num_tuples):

tuple = get_tuple(table, t)
if eval(predicate, tuple, params):
emit(tuple)

w N

Get schema in catalog for table.

. Calculate offset based on tuple size.

Return pointer to tuple.

N s N =

Traverse predicate tree and pull values up.

If tuple value, calculate the of fset of the target attribute.

Perform casting as needed for comparison operators.
Return true / false.

Templated Plan

tuple_size = #i#t#
predicate_offset = #i##
parameter_value = #i##

for t in range(table.num_tuples):

tuple = table.data + t * [tuple_size]

val = (tupleﬂgredicate_offseth
if (val ==|parameter=va1ua + 1):

emit(tuple)
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HIQUE: OPERATOR TEMPLATES

Interpreted Plan Templated Plan

for t in range(table.num_tuples): tuple_size = ###

tuple = get_tuple(table, t) predicate_offset = #i##

if eval(predicate, tuple, params): parameter_value = #it#

emit(tuple)
for t in range(table.num_tuples):
1. Get schema in catalog for table. tuple = table.data + t * tuple_size
2. Calculate of fset based on tuple size. val = (tuple+predicate_offset)
3. Return pointer to tuple. if (val == paramete r_value + 1) ]
emit(tuple)

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the of fset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Returntrue / false.
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SIGMOD 2013

VECTORWISE: PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that perform

basic operations on typed data.
— Using simple kernels for each primitive means that they are
easier to vectorize.

The DBMS then executes a query plan that invokes

these primitives at runtime.
— Function calls are amortized over multiple tuples.
— The output of a primitive are the offsets of tuples that

~ | MICRO ADAPTIVITY IN VECTORWISE

=
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VECTORWISE: PRECOMPILED PRIMITIVES 5

SELECT * FROM foo
WHERE str_col = 'abc'
AND int_col = 4;

G str_col='abc' &&
int_col=4

=

foo
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VECTORWISE: PRECOMPILED PRIMITIVES 5

SELECT * FROM foo | vec<offset> sel_eq_str(vec<string> col, string val) {
WHERE str_col = 'a vec<offset> positions;
AND int_col = A, for (offset i = 0; i < col.size(); i++)

V4 if (col[i] == val) positions.append(i);
L return (positions);
Gstr_col='abc' && }
int_col=4

|

foo
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VECTORWISE: PRECOMPILED PRIMITIVES 5

SELECT * FROM foo vec<offset> sel_eq_str(vec<string> col, string val) {
WHERE str_col = 'abc' vec<offset> positions;
AND int_col = 4; for (offset i = 0; i < col.size(); i++)

if (col[i] == val) positions.append(i);

return (positions);

G str_col='abc' && }

int_col=4
-

—p| vec<offset> sel_eq_int(vec<int> col, int val,
vec<offset> positions) {
vec<offset> res;
f for (offset i : positions)
oo if (col[i] == val) res.append(i);

return (res);

3
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VECTORWISE: PRECOMPILED PRIMITIVES 5

SELECT * FROM foo vec<offset> sel_eq_str(vec<string> col, string val) {
WHERE str_col = 'abc' vec<offset> positions;
AND int_col = 4; for (offset i = 0; i < col.size(); i++)

if (col[i] == val) positions.append(i);

return (positions);

G str_col='abc' && }

int_col=4
-

—p| vec<offset> sel_eq_int(vec<int> col,™t val,
vec<offset> positions) {
vec<offset> res;
f for (offset i : positions)
oo if (col[i] == val) res.append(i);

return (res);

3
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SYSTEMS

Google BigQuery (2011)
Snowflake (2013)

Amazon Redshift (2014)
Yellowbrick (2014)

Databricks Photon (2022)
ClickHouse (2016)

$DB Flash Talk: Relational Al
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Google
Big Query

b0O0GLE BIGAUERY (2011)

Originally developed as "Dremel" in 2006 as a side-
project for analyzing data artifacts generated from other

tools.

— The "interactive" goal means that they want to support ad hoc
queries on in-situ data files.
— Did not support joins in the first version.

Rewritten in the late 2010s to shared-disk architecture
built on top of GFS.

Released as public commercial product (BigQuery) in
2012.
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BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage
Vectorized Query Processing
Shuffle-based Distributed Query Execution

Columnar Storage

— Zone Maps / Filters

— Dictionary + RLE Compression

— Only Allows "Search" Inverted Indexes

Hash Joins Only
Heuristic Optimizer + Adaptive Optimizations

~— |DREMEL: A DECADE OF INTERACTIVE
SQL ANALYSIS AT WEB SCALE
VLDB 2020
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Google
Big Query

BIGAUERY: IN-MEMORY SHUFFLE

The shuftle phases represent checkpoints in a query's
lifecycle where that the coordinator makes sure that all
tasks are completed.

Fault Tolerance / Straggler Avoidance:

— If a worker does not produce a task's results within a deadline,
the coordinator speculatively executes a redundant task.

Dynamic Resource Allocation:

— Scale up / down the number of workers for the next stage
depending size of a stage's output.
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Google
Big Query

BIGAUERY: IN-MEMORY SHUFFLE

: Worker :
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BIGAUERY: IN-MEMORY SHUFFLE
’"gﬁ‘g:;"gf;ry M
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P2 BIGQUERY: DYNAMIC REPARTITIONING 5

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew. purtitionst Partition 12

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their

partitioning scheme.
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partitioning scheme.



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Zk5_RcRg3nA

- BIGAUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.
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BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partltlonlng tO adapt tO data SkeW. Partition #1 Partition #2 Partition #3 Partition #4

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.
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®5 DIGUUERY: DYNAMIC REPARTITIONNS
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning tO adapt tO data Skew' Partition #1 Partition #2 Partition #3 Partition #4

B RE
DBMS detects whether shuffle

partition gets too full and then hash,(key) hash,(key)
instructs workers to adjust their

partitioning scheme. Worker

Source: H.Ahmadi + A.Surna
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and adjusts intermediate result Statistics
partitioning tO adapt tO data Skew' Partition #1 Partition #2 Partition #3 Partition #4
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partition gets too full and then hash,(key)
instructs workers to adjust their

partitioning scheme.

Repartition

Source: H.Ahmadi + A.Surna
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and adjusts intermediate result Statistics
partitioning tO adapt tO data Skew' Partition #1 Partition #2 Partition #3 Partition #4
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®5 DIGUUERY: DYNAMIC REPARTITIONNS
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning to adapt to data skew. P o

DBMS detects whether shuffle i

partition gets too full and then hash,(key)
instructs workers to adjust their

partitioning scheme.

Repartition

Source: H.Ahmadi + A.Surna
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SNOWFLAKE (2013)

Managed OLAP DBMS written in C++.

— Shared-disk architecture with aggressive compute-side local
caching.

— Written from scratch. Did not borrow components from
existing systems.

— Custom SQL dialect and client-server network protocols.

The OG cloud-native data warehouse.

= | THE SNOWFLAKE ELASTIC DATA

WAREHOUSE
SIGMOD 2016
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SHOWFLAKE: OVERVIEW

Cloud-native OLAP DBMS written in C++
Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing
Precompiled Operator Primitives

Separate Table Data from Meta-Data

No Buffer Pool

PAX Columnar Storage
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S SNOWFLAKE: QUERY PROCESSING

Snowflake is a push-based vectorized engine that uses

precompiled primitives for operator kernels.

— Pre-compile variants using C++ templates for different vector
data types.

— Only uses codegen (via LLVM) for tuple
serialization/deserialization between workers.

Does not support partial query retries
— If a worker fails, then the entire query has to restart.
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SNOWFLAKE: ADAPTIVE OPTIMIZATION 5

After dete1:m1n1pg .]om.ordermg,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

TableScan(a) TableScan(b)

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen
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SNOWFLAKE: ADAPTIVE OPTIMIZATION 5

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

Aggregation

TableScan(a) TableScan(b)

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen
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SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining joi '

' ng .]om.ordermg,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

TableScan(a) AggChild

The optimizer adds the downstream TableScant(b)

aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen
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SNOWFLAKE: ADAPTIVE OPTIMIZATION

After dete1:m1n1pg .]om.orde%‘mg,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

TableScan(a) AggChild

The optimizer adds the downstream TableScant(b)

aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen
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SNOWFLAKE: A

After determining join order;
Snowflake's optimizer identif
aggregation operators to pus]
into the plan below joins.

The optimizer adds the dOW]J

aggregations but then the DJ
enables them at runtime accq
statistics observed during ex

Source: Bowei Chen

®¥ Medium O [Z write

Aggregation Placement — An
Adaptive Query Optimization
for Snowflake

G‘P Bowei Chen - Follow
e Published in Snowflake - 8 min read - Aug 10,2023

Snowflake’s Data Cloud is backed by a data platform designed from the
ground up to leverage cloud computing technology. The platform is delivered
as a fully managed service, providing a user-friendly experience to run
complex analytical workloads easily and efficiently without the burden of
managing on-premise infrastructure, Snowflake’s architecture separates the
compute layer from the storage layer. Compute workloads on the same
dataset can scale independently and run in isolation without interfering with
each other, and compute resources could be allocated and scaled on demand
within seconds. The cloud-native architecture makes Snowflake a powerful
platform for data warehousing, data engineering, data science, and many
other types of applications. More about Snowflake architecture can be found

in Key Concepts & Architecture documentation and the Snowflake Elastic
PLS & Architecture documentation
Data Warehouse research paper.
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Hashj]oinProbe

[f a query plan fragment will process a
large amount of data, then the DBMS HoshjoimBuild Groupsy [}

can temporarily deploy additional
worker nodes to accelerate its >Is‘gf"
performance. TableScan

TableScan j

Flexible compute worker nodes write
results to storage as if it was a table.
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B SHOWFLAKE: FLEXIBLE COMPUTE *

HashJoinProbe

[f a query plan fragment will process a
large amount of data, then the DBMS HashJoinBuild

can temporarily deploy additional Filter UnionAll
worker nodes to accelerate its *
TableScan TableScan
performance. 2 Materialize
‘._Result to Storage
Flexible compute worker nodes write |

GroupBy

TableScan

Scale Out on »

results to storage as if it was a table.

Flexible Compute TableScan

Source: Libo Wang
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amazon
REDSHIFT

AMAZON REDSHIFT (2014)

Amazon's flagship OLAP DBaaS.

— Based on ParAccel's original shared-nothing architecture.
— Switched to support disaggregated storage (S3) in 2017.
— Added serverless deployments in 2022.

Redshift is a more traditional data warehouse
compared to BigQuery/Spark where it wants to control
all the data.

Overarching design goal is to remove as much
administration + configuration choices from users.

AMAZON REDSHIFT RE-INVENTED

SIGMOD 2022
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Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Precompiled Primitives

Compute-side Caching
PAX Columnar Storage
Sort-Merge + Hash Joins

Hardware Acceleration (AQUA)
Stratified Query Optimizer
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7 REDSHIFT: COMPILATION SERVICE K

Separate nodes to compile query plans using GCC and

aggressive caching.

— DBMS checks whether a compiled version of each templated
fragment already exists in customer's local cache.

— [f fragment does not exist in the local cache, then it checks a
global cache for the entire fleet of Redshift customers.

Background workers proactively recompile plans when
new version of DBMS is released.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

: =
Yellowbrick ¢g


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025

YELLOWBRICK (201)

OLAP DBMS written on C++ and derived from a
hardfork of PostgreSQL v9.5.

— Uses PostgreSQL's front-end (networking, parser, catalog) to
handle incoming SQL requests.
— They hate the OS as much as I do.

Originally started as an on-prem appliance with FPGA
acceleration. Switched to DBaaS in 2021.

Cloud-version uses Kubernetes for all components.

YELLOWBRICK: AN ELASTIC DATA
WAREHOUSE ON KUBERNETES
CIDR 2024
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YELLOWBRICK

Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Compute-side Caching

Separate Row + PAX Columnar Storage
Sort-Merge + Hash Joins

PostgreSQL Query Optimizer++

Insane Systems Engineering
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YELLOWBRICK: ARCHITECTURE
________________________________________________________________________________________________________________________ "
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(0 (@ [ [ @

W orker Nodes Object Store

Source: Mark Cusack
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YELLOWBRICK: ARCHITECTURE

Compiler
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(0 (@ [ [ @

W orker Nodes Object Store

Source: Mark Cusack
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YELLONBRICK ARCHITECTURE

Custom S3 Client

NVMe Driver

 uorbioma b 1

@ PostgreSQL

Compiler
Service

(0 (@ [ [ @

.........................................................................................................................

W orker Nodes Object Store

Source: Mark Cusack


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://www.linkedin.com/in/macusack

Yellowbrick €'

YELLOWBRICK: QUERY EXECUTION

Pushed-based vectorized query processing that supports
both row- and columnar-oriented data with early

materialization.
— Introduces transpose operators to convert data back and forth
between row and columnar formats.

Holistic query compilation via source-to-source
transpilation.

Yellowbrick's architecture goal is for workers to always
process data residing in the CPU's L3 cache and not
memory.

=
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YELLOWBRICK: MEMORY ALLOCATOR

Custom NUMA -aware, latch-free allocator that gets all

the memory needed upfront at start-up

— Using mmap with mlock with huge pages.

— Allocations are grouped by query to avoid fragmentation.
— Claims their allocator is 100x faster than libc malloc.

Each worker also has a buffer pool manager that uses
MySQL-style approximate LRU-K to store cached data
files.
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YELLOWBRICK: DEVICE DRIVERS 5

Custom NVMe / NIC drivers that run TCP B DPDK
in user-space to avoid memory copy 2000

overheads.
— Falls back to Linux drivers if necessary.

2430

1976
2000 —+— 1626

1358 1222,

995

Custom reliable UDP network
protocol with kernel-bypass (DPDK)

1000 —+
for internal communication. 0 | , [
— Each CPU has its own receive/transmit 2-Workers 3-Workers 4 KELSy
: Cluster Size
queues that it polls asynchronously.
— Only sends data to a "partner” CPU at
other workers.

TPC-DS Runtime
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DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded into
Databricks Runtime (DBR) via JNI.

— Overrides existing engine when appropriate.

— Support both Spark's earlier SQL engine and Spark's
DataFrame API.

— Seamlessly handle impedance mismatch between row-oriented
DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022
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DATABRICKS PHOTON (2022)

Photon: A Fast Query Engine for Lakehouse Systems

Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cashman, Ankur
Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind Sai Krishnan, Paul Leventis, Ala
Luszczak, Prashanth Menon, Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart

Samwel, Tom van Bussel, Herman van Hovell, Maryann Xue, Reynold Xin, Matei Zaharia
photon-paper-authors@databricks.com
Databricks Inc.

ABSTRACT from SQL to machine learning. Traditionally, for the most demand-
Many organizations are shifting to a data management paradigm ing SQL workloads, enterprises have also moved a curated subset
called the “Lakehouse,” which implements the functionality of struc- of their data into data warehouses to get high performance, gov-
tiired data wareholices An tan of unctructired data lakec Thig ernance and Concurrency. HOWCVCI', thlS tWO"tier arChiteCture iS

PHOTON: A FAST QUERY ENGINE
FOR LAKEHOUSE SYSTEMS
SIGMOD 2022
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< databricks

PHOTON: QVERVIEW

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion
Shuffle-based Distributed Query Execution
Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations
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< databricks

PHOTON: VECTORIZED PROCESSING

Photon is a pull-based vectorized engine that uses

precompiled operator kernels (primitives).
— Converts physical plan into a list of pointers to functions that
perform low-level operations on column batches.

Databricks: It is easier to build/maintain a vectorized

engine than a JI'T engine.

— Engineers spend more time creating specialized codepaths to
get closer to JIT performance.

— With codegen, engineers write tooling and observability hooks
instead of writing the engine.

=
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domss PHOTON: EXPRESSION FUSION

SELECT * FROM foo
WHERE cdate BETWEEN '2024-01-01' AND '2024-04-01';
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s PHOTON: EXPRESSION FUSION

SELECT * FROM foo
WHERE cdate >= '2024-01-01"'
AND cdate <= '2024-04-01';

cdate >= '2024-01-01"
AND
cdate <= '2024-04-01'

foo
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PHOTON: EXPRESSION FUSION 5

SELECT * FROM foo vec<offset> sel_geq_date(vec<date> batch, date val) {

WHERE cdate >= '2024-01-01" vec<offset> positions;
AND cdate <= '2024-04-01"'; for (offset i = 0; i < batch.size(); i++)

if (batch[i] >= val) positions.append(i);
return (positions);

cdate >= '2024-01-01"
AND
cdate <= '2024-04-01'

vec<offset> sel_leq_date(vec<date> batch, date val) {
vec<offset> positions;
for (offset i = 0; i < batch.size(); i++)
f if (batch[i] <= val) positions.append(i);
return (positions);

}
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PHOTON: EXPRESSION FUSION 5

SELECT * FROM foo
WHERE cdate >= '2024-01-01"'
AND cdate <= '2024-04-01";

vec<offset> sel_between_dates(vec<date> batch,

date low, date high) {
cdate >= '2024-01-01" vec<offset> positions;
AND e for (offset i = 0; i < batch.size(); i++)
cdate <= '2024-04-01' if (batch[i] >= low && batch[i] <= high)
positions.append(i);
return (positions);

}

foo
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PHOTON: EXPRESSION FUSION 5

SELECT * FROM foo
WHERE cdate >= '2024-01-01"'
AND cdate <= '2024-04-01";

vec<offset> sel_between_dates(vec<date> batch,
date low, date high)| {

cdate >= '2024-01-01" vec<offset> positions;
AND e for (offset i = 0; i < batch.size(); it++)
cdate <= '2024-04-01' if (batch[i] >= low && batch[i] <= high)
positions.append(i);
return (positions);

}

foo
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SPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue
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of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.
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After the shuffle completes, the
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partitions using heuristics.

Source: Maryann Xue


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2025
https://youtu.be/Xb2zm4-F1HI

G GPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue

Partition #1

Partition #1

Partition #2

Partition #3

Partition #4

Partition #5
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SPARK: PARTITION COALESCING

Spark (over-)allocates a large number P

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue
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SPARK: PARTITION COALESCING

Spark (over-)allocates a large number S —

of shuffle partitions for each stage. . I

— Number needs to be large enough to avoid
Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue
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e CLICKHOUSE (2016)

C++ OLAP DBMS that supports different table engines
— Default;: MergeTree with SSTable-like immutable files

Shared-Nothing Architecture
Pull-Based Vectorized Query Processing

Operator-at-a-Time Execution
Compiled Expression Evaluator (LLVM)
Sort-Merge +|Hash Joins

Heuristic Optimizer + Rule-Based Rewriting

CLICKHOUSE - LIGHTNING FAST
ANALYTICS FOR EVERYONE
VLDB 2024
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CLICKHOUSE: STRING HASH TABLES 5
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= SAHA: A STRING ADAPTIVE HASH TABLE FOR ANALYTICAL DATABASES
APPL. SCI. 2020
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CONCLUDING REMARKS

Databases are awesome.
— They cover all facets of computer science.
— We have barely scratched the surface...

Going forth, you should now have a good
understanding how these systems work.

This will allow you to make informed decisions

throughout your entire career.
— Avoid premature optimizations.
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