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1 Transaction Locks
Our notions of serializability thus far have assumed we know all reads and writes while constructing a
schedule, but we need a way to guarantee correctness on the fly. A DBMS uses locks to dynamically
generate an execution schedule for transactions that is serializable. These locks protect database objects
during concurrent access when there are multiple readers and writers. The DBMS contains a centralized
lock manager that decides whether a transaction can acquire a lock or not.

Importantly, locks are different from latches such as those used in the B+ tree crabbing algorithm. Latches
protect the DBMS’s internal data structures from concurrent threads whereas locks protect values in the
database from concurrent transactions. For example, in a B+ tree, you only hold latches over individual leaf
nodes in a scan because that’s all you need to do to ensure correctness, but if one transaction attempts a leaf
scan while another attempts to write to two arbitrary values, the leaf scan needs to lock the whole table, not
just the current leaf, to avoid seeing only one of the two writes.

There are two basic types of locks:

• Shared Lock (S-LOCK): A shared lock allows multiple transactions to read the same object at the
same time. If one transaction holds a shared lock, then another transaction can also acquire that same
shared lock.

• Exclusive Lock (X-LOCK): An exclusive lock allows a transaction to modify an object. This lock
prevents other transactions from taking any other lock (S-LOCK or X-LOCK) on the object. Only one
transaction can hold an exclusive lock at a time.

Transactions must request locks (or upgrades) from the lock manager. The lock manager grants or blocks
requests based on what locks are currently held by other transactions. Transactions must release locks
when they no longer need them to free up the object. The lock manager updates its internal lock-table with
information about which transactions hold which locks and which transactions are waiting to acquire locks.

The DBMS’s lock-table does not need to be durable since any transaction that is active (i.e., still running)
when the DBMS crashes is automatically aborted.

However, locks alone are not enough. Locks need to be complemented by a concurrency control protocol
that ensures locks are used in a way that satisfy correctness guarantees.

2 Two-Phase Locking
Two-Phase locking (2PL) is a pessimistic concurrency control protocol that uses locks to determine whether
a transaction is allowed to access an object in the database on the fly. The protocol does not need to know
all of the queries that a transaction will execute ahead of time.

Phase #1– Growing: In the growing phase, each transaction requests the locks that it needs from the
DBMS’s lock manager. The lock manager grants/denies these lock requests.
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Phase #2– Shrinking: Transactions enter the shrinking phase immediately after they releases their first
lock. In the shrinking phase, transactions are only allowed to release locks. They are not allowed to acquire
new ones.

On its own, 2PL is sufficient to guarantee conflict serializability. It generates schedules whose precedence
graph is acyclic. But it is susceptible to cascading aborts, which is when a transaction aborts and then
another transaction must be rolled back, which results in wasted work.

2PL can still have dirty reads and it can also lead to deadlocks. There are also potential schedules that are
serializable but would not be allowed by 2PL (locking can limit concurrency).

Strong Strict Two-Phase Locking
A schedule is strict if any value written by a transaction is never read or overwritten by another transaction
until the first transaction commits. Strong Strict 2PL (also known as Rigorous 2PL) is a variant of 2PL where
the transactions only release locks when they commit.

The advantage of this approach is that the DBMS does not incur cascading aborts. The DBMS can also
reverse the changes of an aborted transaction by restoring the original values of modified tuples. However,
Strict 2PL generates more cautious/pessimistic schedules that limit concurrency.

Universe of Schedules
SerialSchedules ⊂ StrongStrict2PL ⊂ ConflictSerializableSchedules

⊂ ViewSerializableSchedules ⊂ AllSchedules

3 Deadlock Handling
A deadlock is a cycle of transactions waiting for locks to be released by each other. There are two approaches
to handling deadlocks in 2PL: detection and prevention.

Approach #1: Deadlock Detection
To detect deadlocks, the DBMS creates a waits-for graph where transactions are nodes, and there exists a
directed edge from Ti to Tj if transaction Ti is waiting for transaction Tj to release a lock. The system will
periodically check for cycles in the waits-for graph (usually with a background thread) and then make a
decision on how to break it. Latches are not needed when constructing the graph since if the DBMS misses
a deadlock in one pass, it will find it in the subsequent passes. Note that there is a trade-off between the
frequency of deadlock checks (uses CPU cycles) and the wait time until a deadlock is broken.

When the DBMS detects a deadlock, it will select a “victim” transaction to abort to break the cycle. The
victim transaction will either restart or abort depending on how the application invoked it. The DBMS can
consider multiple transaction properties when selecting a victim to break the deadlock:

1. By age (newest or oldest timestamp).
2. By progress (least/most queries executed).
3. By the # of items already locked.
4. By the # of transactions needed to rollback with it.
5. # of times a transaction has been restarted in the past (to avoid starvation).

There is no one choice that is better than others. Many systems use a combination of these factors.

After selecting a victim transaction to abort, the DBMS can also decide on how far to rollback the transac-
tion’s changes. It can either rollback the entire transaction or just enough queries to break the deadlock.
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Approach #2: Deadlock Prevention
Instead of letting transactions try to acquire any lock they need and then deal with deadlocks afterwards,
deadlock prevention 2PL stops transactions from causing deadlocks before they occur. When a transaction
tries to acquire a lock held by another transaction (which could cause a deadlock), the DBMS can kill one
of them. To implement this, transactions are assigned priorities (potentially based on timestamps with older
transactions have higher priority). These schemes guarantee no deadlocks because only one type of direction
is allowed when waiting for a lock. When a transaction restarts, the DBMS reuses the same timestamp.

There are two ways to kill transactions under deadlock prevention:

• Wait-Die (“Old Waits for Young”): If the requesting transaction has a higher priority than the hold-
ing transaction, it waits. Otherwise, it aborts (dies).

• Wound-Wait (“Young Waits for Old”): If the requesting transaction has a higher priority than the
holding transaction, the holding transaction aborts (gets wounded) and releases the lock. Otherwise,
the requesting transaction waits.

To remember these, if the protocol is X-Y, then if the requesting transaction has a higher priority, it will X,
and if the requesting transaction has a lower priority, it will Y.

4 Lock Granularities
If a transaction wants to update one billion tuples, it has to ask the DBMS’s lock manager for a billion locks.
This will be slow because the transaction has to take latches in the lock manager’s internal lock table data
structure as it acquires/releases locks.

Alternatively, if a transaction locks the entire table when it only needs to read one value, there are less
opportunities for parallelism. To handle this trade-off, the DBMS uses a lock hierarchy to simultaneously
handle locks at different granularity levels. For example, it could acquire a single lock on the table with one
billion tuples instead of one billion separate locks.

When a transaction acquires a lock for an object in this hierarchy, it implicitly acquires the locks for all its
children objects, so the one-write lock couldn’t grab any of the tuple locks. However, if no lock is held on
the table, multiple tuple-level locks are allowed on different tuples, allowing parallelism.

Database Lock Hierarchy:

1. Database level (Slightly Rare)
2. Table level (Very Common)
3. Page level (Common)
4. Tuple level (Very Common)
5. Attribute level (Rare)

Importantly, if a transaction is using tuple-level locks, it needs to communicate that no other transaction can
grab a page-level lock (or anything higher) since that would conflict. To facilitate this, intention locks are
implicit locks that signal that there are explicit locks held at lower levels.

• Intention-Shared (IS): Indicates explicit locking at a lower level with shared locks.
• Intention-Exclusive (IX): Indicates explicit locking at a lower level with exclusive or shared locks.
• Shared+Intention-Exclusive (SIX): The sub-tree rooted at that node is locked explicitly in shared

mode, and explicit locking is being done at a lower level with exclusive-mode locks.
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