
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

03 Database Storage
Part 1

15-445/645 (Spring 2023)

ADMINISTRIVIA

Project 0 due Sunday. Quick adaptation to C++ is
a prerequisite for this course!

Homework 1 available, due Friday Feb 3rd.

Project 1 will be released next Monday, January 30th.

2

15-445/645 (Spring 2023)

LAST CLASS

We now understand what a database looks like at a
logical level and how to write queries to read/write
data (e.g., using SQL).

Unfinished business: Window functions.

3

15-445/645 (Spring 2023)

WINDOW FUNCTIONS

Performs a "sliding" calculation across a set of
tuples that are related.
Like an aggregation but tuples are not grouped
into a single output tuples.

4

SELECT ... FUNC-NAME(...) OVER (...)
FROM tableName

Aggregation Functions
Special Functions

How to “slice” up data
Can also sort

15-445/645 (Spring 2023)

WINDOW FUNCTIONS

Aggregation functions:
→ Anything that we discussed earlier
Special window functions:
→ ROW_NUMBER()→ # of the current row
→ RANK()→ Order position of the current

row.

5

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

sid cid grade row_num
53666 15-445 C 1
53688 15-721 A 2
53688 15-826 B 3
53655 15-445 B 4
53666 15-721 C 5

15-445/645 (Spring 2023)

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function.
There are many ways to define a
window, e.g., PARTITION BY to
specify a group.

6

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)

FROM enrolled
ORDER BY cid

cid sid row_number
15-445 53666 1
15-445 53655 2
15-721 53688 1
15-721 53666 2
15-826 53688 1

15-445/645 (Spring 2023)

WINDOW FUNCTIONS

You can also include an ORDER BY in the window
grouping to sort entries in each group.

7

SELECT *,
ROW_NUMBER() OVER (ORDER BY cid)

FROM enrolled
ORDER BY cid

15-445/645 (Spring 2023)

WINDOW FUNCTIONS

Find the student(s) with the second highest grade for each
course.

8

SELECT * FROM (
SELECT *, RANK() OVER (PARTITION BY cid

ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking

WHERE ranking.rank = 2

Group tuples by cid
Then sort by grade

15-445/645 (Spring 2023)

LAST CLASS

We now understand what a database looks like at a
logical level and how to write queries to read/write
data (e.g., using SQL).

Unfinished business: Window functions

We will next learn how to build software that
manages a database (i.e., a DBMS).

10

15-445/645 (Spring 2023)

COURSE OUTLINE

Relational Databases
Storage
Execution
Concurrency Control
Recovery
Distributed Databases
Potpourri

11

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

15-445/645 (Spring 2023)

DISK-BASED ARCHITECTURE

The DBMS assumes that the primary storage
location of the database is on non-volatile disk.

The DBMS's components manage the movement
of data between non-volatile and volatile storage.

12

15-445/645 (Spring 2023)

STORAGE HIERARCHY

13

Memory

Disk

CPU
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller
Expensive

Slower
Larger
Cheaper

Volatile
Random Access

Byte-Addressable

Non-Volatile
Sequential Access
Block-Addressable

Persistent Memory

Fast Network Storage

15-445/645 (Spring 2023)

ACCESS TIMES

14

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000 ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

Latency Numbers Every Programmer Should Know

Source: Colin Scott

https://colin-scott.github.io/personal_website/research/interactive_latency.html

15-445/645 (Spring 2023)

SEQUENTIAL VS. RANDOM ACCESS

Random access on non-volatile storage is almost
always much slower than sequential access.

DBMS will want to maximize sequential access.
→ Algorithms try to reduce number of writes to random

pages so that data is stored in contiguous blocks.
→ Allocating multiple pages at the same time is called an

extent.

15

15-445/645 (Spring 2023)

SYSTEM DESIGN GOALS

Allow the DBMS to manage databases that exceed
the amount of memory available.

Reading/writing to disk is expensive, so it must be
managed carefully to avoid large stalls and
performance degradation.

Random access on disk is usually much slower than
sequential access, so the DBMS will want to
maximize sequential access.

16

15-445/645 (Spring 2023)

DISK-ORIENTED DBMS

17

Disk

Memory

D
at

ab
as

e
Fi

le

1
HeaderDirectory

2
Header

3
Header

… Pages

Bu
ff

er
 P

oo
l

2
Header

4
Header

5
Header

Get page #2

Directory

Interpret the layout of
page #2…Pointer to page #2

Lectures #3-5

Lecture #6

Lectures #12-13

Execution
Engine

15-445/645 (Spring 2023)

WHY NOT USE THE OS?

The DBMS can use memory mapping
(mmap) to store the contents of a file
into the address space of a program.

The OS is responsible for moving the
pages of the file in and out of
memory, so the DBMS doesn’t need
to worry about it.

18

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

page1

page3???
page1

page3

15-445/645 (Spring 2023)

MEMORY MAPPED I/O PROBLEMS

Problem #1: Transaction Safety
→ OS can flush dirty pages at any time.
Problem #2: I/O Stalls
→ DBMS doesn't know which pages are in memory. The OS

will stall a thread on page fault.
Problem #3: Error Handling
→ Difficult to validate pages. Any access can cause a SIGBUS

that the DBMS must handle.
Problem #4: Performance Issues
→ OS data structure contention. TLB shootdowns.

20

15-445/645 (Spring 2023)

WHY NOT USE THE OS?

There are some solutions to some of
these problems:
→ madvise: Tell the OS how you expect to

read certain pages.
→ mlock: Tell the OS that memory ranges

cannot be paged out.
→ msync: Tell the OS to flush memory

ranges out to disk.

21

Full Usage

Partial Usage

15-445/645 (Spring 2023)

WHY NOT USE THE OS?

DBMS (almost) always wants to control things
itself and can do a better job than the OS.
→ Flushing dirty pages to disk in the correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

The OS is not your friend.

22

15-445/645 (Spring 2023)

DATABASE STORAGE

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its
memory and moves data back-and-forth from disk.

23

← Today

15-445/645 (Spring 2023)

TODAY'S AGENDA

File Storage
Page Layout
Tuple Layout

24

15-445/645 (Spring 2023)

FILE STORAGE

The DBMS stores a database as one or more files
on disk typically in a proprietary format.
→ The OS doesn't know anything about the contents of

these files.

Early systems in the 1980s used custom filesystems
on raw storage.
→ Some DBMSs still support this.
→ Most newer DBMSs do not do this.

25

15-445/645 (Spring 2023)

STORAGE MANAGER

The storage manager is responsible for maintaining
a database's files.
→ Some do their own scheduling for reads and writes to

improve spatial and temporal locality of pages.

It organizes the files as a collection of pages.
→ Tracks data read/written to pages.
→ Tracks the available space.

26

15-445/645 (Spring 2023)

DATABASE PAGES

A page is a fixed-size block of data.
→ It can contain tuples, meta-data, indexes, log records…
→ Most systems do not mix page types.
→ Some systems require a page to be self-contained.

Each page is given a unique identifier.
→ The DBMS uses an indirection layer to map page IDs to

physical locations.

27

15-445/645 (Spring 2023)

DATABASE PAGES

There are three different notions of
"pages" in a DBMS:
→ Hardware Page (usually 4KB)
→ OS Page (usually 4KB)
→ Database Page (512B-16KB)

A hardware page is the largest block
of data that the storage device can
guarantee failsafe writes.

28

16KB

8KB

4KB

15-445/645 (Spring 2023)

PAGE STORAGE ARCHITECTURE

Different DBMSs manage pages in files on disk in
different ways.
→ Heap File Organization
→ Tree File Organization
→ Sequential / Sorted File Organization (ISAM)
→ Hashing File Organization

At this point in the hierarchy we don't need to
know anything about what is inside of the pages.

29

15-445/645 (Spring 2023)

HEAP FILE

A heap file is an unordered collection of pages
with tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

It is easy to find pages if there is only a single file.
Need meta-data to keep track of what pages exist
in multiple files and which ones have free space.

30

D
at

ab
as

e
Fi

le

Page0 Page1 Page2 Page3 Page4

…

Offset = Page# × PageSize

Get Page #2

15-445/645 (Spring 2023)

HEAP FILE: PAGE DIRECTORY

The DBMS maintains special pages
that tracks the location of data pages
in the database files.
→ Must make sure that the directory pages

are in sync with the data pages.

The directory also records meta-data
about available space:
→ The number of free slots per page.
→ List of free / empty pages.

31

Directory
…

Page0

Data

Page1

Data

Page100

Data

…

15-445/645 (Spring 2023)

TODAY'S AGENDA

File Storage
Page Layout
Tuple Layout

33

15-445/645 (Spring 2023)

PAGE HEADER

Every page contains a header of meta-
data about the page's contents.
→ Page Size
→ Checksum
→ DBMS Version
→ Transaction Visibility
→ Compression Information

Some systems require pages to be self-
contained (e.g., Oracle).

34

Data

Page
Header

15-445/645 (Spring 2023)

PAGE LAYOUT

For any page storage architecture, we now need to
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples.

Two approaches:
→ Tuple-oriented
→ Log-structured

35

← Next Class

15-445/645 (Spring 2023)

TUPLE STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-length

attribute?

36

Page
Num Tuples = 0

Tuple #1

Tuple #2

Tuple #3

Tuple #4

Num Tuples = 3Num Tuples = 2

15-445/645 (Spring 2023)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

37

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array

15-445/645 (Spring 2023)

RECORD IDS

The DBMS needs a way to keep track
of individual tuples.
Each tuple is assigned a unique record
identifier.
→ Most common: page_id + offset/slot
→ Can also contain file location info.

An application cannot rely on these
IDs to mean anything.

38

CTID (6-bytes)

ROWID (10-bytes)

ROWID (8-bytes)

15-445/645 (Spring 2023)

TODAY'S AGENDA

File Storage
Page Layout
Tuple Layout

39

15-445/645 (Spring 2023)

TUPLE LAYOUT

A tuple is essentially a sequence of bytes.

It's the job of the DBMS to interpret those bytes
into attribute types and values.

40

15-445/645 (Spring 2023)

Tuple

TUPLE HEADER

Each tuple is prefixed with a header
that contains meta-data about it.
→ Visibility info (concurrency control)
→ Bit Map for NULL values.

We do not need to store meta-data
about the schema.

41

Header Attribute Data

15-445/645 (Spring 2023)

TUPLE DATA

Attributes are typically stored in the
order that you specify them when you
create the table.

This is done for software engineering
reasons (i.e., simplicity).

However, it might be more efficient to
lay them out differently.

42

Tuple
Header a b c d e

CREATE TABLE foo (
a INT PRIMARY KEY,
b INT NOT NULL,
c INT,
d DOUBLE,
e FLOAT

);

15-445/645 (Spring 2023)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre join") related tuples and
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without

calling it physical denormalization.

43

foo
CREATE TABLE foo (

a INT PRIMARY KEY,
b INT NOT NULL,

); CREATE TABLE bar (
c INT PRIMARY KEY,
a INT
�REFERENCES foo (a),

);

c c c …
foo bar

Header c a

Header c a

Header c a

bar

Header a b

15-445/645 (Spring 2023)

CONCLUSION

Database is organized in pages.
Different ways to track pages.
Different ways to store pages.
Different ways to store tuples.

44

15-445/645 (Spring 2023)

NEXT CLASS

Log-Structured Storage
Value Representation
Catalogs

45

