
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

05 Storage Models &
Compression

15-445/645 (Spring 2023)

ADMINISTRIVIA

Homework 1 due Friday (Feb 3rd).

Homework 2 available Monday, due February 17th.

Project 1 available, due February 19th.

Don’t forget to turn in the collaboration policy.

2

15-445/645 (Spring 2023)

DATABASE WORKLOADS

On-Line Transaction Processing (OLTP)
→ Fast operations that only read/update a small amount of

data each time.

On-Line Analytical Processing (OLAP)
→ Complex queries that read a lot of data to compute

aggregates.

Hybrid Transaction + Analytical Processing
→ OLTP + OLAP together on the same database instance

3

15-445/645 (Spring 2023)

DATABASE WORKLOADS

Writes Reads
Simple

Complex

Workload Focus

O
pe

ra
tio

n
Co

m
pl

ex
ity

OLTP

OLAP

HTAP

Source: Mike Stonebraker

Jim Gray

http://cacm.acm.org/magazines/2011/6/108651

15-445/645 (Spring 2023)

WIKIPEDIA EXAMPLE

5

CREATE TABLE revisions (
revID INT PRIMARY KEY,
userID INT REFERENCES useracct (userID),
pageID INT REFERENCES pages (pageID),
content TEXT,
updated DATETIME

);

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT
�REFERENCES revisions (revID),

);

CREATE TABLE useracct (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,
⋮

);

15-445/645 (Spring 2023)

OBSERVATION

The relational model does not specify that the
DBMS must store all a tuple's attributes together in
a single page.

This may not actually be the best layout for some
workloads…

6

15-445/645 (Spring 2023)

OLTP

On-line Transaction Processing:
→ Simple queries that read/update a small

amount of data that is related to a single
entity in the database.

This is usually the kind of application
that people build first.

7

UPDATE useracct
SET lastLogin = NOW(),

hostname = ?
WHERE userID = ?

INSERT INTO revisions VALUES
(?,?…,?)

SELECT P.*, R.*
FROM pages AS P

INNER JOIN revisions AS R
ON P.latest = R.revID

WHERE P.pageID = ?

15-445/645 (Spring 2023)

OLAP

On-line Analytical Processing:
→ Complex queries that read large portions

of the database spanning multiple entities.

You execute these workloads on the
data you have collected from your
OLTP application(s).

8

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM

U.lastLogin) AS month
FROM useracct AS U

WHERE U.hostname LIKE '%.gov'
GROUP BY
EXTRACT(month FROM U.lastLogin)

15-445/645 (Spring 2023)

DATA STORAGE MODELS

The DBMS can store tuples in different ways that
are better for either OLTP or OLAP workloads.

We have been assuming the n-ary storage model
(aka "row storage") so far this semester.

9

15-445/645 (Spring 2023)

N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

Ideal for OLTP workloads where queries tend to
operate only on an individual entity and insert-
heavy workloads.

10

15-445/645 (Spring 2023)

N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

11

NSM Disk Page

←Tuple #1

←Tuple #2

←Tuple #3

←Tuple #4

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

Header

Header

Header

Header

15-445/645 (Spring 2023)

N-ARY STORAGE MODEL (NSM)

12

SELECT * FROM useracct
WHERE userName = ?

AND userPass = ? Index
INSERT INTO useracct
VALUES (?,?,…?)

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

Header

Header

Header

Header userID userName userPass lastLoginhostnameHeader

Lecture #8

15-445/645 (Spring 2023)

N-ARY STORAGE MODEL (NSM)

13

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

Header

Header

Header

Header

Useless Data

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month

FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

15-445/645 (Spring 2023)

N-ARY STORAGE MODEL

Advantages
→ Fast inserts, updates, and deletes.
→ Good for queries that need the entire tuple.
Disadvantages
→ Not good for scanning large portions of the table and/or

a subset of the attributes.

14

15-445/645 (Spring 2023)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute
for all tuples contiguously in a page.
→ Also known as a "column store"

Ideal for OLAP workloads where read-only queries
perform large scans over a subset of the table’s
attributes.

15

15-445/645 (Spring 2023)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute
across multiple tuples contiguously in a page.
→ Also known as a "column store".

16

userID

userName

userPass

DSM Disk Page

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

Header

Header

Header

Header

lastLogin

15-445/645 (Spring 2023)

DSM Disk Page

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

DECOMPOSITION STORAGE MODEL (DSM)

17

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month

FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastLogin)

15-445/645 (Spring 2023)

TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.
Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.

18

Offsets

0
1
2
3

A B C D

Embedded Ids
A

0
1
2
3

B

0
1
2
3

C

0
1
2
3

D

0
1
2
3

15-445/645 (Spring 2023)

DECOMPOSITION STORAGE MODEL (DSM)

Advantages
→ Reduces the amount wasted I/O because the DBMS only

reads the data that it needs.
→ Better query processing and data compression (more on

this later).

Disadvantages
→ Slow for point queries, inserts, updates, and deletes

because of tuple splitting/stitching.

19

15-445/645 (Spring 2023)

DSM SYSTEM HISTORY

1970s: Cantor DBMS
1980s: DSM Proposal
1990s: SybaseIQ (in-memory only)
2000s: Vertica, VectorWise, MonetDB
2010s: Everyone

20

http://dl.acm.org/citation.cfm?id=655555

15-445/645 (Spring 2023)

OBSERVATION

I/O is the main bottleneck if the DBMS fetches
data from disk during query execution.

The DBMS can compress pages to increase the
utility of the data moved per I/O operation.

Key trade-off is speed vs. compression ratio
→ Compressing the database reduces DRAM requirements.
→ It may decrease CPU costs during query execution.

21

15-445/645 (Spring 2023)

REAL-WORLD DATA CHARACTERISTICS

Data sets tend to have highly skewed distributions
for attribute values.
→ Example: Zipfian distribution of the Brown Corpus

Data sets tend to have high correlation between
attributes of the same tuple.
→ Example: Zip Code to City, Order Date to Ship Date

22

https://en.wikipedia.org/wiki/Brown_Corpus

15-445/645 (Spring 2023)

DATABASE COMPRESSION

Goal #1: Must produce fixed-length values.
→ Only exception is var-length data stored in separate pool.

Goal #2: Postpone decompression for as long as
possible during query execution.
→ Also known as late materialization.

Goal #3: Must be a lossless scheme.

23

15-445/645 (Spring 2023)

LOSSLESS VS. LOSSY COMPRESSION

When a DBMS uses compression, it is always
lossless because people don't like losing data.

Any kind of lossy compression must be
performed at the application level.

24

15-445/645 (Spring 2023)

COMPRESSION GRANULARITY

Choice #1: Block-level
→ Compress a block of tuples for the same table.
Choice #2: Tuple-level
→ Compress the contents of the entire tuple (NSM-only).
Choice #3: Attribute-level
→ Compress a single attribute within one tuple (overflow).
→ Can target multiple attributes for the same tuple.
Choice #4: Column-level
→ Compress multiple values for one or more attributes

stored for multiple tuples (DSM-only).

25

15-445/645 (Spring 2023)

NAÏVE COMPRESSION

Compress data using a general-purpose algorithm.
Scope of compression is only based on the data
provided as input.
→ LZO (1996), LZ4 (2011), Snappy (2011),

Oracle OZIP (2014), Zstd (2015)

Considerations
→ Computational overhead
→ Compress vs. decompress speed.

26

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard

15-445/645 (Spring 2023)

MYSQL INNODB COMPRESSION

27

16 KB

[1,2,4,8] KB

Source: MySQL 5.7 Documentation

Buffer Pool Disk Pages

Uncompressed
Page0

Compressed Page0

mod log

Compressed Page0

mod log

Compressed Page1

mod log

Compressed Page2

mod log

Updates

https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

15-445/645 (Spring 2023)

NAÏVE COMPRESSION

The DBMS must decompress data first before it
can be read and (potentially) modified.
→ This limits the "scope" of the compression scheme.

These schemes also do not consider the high-level
meaning or semantics of the data.

28

15-445/645 (Spring 2023)

OBSERVATION

Ideally, we want the DBMS to operate on
compressed data without decompressing it first.

29

SELECT * FROM users
WHERE name = 'Andy'

SELECT * FROM users
WHERE name = XX

NAME SALARY
Andy 99999
Matt 88888

NAME SALARY
XX AA
YY BB

Database Magic!

15-445/645 (Spring 2023)

COMPRESSION GRANULARITY

Choice #1: Block-level
→ Compress a block of tuples for the same table.
Choice #2: Tuple-level
→ Compress the contents of the entire tuple (NSM-only).
Choice #3: Attribute-level
→ Compress a single attribute within one tuple (overflow).
→ Can target multiple attributes for the same tuple.
Choice #4: Column-level
→ Compress multiple values for one or more attributes

stored for multiple tuples (DSM-only).

30

15-445/645 (Spring 2023)

COLUMNAR COMPRESSION

Run-length Encoding
Bit-Packing Encoding
Bitmap Encoding
Delta Encoding
Incremental Encoding
Dictionary Encoding

31

15-445/645 (Spring 2023)

RUN-LENGTH ENCODING

Compress runs of the same value in a single
column into triplets:
→ The value of the attribute.
→ The start position in the column segment.
→ The # of elements in the run.

Requires the columns to be sorted intelligently to
maximize compression opportunities.

32

15-445/645 (Spring 2023)

RUN-LENGTH ENCODING

33

Compressed Data

id

2

1

4

3

7

6

9

8

sex

(F,3,1)

(M,0,3)

(F,5,1)

(M,4,1)

(M,6,2)

Original Data

id

2

1

4

3

7

6

9

8

sex

M

M

F

M

F

M

M

M

Sorted Data

id

2

1

6

3

9

8

7

4

sex

M

M

M

M

M

M

F

F

id

2

1

6

3

9

8

7

4

sex

(F,7,2)

(M,0,6)

RLE Triplet
- Value
- Offset
- Length

SELECT sex, COUNT(*)
FROM users

GROUP BY sex

15-445/645 (Spring 2023)

BIT-PACKING ENCODING

When values for an attribute are always less than
the value's declared largest size, store them as
smaller data type.

34

Original Data
int64

4
2

6
45

18

5 × 64-bits =
320 bits

(5 × 8-bits)
= 40 bits

int64

00000000000000000000000000000000
00000000000000000000000000000011

00000000000000000000000000000000
00000000000000000000000000000010

00000000000000000000000000000000
00000000000000000000000000000110

00000000000000000000000000000000
00000000000000000000000000011101

00000000000000000000000000000000
00000000000000000000000000010010

Compressed Data
packed-int8

00000011
00000010

00000110
00011101

00010010

15-445/645 (Spring 2023)

Original Data

5 × 64-bits =
320 bits

MOSTLY ENCODING

Bit-packing variant that uses a special marker to
indicate when a value exceeds largest size and then
maintain a look-up table to store them.

35

Source: Redshift Documentation

int64

4
2

6
99999999

18

Compressed Data
mostly8

4
2

6
XXX

18

offset
3

value
99999999 (5 × 8-bits) +

16-bits + 64-bits
= 120 bits

http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

15-445/645 (Spring 2023)

BITMAP ENCODING

Store a separate bitmap for each unique value for
an attribute where an offset in the vector
corresponds to a tuple.
→ The ith position in the Bitmap corresponds to the ith tuple

in the table.
→ Typically segmented into chunks to avoid allocating large

blocks of contiguous memory.

Only practical if the value cardinality is low.
Some DBMSs provide bitmap indexes.

36

https://dbdb.io/browse?indexes=bitmap

15-445/645 (Spring 2023)

BITMAP ENCODING

37

Compressed DataOriginal Data

id

2

1

4

3

7

6

9

8

sex

M

M

F

M

F

M

M

M

id

2
1

4
3

7
6

9
8

M

1
1

0
1

0
1

1
1

F

0
0

1
0

1
0

0
0

sex

9 × 8-bits =
72 bits

9 × 2-bits =
18 bits

2 × 8-bits =
16 bits

15-445/645 (Spring 2023)

BITMAP ENCODING: EXAMPLE

Assume we have 10 million tuples.
43,000 zip codes in the US.
→ 10000000 × 32-bits = 40 MB
→ 10000000 × 43000 = 53.75 GB

Every time the application inserts a
new tuple, the DBMS must extend
43,000 different bitmaps.

38

CREATE TABLE customer_dim (
id INT PRIMARY KEY,
name VARCHAR(32),
email VARCHAR(64),
address VARCHAR(64),
zip_code INT

);

15-445/645 (Spring 2023)

DELTA ENCODING

Recording the difference between values that
follow each other in the same column.
→ Store base value in-line or in a separate look-up table.
→ Combine with RLE to get even better compression ratios.

39

Original Data
time

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data
time

(+1,4)
12:00

temp

-0.1
99.5

+0.1
+0.1

-0.2

Compressed Data
time

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

32-bits + (4 × 16-bits)
= 96 bits

5 × 32-bits
= 160 bits

32-bits + (2 × 16-bits)
= 64 bits

15-445/645 (Spring 2023)

INCREMENTAL ENCODING

Type of delta encoding that avoids duplicating
common prefixes/suffixes between consecutive
tuples. This works best with sorted data.

40

Original Data

rob
robbed
robbing
robot

Common Prefix

-
rob
robb
rob

Compressed Data

rob
bed
ing
ot

0
3
4
3

Prefix
Length Suffix

3 × 8-bits = 24 bits
6 × 8-bits = 48 bits
7 × 8-bits = 56 bits
5 × 8-bits = 40 bits

= 168 bits

3 × 8-bits = 24 bits
3 × 8-bits = 24 bits
3 × 8-bits = 24 bits
2 × 8-bits = 16 bits

= 88 bits

4 × 8-bits = 32 bits

15-445/645 (Spring 2023)

DICTIONARY COMPRESSION

Build a data structure that maps variable-length
values to a smaller integer identifier.
Replace those values with their corresponding
identifier in the dictionary data structure.
→ Need to support fast encoding and decoding.
→ Need to also support range queries.

Most widely used compression scheme in DBMSs.

41

15-445/645 (Spring 2023)

DICTIONARY COMPRESSION

42

SELECT * FROM users
WHERE name = 'Andy'

Original Data

name
Andrea

Prashanth
Andy
Matt

Compressed Data

SELECT * FROM users
WHERE name = 30

Prashanth

code
10
20
30
40

value
Andrea

Prashanth
Andy
Matt

name
10
20
30
40
20

Dictionary

15-445/645 (Spring 2023)

ENCODING / DECODING

A dictionary needs to support two operations:
→ Encode/Locate: For a given uncompressed value,

convert it into its compressed form.
→ Decode/Extract: For a given compressed value, convert

it back into its original form.

No typical hash function will do this for us.

43

15-445/645 (Spring 2023)

ORDER-PRESERVING ENCODING

The encoded values need to support the same
collation as the original values.

44

SELECT * FROM users
WHERE name LIKE 'And%'

Original Data Compressed Data

SELECT * FROM users
WHERE name BETWEEN 10 AND 20

name
Andrea

Prashanth
Andy
Matt

Prashanth

code
10
20
30
40

value
Andrea
Andy
Matt

Prashanth

name
10
40
20
30
40

Sorted
Dictionary

15-445/645 (Spring 2023)

ORDER-PRESERVING ENCODING

45

SELECT name FROM users
WHERE name LIKE 'And%'

SELECT DISTINCT name
FROM users

WHERE name LIKE 'And%'

Still must perform scan on
column

Only need to access dictionary

???

???

Original Data Compressed Data

name
Andrea

Prashanth
Andy
Matt

Prashanth

code
10
20
30
40

value
Andrea
Andy
Matt

Prashanth

name
10
40
20
30
40

Sorted
Dictionary

15-445/645 (Spring 2023)

CONCLUSION

It is important to choose the right storage model
for the target workload:
→ OLTP = Row Store
→ OLAP = Column Store

DBMSs can combine different approaches for
even better compression.
Dictionary encoding is probably the most useful
scheme because it does not require pre-sorting.

46

15-445/645 (Spring 2023)

DATABASE STORAGE

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its
memory and move data back-and-forth from disk.

47

← Next

