{ r’_ .lo\,
Ja

&= Intro to Database Systems (15-445/645)

0 4 Database Storage

Part 2

lie
Garrod




ADMINISTRIVIA

Project 0 due yesterday.
Homework 1 due this Friday, Feb 3.

Project 1 will be released later today.

$ZCMU-DB

15-445/645 (Spring 2023)



DISK-ORIENTED ARCHITECTURE

The DBMS assumes that the primary storage
location of the database 1s on non-volatile disk.

The DBMS's components manage the movement
of data between non-volatile and volatile storage.

$ZCMU-DB

15-445/645 (Spring 2023)



PAGE-ORIENTED ARCHITECTURE

Insert a new tuple:

— Check page directory to find a page with a free slot.

— Retrieve the page from disk (if not in memory).

— Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
— Check page directory to find location of page.

— Retrieve the page from disk (if not in memory).

— Find offset in page using slot array.

— Overwrite existing data (if new data fits).

$ZCMU-DB

15-445/645 (Spring 2023)



DISCUSSION

Problems with the slotted page design

— Fragmentation

— Useless Disk I/0
— Random Disk I/O (e.g., update 20 tuples on 20 pages)

What if the DBMS cannot overwrite data in

pages and could only create new pages?
— Examples: Some cloud storage, HDFS

$ZCMU-DB

15-445/645 (Spring 2023)



TODAY'S AGENDA

Log-Structured Storage
Data Representation

System Catalogs

$ZCMU-DB

15-445/645 (Spring 2023)



LOG-STRUCTURED STORAGE
@n-Memory Page

PUT #103 {val=a;}
PUT #104 {val=b,}
DEL #102

DBMS stores log records that contain
changes to tuples (PUT, DELETE).

— Each log record must contain the tuple's
unique identifier.

— Put records contain the tuple contents.

— Deletes marks the tuple as deleted.

PUT #103 {val=a,}
PUT #105 {val=c,}

PUT #103 {val=a,}

Oldest-> Newest

As the application makes changes to
the database, the DBMS appends log
records to the end of the file without

checking previous log records.
S2CMU-DB

15-445/645 (Spring 2023)




LOG-STRUCTURED STORAGE

@n-Memory Page
When the page gets full, the DBMS
writes it out disk and starts filling up

the next page with records.
— All disk writes are sequential.
— On-disk pages are immutable.

PUT #104 {val=b,}
PUT #105 {val=c,}
PUT #102 {val=d,}

EL #101
EL #102
PUT #105 {val=c,}

Oldest-> Newest

HMEEE-

15-445/645 (Spring 2023)



LOG-STRUCTURED STORAGE
Get Id #102 BIn-Memory Page

PUT #104 {val=b,}
PUT #105 {val=c,}
PUT #102 {val=d;}

To read a tuple with a given id, the
DBMS finds the newest log record

corresponding to that id.
— Scan log from newest to oldest.

id=#101

id=#102

DEL #1071
DEL #102

\PUT #105 {val=c;}

id=#103

Maintain an index that maps a tuple id \
to the newest log record.
— If log record is in-memory, just read it. id=#105

— If log record is on a disk page, retrieve it.
— We will discuss indexes in two weeks.

id=#104

£2CMU-DB

15-445/645 (Spring 2023)




10

LOG-STRUCTURED COMPACTION

The log will grow forever. The DBMS needs to
periodically compact pages to reduce wasted space.

Page 1

PUT #103 {val=a,}
PUT #104 {val=b,}

DEL #102

PUT #103 {val=a,}
PUT #105 {val=c,}
PUT #103 {val=a,}

£2CMU-DB

15-445/645 (Spring 2023)

Page 2

PUT #104 {val=b,}
PUT #105 {val=c,}
PUT #102 {val=d,} UT #105 {val=cs}

PUT #103 {val=a;3}
PUT #104 {val=b,}

DEL #1071 DEL #101
DEL #102 DEL #102

PUT #105 {val=c



LOG-STRUCTURED COMPACTION
@Disk Page

DEL #101
DEL #102

PUT #103 {val=as}

After a page is compacted, the DBMS
does not need to maintain temporal

ordering of records within the page.
— Hach tuple id is guaranteed to appear at
most once in the page.

PUT #104 {val=b,}
PUT #105 {val=c3}

Tuple Id Order

The DBMS can instead sort the page
based on 1d order to improve

efficiency of future look-ups.
— Called Sorted String Tables (SSTables)

£2CMU-DB

15-445/645 (Spring 2023)

11



LOG-STRUCTURED COMPACTION

Compaction coalesces larger log files into smaller
files by removing unnecessary records.

Universal Compaction Level Compaction

Sorted S.t .d S.-t .d Sorted L I O Sorted Sorted
Log File § Los . ile  Los .ile f Log File eve Log File j§ Log File
\ l

|
S.-t d . Sorted
Sorted L . File Log File Level 1 Sorted Log File
\ '

T

|
Sorted Log File SCIRLCL L | 2 Sorted Log File
J Log File eve g

£2CMU-DB

15-445/645 (Spring 2023)

12



$2CMU-DB

15-445/645 (Spring 2023)

DISCUSSION

RocksDB
Log-structured storage managers are motre
common today. This is partly due to the @ levelDB
proliferation of RocksDB. FEEET
L yugabyteDB
What are some downsides of this approach? Y fauna
— Write-Amplification € Dgraph

— Compaction 1s Expensive

CockroachDB

_/,.%f cassandra

13



TUPLE STORAGE

A tuple 1s essentially a sequence of bytes.

It's the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.

$ZCMU-DB

15-445/645 (Spring 2023)



DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT

— Same as in C/C++

FLOAT /REAL vs. NUMERIC/DECIMAL
— IEEE-754 Standard / Fixed-point Decimals

VARCHAR/VARBINARY/TEXT/BLOB

— Header with length, followed by data bytes.
— Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP

— 32/064-bit integer of (micro)seconds since Unix epoch

£2CMU-DB

15-445/645 (Spring 2023)



£2CMU-DB

15-445/645 (Spring 2023)

VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses

the "native" C/C++ types.
— Examples: FLOAT, REAL /DOUBLE

Store directly as specified by IEEE-754.

Typically faster than arbitrary precision numbers
but can have rounding errors...

16


https://en.wikipedia.org/wiki/IEEE-754

VARIABLE PRECISION NUMBERS

Rounding Example Output

#include <stdio.h> X+y = 0.300000
0.3 = 0.300000

im#&nclude <stdio.h>

0.30000001192092895508
0.29999999999999998890

X+
int main(int argc, charx argv[]) { 0 g

float x = 0.1;
float y = 0.2;
) printf("x+y = %.20f\n", x+y);
printf("0.3 = %.20f\n", 0.3);

$2CMU-DB

15-445/645 (Spring 2023)



FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors are

unacceptable.
— Example: NUMERIC, DECIMAL

Many different implementations.

— Example: Store in an exact, variable-length binary
representation with additional meta-data.

— Can be less expensive if you give up arbitrary precision.

£2CMU-DB

15-445/645 (Spring 2023)



H
Weight of
Sca

Positive/Negaf

Digi

£2CMU-DB

15-445/645 (Spring 2023)

1) cocosscooc

* add var() -

*

* Full version of add functionality on variable level (handling signs).
* result might point to one of the operands too without danger.

3 ccooccooconn

A
int

PGTYPESnumeric7add(numeric *varl, numeric *var2, numeric *result)
{

/7&
* Decide on the signs of the two variables what to do
*

if (varl->sign == NUMERIC PoS)
if (var2->sign == NUMERIC POsS)
{

*

* Both are positive result = +(ABS(varl) + ABS(var2))
Y/

if (add_abs(vari, var2, result) 1= g)
return -1;
result->sign = NUMERIC Pos;

else

/*
* varl is positive, var2 is negative Must compare absolute values
/4

iw;tCh (cmpiabs(varl, var2))

case 0:
* ABS(varl) == ABS(var2)
result = ZERoO

*

L
7

Zero_var(result);

result-srscale = Max(var1->rscale, var2->rscale);
resukt->dscale = Max(varl->dscale, var2->dscale);

break;

* ABS(varl) > ABS(var2)
* result = +(ABS(varl) - ABS(var2))
*

*

if (subfabs(varl, var2, result) 1= 0)
return -1;
result->sign = NUMERIC_POS;
break;
case -1

* ABS(varl) < ABS(var2)
* result = -(ABS(var2) - ABS(varl))
*

umericDigit:

19



*from2,

static int do_add(const decimal_t *froml, const decimal_t

decimal_t *to) {
int intgl = ROUND_UP(from1->intg), intg2 = ROUND_UP(from2—>intg),
fracl = ROUND_UP(fr0m1—>frac), frac2 = ROUND_UP(from2->frac),
fraco = std: :max(fracl, frac2), intgo = std::max(intgl, intg2), ervor;
dec1l *bufl, xpuf2, *bufo, *stop, *stopz, X carry;

sanity(to);

/* is there a need for extra word because of carry 2 */

x = intgl > intg2

? from1->buf[@]

» intg2 > intgl ? from2->buf[0]
if (unlikely(x > DIG_MAX - 1)) /* yes, there is */
{

intgo++;
to->buf[0] = @} /* safety */

}

# of

: fromi->buf[@] + from2->buf[@];

FIX_INTG_FRAC_ERROR(to->len, intge, frac@, error);
if (unlikely(error == E_DEC_OVERFLOW)) {
max_decimal(to->len * DIG_PER_DECI, 0, to);

return error;

bufo = to->buf + intgd + fracO;

to->sign = froml->sign;
to->frac = std::max(from1—>frac, from2->frac);
. ..~ % nTe DFR DEC1;

£2CMU-DB

15-445/645 (Spring 2023)




LARGE VALUES

Most DBMSs don't allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)

— MySQL: Overflow (>"2 size of page)
— SQL Server: Overflow (>size of page)

£2CMU-DB

15-445/645 (Spring 2023)

21

Tuple
Header | a | b | ¢ d
Overflow Page

VARCHAR DATA




EXTERNAL VALUE

Some systems allow you to store a
really large value in an external file.
Treated as a BLOB type.

— Oracle: BFILE data type
— Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.

— No durability protections.
— No transaction protections.

$ZCMU-DB

15-445/645 (Spring 2023)

22

To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem?

Russell Sears”, Catharine van Ingen', Jim Gray'
1 Microsoft Research, 2: University of California g, Berkeley

sears@cs.berkeley.cdu,

icrosoft.com, gray soft.com

MSR-TR-2006-45
April 2006 Revised June 2006

Abstract

Application designers must decide whether to store
large objects (BLOBS) in a filesystem or in a database.
Generally, this decision is based on factors such as
application simplicity or manageability. Often, system
performance affects these factors.

Folklore tells us that databases efficiently handle
large numbers of small objects, while filesystems arc
more efficient for large objects.  Where is the
break-even point? When is accessing a BLOB stored
as a file cheaper than accessing a BLOB stored g a
database record?

Of course, this depends on the particular
filesystem, database system, and workload in question,
This study shows that when comparing the NTFS file
system and SQL Server 2005 database system on a
greate,  ({read, replace}* = delete
workload, BLOBs smaller than 256KB are more
efficiently handled by SQL Server, while NTFS is
more efficient BLOB! larger than IMB. Of course,
this break-even point will vary among  different
database systems, filesystems, and workloads,

By measuring the performance of a storage server
workload typical of web applications which use get/put
Protocols such as WebDAV [WebDAV], we found that
the  break-even point depends on many factors,
However, our experiments suggest that storage age, the
ratio of bytes in deleted or replaced objects to bytes in
live objects, is dominant. As storage age increases,
fragmentation tends to increase. The filesystem we
study has better fragmentation control than  the
database we used, suggesting the database system
would benefit from incorporating ideas from filesystem
architecture. Conversely, filesystem performance may
be improved by using database techniques to handle
small files.

Surprisingly, for these  studies, when average
object size is held constant, the distribution of object
sizes did not significantly affect performance. We also

1. Introduction

Application data objects are getting larger as digital
media becomes  ubiquitous, Furthermore,  the
increasing popularity of web  services and other
network applications means that systems that once
managed static archives of “finished” objects now
manage frequendy modified versions of application
data as it is being created and updated. Rather than
updating these objects, the archive either stores
multiple versions of the objects (the V of WebDAV
stands for “versioning”), or simply does wholesale
replacement (as  in SharePoint ~ Team Services
[SharePoint]).

Application designers have the choice of storing
large objects as files in the filesystem, as BLOBs
(binary large objects) in 4 database, or as a
combination of both, Only folklore is available
regarding the tradeoffs - often the design decision ix
based on which technology the designer knows, best.
Most designers will tell you that a database is probably
best for small binary objects and that that files are best
for large objects. But, what is the break-even, point?
What are the tradeoffs?

This article characterizes the performance of an
abstracted write-intensive web application (hat deals
With relatively large objects. Two  versions. of the
System are compared; one uses a relational database to
store large objects, while the other version stores the
objects as files in the filesystem. We measure how
performance changes over time as the storage becomes
fragmented. The article concludes by describing and
quantifying the factors that a designer should consider
when picking a storage system. It also suggests
filesystem and database improvements for large object
support.

One surprising (to us at least) conclusion of our
work is that storage fragmentation is the main
determinant of the break-even point in the tradeoff.
Therefore, much of our work and much of this article
focuses on storage fragmentation issues. In essence,
filesystems sem to have better fragmentation handling
than databases and this drives the break-even point
down from about IMB to about 256KB.




SYSTEM CATALOGS

A DBMS stores meta-data about databases in its

internal catalogs.

— Tables, columns, indexes, views
— Users, permissions

— Internal statistics

Almost every DBMS stores the database's catalog

inside itself (i.e., as tables).

— Wrap object abstraction around tuples.
— Specialized code for "bootstrapping” catalog tables.

$ZCMU-DB

15-445/645 (Spring 2023)



SYSTEM CATALOGS

You can query the DBMS’s internal

INFORMATION_SCHEMA catalog to get info about

the database.

— ANSI standard set of read-only views that provide info
about all the tables, views, columns, and procedures in a
database

DBMSs also have non-standard shortcuts to
retrieve this information.

£2CMU-DB

15-445/645 (Spring 2023)



ACCESSING TABLE SCHEMA

Lzst all the tables in the current database:

SELECT = SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_catalog = '<db name>';

\d; Postgres
SHOW TABLES; MySQL
.tables SQLite

$ZCMU-DB

15-445/645 (Spring 2023)



ACCESSING TABLE SCHEMA

List all the tables in the student table:

SELECT =* SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name = 'student'

\d student; Postgres

DESCRIBE student; MysQL

.schema student SQlite

$2CMU-DB

15-445/645 (Spring 2023)



$ZCMU-DB

15-445/645 (Spring 2023)

CONCLUSION

Log-structured storage 1s an alternative approach
to the page-oriented architecture we discussed last
class.

The storage manager is not entirely independent
from the rest of the DBMS.

25



