
Lecture #14: Query Planning & Optimization
15-445/645 Database Systems (Spring 2023)

https://15445.courses.cs.cmu.edu/spring2023/
Carnegie Mellon University

Charlie Garrod

1 Overview
Because SQL is declarative, the query only tells the DBMS what to compute, but not how to compute
it. Thus, the DBMS needs to translate a SQL statement into an executable query plan. But there are
different ways to execute each operator in a query plan (e.g., join algorithms) and there will be differences
in performance among these plans. The job of the DBMS’s optimizer is to pick an optimal plan for any
given query.

The first implementation of a query optimizer was IBM System R and was designed in the 1970s. Prior
to this, people did not believe that a DBMS could ever construct a query plan better than a human. Many
concepts and design decisions from the System R optimizer are still in use today.

There are two high-level strategies for query optimization.

The first approach is to use static rules, or heuristics. Heuristics match portions of the query with known
patterns to assemble a plan. These rules transform the query to remove inefficiencies. Although these rules
may require consultation of the catalog to understand the structure of the data, they never need to examine
the data itself.

An alternative approach is to use cost-based search to read the data and estimate the cost of executing
equivalent plans. The cost model chooses the plan with the lowest cost.

Query optimization is the most difficult part of building a DBMS. Some systems have attempted to ap-
ply machine learning to improve the accuracy and efficiency of optimizers, but no major DBMS currently
deploys an optimizer based on this technique.

Logical vs. Physical Plans
The optimizer generates a mapping of a logical algebra expression to the optimal equivalent physical algebra
expression. The logical plan is roughly equivalent to the relational algebra expressions in the query.

Physical operators define a specific execution strategy using an access path for the different operators in the
query plan. Physical plans may depend on the physical format of the data that is processed (i.e. sorting,
compression).

There does not always exist a one-to-one mapping from logical to physical plans.

2 Logical Query Optimization
Some selection optimizations include:

• Perform filters as early as possible (predicate pushdown).
• Reorder predicates so that the DBMS applies the most selective one first.
• Breakup a complex predicate and pushing it down (split conjunctive predicates).

https://15445.courses.cs.cmu.edu/spring2023/
https://15445.courses.cs.cmu.edu/spring2023/


Spring 2023 – Lecture #14 Query Planning & Optimization

Figure 1: Architecture Overview – The application connected to the database system
and sends a SQL query, which may be rewritten to a different format. The SQL string
is parsed into tokens that make up the syntax tree. The binder converts named objects
in the syntax tree to internal identifiers by consulting the system catalog. The binder
emits a logical plan which may be fed to a tree rewriter for additional schema info.
The logical plan is given to the optimizer which selects the most efficient procedure to
execute the plan.

An example of predicate pushdown is shown in Figure 2.

Some projection optimizations include:

• Perform projections as early as possible to create smaller tuples and reduce intermediate results (pro-
jection pushdown).

• Project out all attributes except the ones requested or requires.

Figure 2: Predicate Pushdown: – Instead of performing the filter after the join, the
filter can be applied earlier in order to pass fewer elements into the filter.

An example of projection pushdown in shown in Figure 3.

Some query rewrite optimizations include:

• Remove impossible or unnecessary predicates. In this optimization, the DBMS elides evaluation of
predicates whose result does not change per tuple in a table. Bypassing these predicates reduces
computation cost.

• Merging predicate as shown in Figure 4.
• Re-write the query by de-correlating and / or flattening nested subqueries. An example of this is

15-445/645 Database Systems
Page 2 of 8

https://15445.courses.cs.cmu.edu/spring2023/


Spring 2023 – Lecture #14 Query Planning & Optimization

Figure 3: Projection Pushdown – Since the query only asks for the student name and
ID, the DBMS can remove all columns except for those two before applying the join.

shown in Figure 5.
• Decompose the nested query and store the result to a temporary table. An example of this is shown in

Figure 6.

Figure 4: Merging Predicates – The WHERE predicate in query 1 has redundancy as
what it is searching for is any value between 1 and 150. Query 2 shows the more
succinct way to express request in query 1.

15-445/645 Database Systems
Page 3 of 8

https://15445.courses.cs.cmu.edu/spring2023/


Spring 2023 – Lecture #14 Query Planning & Optimization

Figure 5: Subquery Optimization - Rewriting The former query can be rewritten as
the latter query by rewriting the subquery as a JOIN. Removing a level of nesting in
this way effectively flattens the query.

Figure 6: Subquery Optimization - Decomposition – For complex queries with
subqueries, the DBMS optimizer may break up the original query into blocks and
focus on optimizing each individual block at a a time. In this example, the optimizer
decomposes a query with a nested aggregation by pulling the nested query out into its
own query, and subsequently using this result to realize the logic of the original query.

The ordering of JOIN operations is a key determinant of query performance. Exhaustive enumeration of all
possible join orders is inefficient, so join-ordering optimization requires a cost model. However, we can still
eliminate unnecessary joins with a heuristic approach to optimization. An example of join elimination is
shown in Figure 7.

3 Cost Estimations
DBMS’s use cost models to estimate the cost of executing a plan. These models evaluate equivalent plans
for a query to help the DBMS select the most optimal one.

The cost of a query depends on several underlying metrics, including:

• CPU: small cost, but tough to estimate.
• Disk I/O: the number of block transfers.
• Memory: the amount of DRAM used.
• Network: the number of messages sent.

15-445/645 Database Systems
Page 4 of 8

https://15445.courses.cs.cmu.edu/spring2023/


Spring 2023 – Lecture #14 Query Planning & Optimization

Figure 7: Join Elimination – The join in query 1 is wasteful because every tuple in A
must exist in A. Query 1 can instead be written as query 2.

Exhaustive enumeration of all valid plans for a query is much too slow for an optimizer to perform. For
joins alone, which are commutative and associative, there are 4n different orderings of every n-way join.
Optimizers must limit their search space in order to work efficiently.

To approximate costs of queries, DBMS’s maintain internal statistics about tables, attributes, and indexes in
their internal catalogs. Different systems maintain these statistics in different ways. Most systems attempt
to avoid on-the-fly computation by maintaining an internal table of statistics. These internal tables may then
be updated in the background.

For each relation R, the DBMS maintains the following information:

• NR: Number of tuples in R
• V (A,R): Number of distinct values of attribute A

With the information listed above, the optimizer can derive the selection cardinality SC(A,R) statistic. The
selection cardinality is the average number of records with a value for an attribute A given NR

V (A,R) . Note that
this assumes data uniformity. This assumption is often incorrect, but it simplifies the optimization process.

Selection Statistics
The selection cardinality can be used to determine the number of tuples that will be selected for a given
input.

Equality predicates on unique keys are simple to estimate (see Figure 8). A more complex predicate is
shown in Figure 9.

Figure 8: Simple Predicate Example – In this example, determining what index to
use is easy because the query contains an equality predicate on a unique key.

Figure 9: Complex Predicate Example – More complex predicates, such as range or
conjunctions, are harder to estimate because the selection cardinalities of the predicates
must be combined in non-trivial ways.

The selectivity (sel) of a predicate P is the fraction of tuples that qualify. The formula used to compute selec-

15-445/645 Database Systems
Page 5 of 8

https://15445.courses.cs.cmu.edu/spring2023/


Spring 2023 – Lecture #14 Query Planning & Optimization

tive depends on the type of predicate. Selectivity for complex predicates is hard to estimate accurately which
can pose a problem for certain systems. An example of a selectivity computation is shown in Figure 10.

Figure 10: Selectivity of Negation Query Example – The selectivity of the negation
query is computed by subtracting the selectivity of the positive query from 1. In the
example, the answer comes out to be 4

5 which is accurate.

Observe that the selectivity of a predicate is equivalent to the probability of that predicate. This allows
probability rules to be applied in many selectivity computations. This is particularly useful when dealing
with complex predicates. For example, if we assume that multiple predicates involved in a conjunction are
independent, we can compute the total selectivity of the conjunction as the product of the selectivities of the
individual predicates.

Selectivity Computation Assumptions
In computing the selection cardinality of predicates, the following three assumptions are used.

• Uniform Data: The distribution of values (except for the heavy hitters) is the same.
• Independent Predicates: The predicates on attributes are independent.
• Inclusion Principle: The domain of join keys overlap such that each key in the inner relation will

also exist in the outer table.

These assumptions are often not satisfied by real data. For example, correlated attributes break the assump-
tion of independence of predicates.

4 Histograms
Real data is often skewed and is tricky to make assumptions about. However, storing every single value of
a data set is expensive. One way to reduce the amount of memory used by storing data in a histogram to
group together values. An example of a graph with buckets is shown in Figure 11.

Another approach is to use a equi-depth histogram that varies the width of buckets so that the total number
of occurrences for each bucket is roughly the same. An example is shown in Figure 12.

In place of histograms, some systems may use sketches to generate approximate statistics about a data set.

5 Sampling
DBMS’s can use sampling to apply predicates to a smaller copy of the table with a similar distribution (see
Figure 13). The DBMS updates the sample whenever the amount of changes to the underlying table exceeds

15-445/645 Database Systems
Page 6 of 8

https://15445.courses.cs.cmu.edu/spring2023/


Spring 2023 – Lecture #14 Query Planning & Optimization

Figure 11: Equi-Width Histogram: The first figure shows the original frequency
count of the entire data set. The second figure is an equi-width histogram that combines
together the counts for adjacent keys to reduce the storage overhead.

Figure 12: Equi-Depth Histogram – To ensure that each bucket has roughly the same
number of counts, the histogram varies the range of each bucket.

some threshold (e.g., 10% of the tuples).

Figure 13: Sampling – Instead of using one billion values in the table to estimate
selectivity, the DBMS can derive the selectivities for predicates from a subset of the
original table.

6 Plan Enumeration
After performing rule-based rewriting, the DBMS will enumerate different plans for the query and estimate
their costs. It then chooses the best plan for the query after exhausting all plans or some timeout.

7 Single-Relation Query Plans
For single-relation query plans, the biggest obstacle is choosing the best access method (i.e., sequential scan,
binary search, index scan, etc.) Most new database systems just use heuristics, instead of a sophisticated

15-445/645 Database Systems
Page 7 of 8

https://15445.courses.cs.cmu.edu/spring2023/


Spring 2023 – Lecture #14 Query Planning & Optimization

cost model, to pick an access method.

For OLTP queries, this is especially easy because they are sargable (Search Argument Able), which means
that there exists a best index that can be selected for the query. This can also be implemented with simple
heuristics.

8 Multi-Relation Query Plans
For Multi-Relation query plans, as number of joins increases, the number of alternative plans grow rapidly.
Consequently, it is important to restrict the search space so as to be able to find the optimal plan in a
reasonable amount of time. There are two ways to approach this search problem:

• Bottom-up: Start with nothing and then build up the plan to get to the outcome that you want.
Examples: IBM System R, DB2, MySQL, Postgres, most open-source DBMSs.

• Top-down: Start with the outcome that you want, and then work down the tree to find the optimal
plan that gets you to that goal. Examples: MSSQL, Greenplum, CockroachDB, Volcano

9 Bottom-up optimization example - System R
Use static rules to perform initial optimization. Then use dynamic programming to determine the best join
order for tables using a divide-and conquer search method.

• Break query up into blocks and generate the logical operators for each block
• For each logical operator, generate a set of physical operators that implement it
• Then, iteratively construct a ”left-deep” tree that minimizes the estimated amount of work to execute

the plan

10 Top-down optimization example - Volcano
Start with a logical plan of what we want the query to be. Perform a branch-and-bound search to traverse
the plan tree by converting logical operators into physical operators.

• Keep track of global best plan during search.
• Treat physical properties of data as first-class entities during planning.

15-445/645 Database Systems
Page 8 of 8

https://15445.courses.cs.cmu.edu/spring2023/

	Overview
	Logical Query Optimization
	Cost Estimations
	Histograms
	Sampling
	Plan Enumeration
	Single-Relation Query Plans
	Multi-Relation Query Plans
	Bottom-up optimization example - System R
	Top-down optimization example - Volcano

