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ADMINISTRIVIA

Project 0 due yesterday.

Homework 1 due this Friday, Feb 3rd.

Project 1 will be released later today.
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DISK-ORIENTED ARCHITECTURE

The DBMS assumes that the primary storage 
location of  the database is on non-volatile disk.

The DBMS's components manage the movement 
of  data between non-volatile and volatile storage.
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PAGE-ORIENTED ARCHITECTURE

Insert a new tuple:
→ Check page directory to find a page with a free slot.
→ Retrieve the page from disk (if  not in memory).
→ Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
→ Check page directory to find location of  page.
→ Retrieve the page from disk (if  not in memory).
→ Find offset in page using slot array.
→ Overwrite existing data (if  new data fits).

4



15-445/645 (Spring 2023)

DISCUSSION

Problems with the slotted page design
→ Fragmentation
→ Useless Disk I/O
→ Random Disk I/O (e.g., update 20 tuples on 20 pages)

What if  the DBMS cannot overwrite data in 
pages and could only create new pages?
→ Examples: Some cloud storage, HDFS
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TODAY'S AGENDA

Log-Structured Storage
Data Representation
System Catalogs
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LOG-STRUCTURED STORAGE

DBMS stores log records that contain 
changes to tuples (PUT, DELETE).
→ Each log record must contain the tuple's 

unique identifier.
→ Put records contain the tuple contents.
→ Deletes marks the tuple as deleted.

As the application makes changes to 
the database, the DBMS appends log 
records to the end of  the file without 
checking previous log records.
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LOG-STRUCTURED STORAGE

When the page gets full, the DBMS 
writes it out disk and starts filling up 
the next page with records.
→ All disk writes are sequential.
→ On-disk pages are immutable.
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…
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LOG-STRUCTURED STORAGE

To read a tuple with a given id, the 
DBMS finds the newest log record 
corresponding to that id.
→ Scan log from newest to oldest.

Maintain an index that maps a tuple id 
to the newest log record.
→ If  log record is in-memory, just read it.
→ If  log record is on a disk page, retrieve it.
→ We will discuss indexes in two weeks.
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LOG-STRUCTURED COMPACTION

The log will grow forever. The DBMS needs to 
periodically compact pages to reduce wasted space.
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LOG-STRUCTURED COMPACTION

After a page is compacted, the DBMS 
does not need to maintain temporal 
ordering of  records within the page.
→ Each tuple id is guaranteed to appear at 

most once in the page.

The DBMS can instead sort the page 
based on id order to improve 
efficiency of  future look-ups.
→ Called Sorted String Tables (SSTables)
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LOG-STRUCTURED COMPACTION

Compaction coalesces larger log files into smaller 
files by removing unnecessary records.
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DISCUSSION

Log-structured storage managers are more 
common today. This is partly due to the 
proliferation of  RocksDB.

What are some downsides of  this approach?
→ Write-Amplification
→ Compaction is Expensive
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TUPLE STORAGE

A tuple is essentially a sequence of  bytes.
It's the job of  the DBMS to interpret those bytes 
into attribute types and values.

The DBMS's catalogs contain the schema 
information about tables that the system uses to 
figure out the tuple's layout.
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DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++
FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals
VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes.
→ Need to worry about collations / sorting.
TIME/DATE/TIMESTAMP
→ 32/64-bit integer of  (micro)seconds since Unix epoch
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VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses 
the "native" C/C++ types.
→ Examples: FLOAT, REAL/DOUBLE

Store directly as specified by IEEE-754.

Typically faster than arbitrary precision numbers 
but can have rounding errors…
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VARIABLE PRECISION NUMBERS

17

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", x+y);
printf("0.3 = %f\n", 0.3);

}

Rounding Example
x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %.20f\n", x+y);
printf("0.3 = %.20f\n", 0.3);

}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890
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FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary 
precision and scale. Used when rounding errors are 
unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary 

representation with additional meta-data.
→ Can be less expensive if  you give up arbitrary precision.
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POSTGRES:  NUMERIC
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typedef unsigned char NumericDigit;
typedef struct {

int ndigits;
int weight;
int scale;
int sign;
NumericDigit *digits;

} numeric;

# of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage
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MYSQL:  NUMERIC
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typedef int32 decimal_digit_t;
struct decimal_t {

int intg, frac, len;
bool sign;
decimal_digit_t *buf;

};

# of Digits Before Point

# of Digits After Point 

Length (Bytes)

Positive/Negative

Digit Storage
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LARGE VALUES

Most DBMSs don't allow a tuple to 
exceed the size of  a single page.

To store values that are larger than a 
page, the DBMS uses separate 
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of  page)
→ SQL Server: Overflow (>size of  page)
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EXTERNAL VALUE STORAGE

Some systems allow you to store a 
really large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the 
contents of  an external file.
→ No durability protections.
→ No transaction protections.
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SYSTEM CATALOGS

A DBMS stores meta-data about databases in its 
internal catalogs.
→ Tables, columns, indexes, views
→ Users, permissions
→ Internal statistics

Almost every DBMS stores the database's catalog 
inside itself  (i.e., as tables).
→ Wrap object abstraction around tuples.
→ Specialized code for "bootstrapping" catalog tables.
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SYSTEM CATALOGS

You can query the DBMS’s internal 
INFORMATION_SCHEMA catalog to get info about 
the database.
→ ANSI standard set of  read-only views that provide info 

about all the tables, views, columns, and procedures in a 
database

DBMSs also have non-standard shortcuts to 
retrieve this information.
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ACCESSING TABLE SCHEMA

List all the tables in the current database:
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SELECT *
FROM INFORMATION_SCHEMA.TABLES

WHERE table_catalog = '<db name>';

SQL-92

\d; Postgres

SHOW TABLES; MySQL

.tables SQLite
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ACCESSING TABLE SCHEMA

List all the tables in the student table:

26

SELECT *
FROM INFORMATION_SCHEMA.TABLES

WHERE table_name = 'student'

SQL-92

\d student; Postgres

DESCRIBE student; MySQL

.schema student SQLite
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CONCLUSION

Log-structured storage is an alternative approach 
to the page-oriented architecture we discussed last 
class.

The storage manager is not entirely independent 
from the rest of  the DBMS.
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