
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

04 Database Storage
Part 2

15-445/645 (Spring 2023)

ADMINISTRIVIA

Project 0 due yesterday.

Homework 1 due this Friday, Feb 3rd.

Project 1 will be released later today.

2

15-445/645 (Spring 2023)

DISK-ORIENTED ARCHITECTURE

The DBMS assumes that the primary storage
location of the database is on non-volatile disk.

The DBMS's components manage the movement
of data between non-volatile and volatile storage.

3

15-445/645 (Spring 2023)

PAGE-ORIENTED ARCHITECTURE

Insert a new tuple:
→ Check page directory to find a page with a free slot.
→ Retrieve the page from disk (if not in memory).
→ Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).
→ Find offset in page using slot array.
→ Overwrite existing data (if new data fits).

4

15-445/645 (Spring 2023)

DISCUSSION

Problems with the slotted page design
→ Fragmentation
→ Useless Disk I/O
→ Random Disk I/O (e.g., update 20 tuples on 20 pages)

What if the DBMS cannot overwrite data in
pages and could only create new pages?
→ Examples: Some cloud storage, HDFS

5

15-445/645 (Spring 2023)

TODAY'S AGENDA

Log-Structured Storage
Data Representation
System Catalogs

6

15-445/645 (Spring 2023)

LOG-STRUCTURED STORAGE

DBMS stores log records that contain
changes to tuples (PUT, DELETE).
→ Each log record must contain the tuple's

unique identifier.
→ Put records contain the tuple contents.
→ Deletes marks the tuple as deleted.

As the application makes changes to
the database, the DBMS appends log
records to the end of the file without
checking previous log records.

7

O
ld

es
t→

N
ew

es
t PUT #103 {val=a1}

PUT #104 {val=b1}

DEL #102

PUT #105 {val=c1}

PUT #103 {val=a3}

PUT #103 {val=a2}

In-Memory Page

15-445/645 (Spring 2023)

LOG-STRUCTURED STORAGE

When the page gets full, the DBMS
writes it out disk and starts filling up
the next page with records.
→ All disk writes are sequential.
→ On-disk pages are immutable.

8

O
ld

es
t→

N
ew

es
t PUT #104 {val=b2}

PUT #105 {val=c2}

PUT #102 {val=d1}

DEL #102

PUT #105 {val=c3}

DEL #101

In-Memory Page

…

15-445/645 (Spring 2023)

…

PUT #104 {val=b2}

PUT #105 {val=c2}

PUT #102 {val=d1}

DEL #102

PUT #105 {val=c3}

DEL #101

LOG-STRUCTURED STORAGE

To read a tuple with a given id, the
DBMS finds the newest log record
corresponding to that id.
→ Scan log from newest to oldest.

Maintain an index that maps a tuple id
to the newest log record.
→ If log record is in-memory, just read it.
→ If log record is on a disk page, retrieve it.
→ We will discuss indexes in two weeks.

9

In-Memory PageGet Id #102

id=#102

id=#103

id=#104

id=#105

id=#101

15-445/645 (Spring 2023)

LOG-STRUCTURED COMPACTION

The log will grow forever. The DBMS needs to
periodically compact pages to reduce wasted space.

10

Page 1 Page 2

+
PUT #103 {val=a3}

PUT #104 {val=b2}

PUT #105 {val=c3}

DEL #101

DEL #102

15-445/645 (Spring 2023)

LOG-STRUCTURED COMPACTION

After a page is compacted, the DBMS
does not need to maintain temporal
ordering of records within the page.
→ Each tuple id is guaranteed to appear at

most once in the page.

The DBMS can instead sort the page
based on id order to improve
efficiency of future look-ups.
→ Called Sorted String Tables (SSTables)

11

PUT #103 {val=a3}

PUT #104 {val=b2}

DEL #102

PUT #105 {val=c3}

DEL #101

O
ld

es
t→

N
ew

es
t

Disk Page

Tu
pl

e
Id

 O
rd

er

DEL #101

DEL #102

PUT #104 {val=b2}

PUT #105 {val=c3}

PUT #103 {val=a3}

15-445/645 (Spring 2023)

LOG-STRUCTURED COMPACTION

Compaction coalesces larger log files into smaller
files by removing unnecessary records.

12

Sorted
Log File

Sorted Log File

Sorted Log File

Level 0

Level 1

Level 2

Sorted
Log File

Sorted Log File

Level CompactionUniversal Compaction
Sorted

Log File
Sorted

Log File
Sorted

Log File
Sorted

Log File

Sorted
Log File Sorted Log File Sorted

Log File

Sorted Log File Sorted
Log File

15-445/645 (Spring 2023)

DISCUSSION

Log-structured storage managers are more
common today. This is partly due to the
proliferation of RocksDB.

What are some downsides of this approach?
→ Write-Amplification
→ Compaction is Expensive

13

15-445/645 (Spring 2023)

TUPLE STORAGE

A tuple is essentially a sequence of bytes.
It's the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.

14

15-445/645 (Spring 2023)

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++
FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals
VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes.
→ Need to worry about collations / sorting.
TIME/DATE/TIMESTAMP
→ 32/64-bit integer of (micro)seconds since Unix epoch

15

15-445/645 (Spring 2023)

VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses
the "native" C/C++ types.
→ Examples: FLOAT, REAL/DOUBLE

Store directly as specified by IEEE-754.

Typically faster than arbitrary precision numbers
but can have rounding errors…

16

https://en.wikipedia.org/wiki/IEEE-754

15-445/645 (Spring 2023)

VARIABLE PRECISION NUMBERS

17

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", x+y);
printf("0.3 = %f\n", 0.3);

}

Rounding Example
x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y = %.20f\n", x+y);
printf("0.3 = %.20f\n", 0.3);

}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890

15-445/645 (Spring 2023)

FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors are
unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary

representation with additional meta-data.
→ Can be less expensive if you give up arbitrary precision.

18

15-445/645 (Spring 2023)

POSTGRES: NUMERIC

19

typedef unsigned char NumericDigit;
typedef struct {

int ndigits;
int weight;
int scale;
int sign;
NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

15-445/645 (Spring 2023)

MYSQL: NUMERIC

20

typedef int32 decimal_digit_t;
struct decimal_t {

int intg, frac, len;
bool sign;
decimal_digit_t *buf;

};

of Digits Before Point

of Digits After Point

Length (Bytes)

Positive/Negative

Digit Storage

15-445/645 (Spring 2023)

LARGE VALUES

Most DBMSs don't allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

21

Overflow Page
VARCHAR DATA

Tuple
Header a b c d e

15-445/645 (Spring 2023)

EXTERNAL VALUE STORAGE

Some systems allow you to store a
really large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.
→ No durability protections.
→ No transaction protections.

22

Data

Header a b c d e

External File

Tuple

15-445/645 (Spring 2023)

SYSTEM CATALOGS

A DBMS stores meta-data about databases in its
internal catalogs.
→ Tables, columns, indexes, views
→ Users, permissions
→ Internal statistics

Almost every DBMS stores the database's catalog
inside itself (i.e., as tables).
→ Wrap object abstraction around tuples.
→ Specialized code for "bootstrapping" catalog tables.

23

15-445/645 (Spring 2023)

SYSTEM CATALOGS

You can query the DBMS’s internal
INFORMATION_SCHEMA catalog to get info about
the database.
→ ANSI standard set of read-only views that provide info

about all the tables, views, columns, and procedures in a
database

DBMSs also have non-standard shortcuts to
retrieve this information.

24

15-445/645 (Spring 2023)

ACCESSING TABLE SCHEMA

List all the tables in the current database:

25

SELECT *
FROM INFORMATION_SCHEMA.TABLES

WHERE table_catalog = '<db name>';

SQL-92

\d; Postgres

SHOW TABLES; MySQL

.tables SQLite

15-445/645 (Spring 2023)

ACCESSING TABLE SCHEMA

List all the tables in the student table:

26

SELECT *
FROM INFORMATION_SCHEMA.TABLES

WHERE table_name = 'student'

SQL-92

\d student; Postgres

DESCRIBE student; MySQL

.schema student SQLite

15-445/645 (Spring 2023)

CONCLUSION

Log-structured storage is an alternative approach
to the page-oriented architecture we discussed last
class.

The storage manager is not entirely independent
from the rest of the DBMS.

29

