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1 Timestamp Ordering Concurrency Control
Timestamp ordering (T/O) is an optimistic class of concurrency control protocols where the DBMS assumes
that transaction conflicts are rare. Instead of requiring transactions to acquire locks before they are allowed
to read/write to a database object, the DBMS instead uses timestamps to determine the serializability order
of transactions.

Each transaction Ti is assigned a unique fixed timestamp TS(Ti) that is monotonically increasing. Different
schemes assign timestamps at different times during the transaction. Some advanced schemes even assign
multiple timestamps per transaction.

If TS(Ti) < TS(Tj), then the DBMS must ensure that the execution schedule is equivalent to the serial
schedule where Ti appears before Tj .

There are multiple timestamp allocation implementation strategies. The DBMS can use the system clock as
a timestamp, but issues arise with edge cases like daylight savings. Another option is to use a logical counter.
However, this has issues with overflow and with maintaining the counter across a distributed system with
multiple machines. There are also hybrid approaches that use a combination of both methods.

2 Basic Timestamp Ordering (BASIC T/O)
The basic timestamp ordering protocol (BASIC T/O) allows reads and writes on database objects without
using locks. Instead, every database object X is tagged with timestamp of the last transaction that success-
fully performed a read (denoted as R-TS(X)) or write (denoted as W-TS(X)) on that object. The DBMS
then checks these timestamps for every operation. If a transaction tries to access an object in a way which
violates the timestamp ordering, the transaction is aborted and restarted. The underlying assumption is that
violations will be rare and thus these restarts will also be rare.

Read Operations
For read operations, if TS(Ti) < W-TS(X), this violates timestamp order of Ti with regard to the previous
writer of X (do not want to read something that is written in the “future”). Thus, Ti is aborted and restarted
with a new timestamp. Otherwise, the read is valid and Ti is allowed to read X. The DBMS then updates
R-TS(X) to be the max of R-TS(X) and TS(Ti). It also has to make a local copy of X in a private workspace
to ensure repeatable reads for Ti.

Write Operations
For write operations, if TS(Ti) < R-TS(X) or TS(Ti) < W-TS(X), Ti must be restarted (do not want to
overwrite “future” change). Otherwise, the DBMS allows Ti to write X and updates W-TS(X). Again, it
needs to make a local copy of X to ensure repeatable reads for Ti.
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Optimization: Thomas Write Rule
An optimization for writes is if TS(Ti) < W-TS(X), the DBMS can instead ignore the write and allow the
transaction to continue instead of aborting and restarting it. This is called the Thomas Write Rule. Note that
this violates timestamp order of Ti but this is okay because no other transaction will ever read Ti’s write to
object X. If there are subsequent reads on object X by transaction Ti, it can read its own local copy of X.

The Basic T/O protocol generates a schedule that is conflict serializable if it does not use Thomas Write
Rule. It cannot have deadlocks because no transaction ever waits. However, long running transactions are
more likely to starve as they are more likely to read objects from newer transactions.

It also permits schedules that are not recoverable. A schedule is recoverable if transactions commit only after
all transactions whose changes they read, commit. Otherwise, the DBMS cannot guarantee that transactions
read data that will be restored after recovering from a crash.

Potential Issues:

• Every read of an object requires a timestamp write.
• High overhead from copying data to transaction’s workspace and from updating timestamps.
• Long running transactions can get starved.
• Suffers from the timestamp allocation bottleneck on highly concurrent systems.
• Permits schedules that are not recoverable.

3 Optimistic Concurrency Control (OCC)
Optimistic concurrency control (OCC) is another optimistic concurrency control protocol which also uses
timestamps to validate transactions. OCC works best when the number of conflicts is low. This is when
either all of the transactions are read-only or when transactions access disjoint subsets of data. If the database
is large and the workload is not skewed, then there is a low probability of conflict, making OCC a good
choice.

In OCC, the DBMS creates a private workspace for each transaction. All modifications of the transaction
are applied to this workspace. Any object read is copied into workspace and any object written is copied to
the workspace and modified there. No other transaction can read the changes made by another transaction
in its private workspace.

When a transaction commits, the DBMS compares the transaction’s workspace write set to see whether it
conflicts with other transactions. If there are no conflicts, the write set is installed into the “global” database.

OCC consists of three phases:

1. Read Phase: Here, the DBMS tracks the read/write sets of transactions and stores their writes in a
private workspace.

2. Validation Phase: When a transaction commits, the DBMS checks whether it conflicts with other
transactions.

3. Write Phase: If validation succeeds, the DBMS applies the private workspace’s changes to the
database. Otherwise, it aborts and restarts the transaction.

Validation Phase
The DBMS assigns transactions timestamps when they enter the validation phase. To ensure only serializ-
able schedules are permitted, the DBMS checks Ti against other transactions for RW and WW conflicts and
makes sure that all conflicts go one way.

• Approach 1: Backward validation (from younger transactions to older transactions)
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• Approach 2: Forward validation (from older transactions to younger transactions)

Here we describes how forward validation works. The DBMS checks the timestamp ordering of the com-
mitting transaction with all other running transactions. Transactions that have not yet entered the validation
phase are assigned a timestamp of ∞.

If TS(Ti) < TS(Tj), then one of the following three conditions must hold:

1. Ti completes all three phases before Tj begins its execution (serial ordering).
2. Ti completes before Tj starts its Write phase, and Ti does not write to any object read by Tj .

• WriteSet(Ti) ∩ ReadSet(Tj) = ∅.
3. Ti completes its Read phase before Tj completes its Read phase, and Ti does not write to any object

that is either read or written by Tj .
• WriteSet(Ti) ∩ ReadSet(Tj) = ∅, and WriteSet(Ti) ∩ WriteSet(Tj) = ∅.

Potential Issues:

• High overhead for copying data locally into the transaction’s private workspace.
• Validation/Write phase bottlenecks.
• Aborts are potentially more wasteful than in other protocols because they only occur after a transaction

has already executed.
• Suffers from timestamp allocation bottleneck.

4 Isolation Levels
Serializability is useful because it allows programmers to ignore concurrency issues but enforcing it may
allow too little parallelism and limit performance. We may want to use a weaker level of consistency to
improve scalability.

Isolation levels control the extent that a transaction is exposed to the actions of other concurrent transactions.

Anomalies:

• Dirty Read: Reading uncommitted data.
• Unrepeatable Reads: Redoing a read retrieves a different result.
• Phantom Reads: Insertion or deletions result in different results for the same range scan queries.

Isolation Levels (Strongest to Weakest):

1. SERIALIZABLE: No Phantoms, all reads repeatable, and no dirty reads.
• Possible implementation: Index locks + Strict 2PL.

2. REPEATABLE READS: Phantoms may happen.
• Possible implementation: Strict 2PL.

3. READ-COMMITTED: Phantoms and unrepeatable reads may happen.
• Possible implementation: Strict 2PL for exclusive locks, immediate release of shared locks after

a read.
4. READ-UNCOMMITTED: All anomalies may happen.

• Possible implementation: Strict 2PL for exclusive locks, no shared locks for reads.

The isolation levels defined as part of SQL-92 standard only focused on anomalies that can occur in a
2PL-based DBMS. There are two additional isolation levels:

1. CURSOR STABILITY
• Between repeatable reads and read committed
• Prevents Lost Update Anomaly.
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• Default isolation level in IBM DB2.
2. SNAPSHOT ISOLATION

• Guarantees that all reads made in a transaction see a consistent snapshot of the database that
existed at the time the transaction started.

• A transaction will commit only if its writes do not conflict with any concurrent updates made
since that snapshot.

• Susceptible to write skew anomaly.
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