
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

02 Modern SQL



15-445/645 (Spring 2023)

ADMINISTRIVIA

Project 0 due Sunday. Quick adaptation to C++ is 
a prerequisite for this course!

Homework 1 released today, due Friday Feb 3rd.

2



15-445/645 (Spring 2023)

LAST CLASS

We introduced the Relational Model as the superior 
data model for databases. 

We then showed how Relational Algebra is the 
building blocks that will allow us to query and 
modify a relational database.

2



15-445/645 (Spring 2023)

ASIDE:   OTHER DATA MODELS

Relational
Key/Value
Graph
Document / Object
Wide-Column / Column-family
Array / Matrix / Vectors
Hierarchical
Network
Multi-Value

4

← Leading Alternative



15-445/645 (Spring 2023)

ASIDE:   DOCUMENT DATA MODEL

Embed data hierarchy into a single object.

5

Artist

ArtistAlbum

R1(id,…)

⨝

⨝

{
"name": "GZA",
"year": 1990,
"albums": [
{
"name": "Liquid Swords",
"year": 1995

},
{
"name": "Beneath the Surface",
"year": 1999

}
]

}

Album

R2(artist_id,album_id)

R3(id,…)

class Artist {
int id;
String name;
int year;
Album albums[];

}
class Album {

int id;
String name;
int year;

}

Application Code



15-445/645 (Spring 2023)

RELATIONAL MODEL:  QUERIES

The relational model is independent of  any query 
language implementation.

SQL is the de facto standard (many dialects).

6

for line in file.readlines():
record = parse(line)
if record[0] == "GZA":

print(int(record[1]))

SELECT year FROM artists
WHERE name = 'GZA';



15-445/645 (Spring 2023)

SQL HISTORY

In 1971, IBM created its first relational query 
language called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM 
System R prototype DBMS.
→ Structured English Query Language

IBM releases commercial SQL-based DBMSs:
→ System/38 (1979), SQL/DS (1981), and DB2 (1983).

7

https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R
https://en.wikipedia.org/wiki/IBM_System_R


15-445/645 (Spring 2023)

SQL HISTORY

ANSI Standard in 1986. ISO in 1987
→ Structured Query Language

Current standard is SQL:2016
→ SQL:2016 → JSON, Polymorphic tables
→ SQL:2011 → Temporal DBs, Pipelined DML 
→ SQL:2008 → Truncation, Fancy Sorting
→ SQL:2003 → XML, Windows, Sequences, Auto-Gen IDs.
→ SQL:1999 → Regex, Triggers, OO

The minimum language syntax a system needs to say 
that it supports SQL is SQL-92.

8

https://db.cs.cmu.edu/files/sql/sql1992.txt


15-445/645 (Spring 2023)

RELATIONAL LANGUAGES

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)

Also includes:
→ View definition
→ Integrity & Referential Constraints
→ Transactions

Important: SQL is based on multisets (a.k.a. bags, 
with duplicates), not sets (no duplicates).

9



15-445/645 (Spring 2023)

TODAY'S AGENDA

Aggregations + Group By
String / Date / Time Operations
Output Control + Redirection
Nested Queries
Window Functions
Common Table Expressions

10



15-445/645 (Spring 2023)

EXAMPLE DATABASE

11

student(sid,name,login,gpa) enrolled(sid,cid,grade)

course(cid,name)

sid name login age gpa
53666 Kanye kanye@cs 44 4.0
53688 Bieber jbieber@cs 27 3.9
53655 Tupac shakur@cs 25 3.5

sid cid grade
53666 15-445 C
53688 15-721 A
53688 15-826 B
53655 15-445 B
53666 15-721 C

cid name
15-445 Database Systems
15-721 Advanced Database Systems
15-826 Data Mining
15-799 Special Topics in Databases



15-445/645 (Spring 2023)

AGGREGATES

Functions that return a single value from a bag of  
tuples:
→ AVG(col)→ Return the average col value.
→ MIN(col)→ Return minimum col value.
→ MAX(col)→ Return maximum col value.
→ SUM(col)→ Return sum of  values in col.
→ COUNT(col)→ Return # of  values for col.

12



15-445/645 (Spring 2023)

AGGREGATES

Aggregate functions can (almost) only be used in 
the SELECT output list.

Get # of  students with a “@cs” login:

13

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'SELECT COUNT(*) AS cnt

FROM student WHERE login LIKE '%@cs'SELECT COUNT(1) AS cnt
FROM student WHERE login LIKE '%@cs'SELECT COUNT(1+1+1) AS cnt

FROM student WHERE login LIKE '%@cs'



15-445/645 (Spring 2023)

MULTIPLE AGGREGATES

Get the number of  students and their average GPA that 
have a “@cs” login.

14

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs'

AVG(gpa) COUNT(sid)

3.8 3



15-445/645 (Spring 2023)

DISTINCT AGGREGATES

COUNT, SUM, AVG support DISTINCT

Get the number of  unique students that have an “@cs” 
login.

15

SELECT COUNT(DISTINCT login)
FROM student WHERE login LIKE '%@cs'

COUNT(DISTINCT login)

3



15-445/645 (Spring 2023)

AGGREGATES

Output of  other columns outside of  an aggregate 
is undefined.

Get the average GPA of  students enrolled in each course.

16

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s

ON e.sid = s.sid

AVG(s.gpa) e.cid

3.86 ???



15-445/645 (Spring 2023)

GROUP BY

Project tuples into subsets and 
calculate aggregates against
each subset.

17

AVG(s.gpa) e.cid
2.46 15-721
3.39 15-826
1.89 15-445

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s

ON e.sid = s.sid
GROUP BY e.cid

e.sid s.sid s.gpa e.cid
53435 53435 2.25 15-721
53439 53439 2.70 15-721
56023 56023 2.75 15-826
59439 59439 3.90 15-826
53961 53961 3.50 15-826
58345 58345 1.89 15-445



15-445/645 (Spring 2023)

GROUP BY

Non-aggregated values in SELECT output clause 
must appear in GROUP BY clause.

18

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid
GROUP BY e.cid

SELECT AVG(s.gpa), e.cid, s.name
FROM enrolled AS e JOIN student AS s

ON e.sid = s.sid
GROUP BY e.cid, s.name



15-445/645 (Spring 2023)

HAVING

Filters results based on aggregation computation.
Like a WHERE clause for a GROUP BY

19

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid
AND avg_gpa > 3.9

GROUP BY e.cid

AVG(s.gpa) e.cid
3.75 15-415
3.950000 15-721
3.900000 15-826

avg_gpa e.cid
3.950000 15-721

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid
GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;



15-445/645 (Spring 2023)

STRING OPERATIONS

20

String Case String Quotes
SQL-92 Sensitive Single Only
Postgres Sensitive Single Only
MySQL Insensitive Single/Double
SQLite Sensitive Single/Double
MSSQL Sensitive Single Only
Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('KaNyE')

WHERE name = "KaNyE" MySQL

SQL-92



15-445/645 (Spring 2023)

STRING OPERATIONS

LIKE is used for string matching.
String-matching operators 
→'%' Matches any substring (including 

empty strings).
→'_' Match any one character

21

SELECT * FROM enrolled AS e
WHERE e.cid LIKE '15-%'

SELECT * FROM student AS s
WHERE s.login LIKE '%@c_'



15-445/645 (Spring 2023)

STRING OPERATIONS

SQL-92 defines string functions.
→ Many DBMSs also have their own unique functions
Can be used in either output and predicates:

22

SELECT SUBSTRING(name,1,5) AS abbrv_name
FROM student WHERE sid = 53688

SELECT * FROM student AS s
WHERE UPPER(s.name) LIKE 'KAN%'



15-445/645 (Spring 2023)

STRING OPERATIONS

SQL standard says to use || operator to 
concatenate two or more strings together.

23

SELECT name FROM student
WHERE login = LOWER(name) + '@cs'

MSSQL

SELECT name FROM student
WHERE login = LOWER(name) || '@cs'

SQL-92

SELECT name FROM student
WHERE login = CONCAT(LOWER(name), '@cs')

MySQL



15-445/645 (Spring 2023)

DATE/TIME OPERATIONS

Operations to manipulate and modify DATE/TIME
attributes.
Can be used in both output and predicates.
Support/syntax varies wildly…

24



15-445/645 (Spring 2023)

OUTPUT REDIRECTION

Store query results in another table:
→ Table must not already be defined.
→ Table will have the same # of  columns with the same 

types as the input.

25

CREATE TABLE CourseIds (
SELECT DISTINCT cid FROM enrolled);

MySQL

SELECT DISTINCT cid INTO CourseIds
FROM enrolled;

SQL-92

SELECT DISTINCT cid
INTO TEMPORARY CourseIds
FROM enrolled;

Postgres



15-445/645 (Spring 2023)

OUTPUT REDIRECTION

Insert tuples from query into another table:
→ Inner SELECT must generate the same columns as the 

target table.
→ DBMSs have different options/syntax on what to do with 

integrity violations (e.g., invalid duplicates).

26

INSERT INTO CourseIds
(SELECT DISTINCT cid FROM enrolled);

SQL-92



15-445/645 (Spring 2023)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]
→ Order the output tuples by the values in one or more of  

their columns.

27

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY grade

SELECT sid FROM enrolled
WHERE cid = '15-721'
ORDER BY grade DESC, sid ASC

sid grade

53123 A
53334 A
53650 B
53666 D

sid

53666
53650
53123
53334

SELECT sid, grade FROM enrolled
WHERE cid = '15-721'
ORDER BY 1

SELECT sid FROM enrolled
WHERE cid = '15-721'
ORDER BY grade DESC, 1 ASC



15-445/645 (Spring 2023)

OUTPUT CONTROL

LIMIT <count> [offset]
→ Limit the # of  tuples returned in output.
→ Can set an offset to return a “range”

28

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 10

SELECT sid, name FROM student
WHERE login LIKE '%@cs'
LIMIT 10 OFFSET 20

SELECT TOP 10 sid, name FROM student
WHERE login LIKE '%@cs'

MSSQL



15-445/645 (Spring 2023)

NESTED QUERIES

Queries containing other queries.
They are often difficult to optimize. 

Inner queries can appear (almost) anywhere in 
query.

29

SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

Outer Query
Inner Query



15-445/645 (Spring 2023)

NESTED QUERIES

Get the names of  students in '15-445'

30

SELECT name FROM student
WHERE ...

sid in the set of people that take 15-445

SELECT name FROM student
WHERE ...

SELECT sid FROM enrolled
WHERE cid = '15-445'

SELECT name FROM student
WHERE sid IN (

SELECT sid FROM enrolled
WHERE cid = '15-445'

)



15-445/645 (Spring 2023)

NESTED QUERIES

ALL→ Must satisfy expression for all rows in the 
sub-query.

ANY→ Must satisfy expression for at least one row 
in the sub-query.

IN→ Equivalent to '=ANY()' .

EXISTS→ At least one row is returned without 
comparing it to an attribute in outer query.

31



15-445/645 (Spring 2023)

NESTED QUERIES

Get the names of  students in '15-445'

32

SELECT name FROM student
WHERE sid = ANY(

SELECT sid FROM enrolled
WHERE cid = '15-445'

)



15-445/645 (Spring 2023)

NESTED QUERIES

Find student record with the highest id that is enrolled in at 
least one course.

This won't work in SQL-92. It runs in SQLite, but 
not Postgres or MySQL (v8 with strict mode).

33

SELECT MAX(e.sid), s.name
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid;



15-445/645 (Spring 2023)

NESTED QUERIES

Find student record with the highest id that is enrolled in at 
least one course.

34

SELECT sid, name FROM student
WHERE ...

"Is the highest enrolled sid"

SELECT sid, name FROM student
WHERE sid

SELECT MAX(sid) FROM enrolled
is the

SELECT sid, name FROM student
WHERE sid IN (

SELECT MAX(sid) FROM enrolled
)

sid name
53688 BieberSELECT sid, name FROM student

WHERE sid IN (
SELECT sid FROM enrolled
ORDER BY sid DESC LIMIT 1

)

SELECT student.sid, name
FROM student
JOIN (SELECT MAX(sid) AS sid

FROM enrolled) AS max_e
ON student.sid = max_e.sid;



15-445/645 (Spring 2023)

NESTED QUERIES

Find all courses that have no students enrolled in it.

35

SELECT * FROM course
WHERE ...

“with no tuples in the enrolled table”
sid cid grade

53666 15-445 C
53688 15-721 A
53688 15-826 B
53655 15-445 B
53666 15-721 C

cid name

15-445 Database Systems
15-721 Advanced Database Systems
15-826 Data Mining
15-799 Special Topics in Databases

SELECT * FROM course
WHERE NOT EXISTS(

)
tuples in the enrolled table

SELECT * FROM course
WHERE NOT EXISTS(

SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

)

cid name
15-799 Special Topics in Databases



15-445/645 (Spring 2023)

WINDOW FUNCTIONS

Performs a "sliding" calculation across a set of  
tuples that are related.
Like an aggregation but tuples are not grouped 
into a single output tuples.

36

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableName

Aggregation Functions
Special Functions

How to “slice” up data
Can also sort



15-445/645 (Spring 2023)

WINDOW FUNCTIONS

Aggregation functions:
→ Anything that we discussed earlier
Special window functions:
→ ROW_NUMBER()→ # of  the current row
→ RANK()→ Order position of  the current 

row.

37

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

sid cid grade row_num
53666 15-445 C 1
53688 15-721 A 2
53688 15-826 B 3
53655 15-445 B 4
53666 15-721 C 5



15-445/645 (Spring 2023)

WINDOW FUNCTIONS

The OVER keyword specifies how to 
group together tuples when 
computing the window function.
Use PARTITION BY to specify group.

38

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)

FROM enrolled
ORDER BY cid

cid sid row_number
15-445 53666 1
15-445 53655 2
15-721 53688 1
15-721 53666 2
15-826 53688 1



15-445/645 (Spring 2023)

WINDOW FUNCTIONS

You can also include an ORDER BY in the window 
grouping to sort entries in each group.

39

SELECT *,
ROW_NUMBER() OVER (ORDER BY cid)

FROM enrolled
ORDER BY cid



15-445/645 (Spring 2023)

WINDOW FUNCTIONS

Find the student(s) with the second highest grade for each 
course.

40

SELECT * FROM (
SELECT *, RANK() OVER (PARTITION BY cid

ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking

WHERE ranking.rank = 2

Group tuples by cid
Then sort by grade



15-445/645 (Spring 2023)

COMMON TABLE EXPRESSIONS

Provides a way to write auxiliary statements for use 
in a larger query.
→ Think of  it like a temp table just for one query.
Alternative to nested queries and views.

42

WITH cteName AS (
SELECT 1

) 
SELECT * FROM cteName



15-445/645 (Spring 2023)

COMMON TABLE EXPRESSIONS

You can bind/alias output columns to names 
before the AS keyword.

43

WITH cteName (col1, col2) AS (
SELECT 1, 2

) 
SELECT col1 + col2 FROM cteName

WITH cteName (colXXX, colXXX) AS (
SELECT 1, 2

) 
SELECT colXXX + colXXX FROM cteName

WITH cteName (colXXX, colXXX) AS (
SELECT 1, 2

) 
SELECT * FROM cteName



15-445/645 (Spring 2023)

COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled in at 
least one course.

44

WITH cteSource (maxId) AS (
SELECT MAX(sid) FROM enrolled

) 
SELECT name FROM student, cteSource
WHERE student.sid = cteSource.maxId



15-445/645 (Spring 2023)

CTE – RECURSION

Print the sequence of  numbers from 1 to 10.

Demo: CTEs!

45

WITH RECURSIVE cteSource (counter) AS (
(SELECT 1)
UNION ALL
(SELECT counter + 1 FROM cteSource

WHERE counter < 10)
) 
SELECT * FROM cteSource



15-445/645 (Spring 2023)

CONCLUSION

SQL is not a dead language.

You should (almost) always strive to compute your 
answer as a single SQL statement.

46



15-445/645 (Spring 2023)

HOMEWORK #1

Write SQL queries to perform basic data analysis.
→ Write the queries locally using SQLite.
→ Submit them to Gradescope
→ You can submit multiple times and use your best score.

Due: Friday, Feb 3rd@ 11:59pm

47

https://15445.courses.cs.cmu.edu/spring2023/homework1

https://15445.courses.cs.cmu.edu/spring2023/homework1


15-445/645 (Spring 2023)

NEXT CLASS

Storage Management

48


