{ r’_ A '\,

&= Intro to Database Systems (15-445/645)

0 5 Storage Models &

Compression

\’\:- Iie g
Garrod ’
/‘ - ‘

ADMINISTRIVIA

Homework 1 due Friday (Feb 3).
Homework 2 available Monday, due February 17,
Project 1 available, due February 19,

Don’t forget to turn in the collaboration policy.

$ZCMU-DB

15-445/645 (Spring 2023)

DATABASE WORKLOADS

On-Line Transaction Processing (OLTDP)
— Fast operations that only read/update a small amount of
data each time.

On-Line Analytical Processing (OLAP)

— Complex queries that read a lot of data to compute
aggregates.

Hybrid Transaction + Analytical Processing
— OLTP + OLAP together on the same database instance

$ZCMU-DB

15-445/645 (Spring 2023)

DATABASE WORKLOADS

Complex

Jim Gray

Simple

Writes Reads

Operation Complexity

Wo rkload Focus Source: Mike Stonebraker

$2CMU-DB

15-445/645 (Spring 2023)

http://cacm.acm.org/magazines/2011/6/108651

WIKIPEDIA EXAMPLE

CREATE TABLE useracct (CREATE TABLE pages (
userID INT PRIMARY KEY, pageID INT PRIMARY KEY,
userName VARCHAR UNIQUE, title VARCHAR UNIQUE,
E latest INT
); —® REFERENCES revisions (revID),
A);

A

CREATE TABLE revisions (

revID INT PRIMARY KEY,

userID INT REFERENCES useracct (userlID),
pageID INT REFERENCES pages (pagelD) ®
content TEXT,

updated DATETIME

£2CMU-DB

15-445/645 (Spring 2023)

OBSERVATION

The relational model does not specify that the
DBMS must store all a tuple's attributes together in
a single page.

This may not actually be the best layout for some
workloads...

$ZCMU-DB

15-445/645 (Spring 2023)

OLTP

On-line Transaction Processing:

— Simple queries that read/update a small
amount of data that 1s related to a single
entity in the database.

This 1s usually the kind of application
that people build first.

$2CMU-DB

15-445/645 (Spring 2023)

SELECT P.*, R.*
FROM pages AS P
INNER JOIN revisions AS R
ON P.latest = R.revID
WHERE P.pagelD = 7
UPDATE useracct
SET lastLogin = NOW(),
hostname = ?
WHERE userID = ?
INSERT INTO revisions VALUES
(?,2..,7)

OLAP

SELECT COUNT(U.lastLogin),

On-line Analytical Processing: EXTRACT (month FROM
— Complex queries that read large portions Y- destlesin) 45 wanth
; : .. FROM useracct AS U
of the database spanning multiple entities. WHERE U.hostname LIKE '%.gov'
GROUP BY

EXTRACT(month FROM U.lastLogin)

You execute these workloads on the

data you have collected from your
OLTP application(s).

$2CMU-DB

15-445/645 (Spring 2023)

$ZCMU-DB

15-445/645 (Spring 2023)

DATA STORAGE MODELS

The DBMS can store tuples in different ways that
are better for either OLTP or OLAP workloads.

We have been assuming the n-ary storage model
(aka "row storage") so far this semester.

10

N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

Ideal for OLTP workloads where queries tend to
operate only on an individual entity and insert-
heavy workloads.

$ZCMU-DB

15-445/645 (Spring 2023)

N-ARY STORAGE MODEL (NSM)

The DBMS stores all attributes for a single tuple
contiguously in a page.

I‘ NSM Disk Page

II Header | userID JuserNamejuserPass|hostname] lastlLogin é-TupIe #1
l4
/4 Header | userID JuserNamefuserPass|hostname| lastlLogin G'TU Ie #2
/ g
N Eeeee Header - - - - = é-TupIe #4
= 1 e \\

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

N-ARY STORAGE MODEL (NSM)

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

INSERT INTO useracct
VALUES (?,7?,..7)

»

Index

,

1 NSM Disk Page
Header | userID juserNamejuserPass|hostname] lastlLogin
Header | userID JuserNamejuserPass]hostname] lastlLogin
Header | userID JuserNamejuserPass|hostname] lastlLogin
Header | userID JuserNamejuserPass|hostname] lastLogin

12

N-ARY STORAGE MODEL (NSM)

SELECT COUNT(U.lastLogin),
EXTRACT (month FROM [U.lastLogin) AS month

FROM useracct AS U

WHERE |U. hostname| LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin

,ﬁ NSM Disk Page

Header W userID juserName ostnamel] lastlLogin

Header B userID fuserName ostnamel] lastlLogin

Header B userID JuserName ostnamell lastlLogin

Header W userID juserName ostnamel] lastlLogin

Useless Data
£CMU-DB

15-445/645 (Spring 2023)

$ZCMU-DB

15-445/645 (Spring 2023)

N-ARY STORAGE MODEL

Advantages

— Fast inserts, updates, and deletes.

— Good for queries that need the entire tuple.
Disadvantages

— Not good for scanning large portions of the table and/or
a subset of the attributes.

14

15

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute

for all tuples contiguously in a page.
— Also known as a "column store"

Ideal for OLAP workloads where read-only queries
perform large scans over a subset of the table’s
attributes.

$ZCMU-DB

15-445/645 (Spring 2023)

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores the values of a single attribute

across multiple tuples contiguously in a page.
— Also known as a "column store".

,‘ DSM Disk Page

J Header | userID lastlLogin
Header | userID lastlLogin
Header | userID lastlLogin
- u ~ Header § userID lastlLogin
[userName ===1 IS

| userPass

£2CMU-DB

15-445/645 (Spring 2023)

DECOMPOSITION STORAGE MODEL (DSM)

$2CMU-DB

15-445/645 (Spring 2023)

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM |U.lastLoginD AS month

FROM useracct AS U

WHERE |U. hostname| LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin

DSM Disk Page

hostnamehostname]hostnamefhostname

hostnamelhostname]hostname|hostname

hostnamelhostname|hostnamefhostname

hostnamelhostnamehostnamehostname

17

$2CMU-DB

15-445/645 (Spring 2023)

TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets

— Fach value 1s the same length for an attribute.

Choice #2: Embedded Tuple Ids

— Fach value is stored with its tuple id in a column.

Offsets Embedded Ids

w NN =2

Qe fcho

wl\J—‘Gh
wl\J—‘Gh
wM—‘Qh
w [N][= eh

18

19

DECOMPOSITION STORAGE MODEL (DSM)

$ZCMU-DB

15-445/645 (Spring 2023)

Advantages

— Reduces the amount wasted 1/O because the DBMS only
reads the data that it needs.

— Better query processing and data compression (more on
this later).
Disadvantages

— Slow for point queries, inserts, updates, and deletes
because of tuple splitting/stitching.

20

DSM SYSTEM HISTORY

a
1970s: Cantor DBMS N SYBASE

1980s: DSM Proposal
* [//j\
1990s: SybaselQ (in-memory only) VERTION monetds

2000s: Vertica, VectorWise, MonetDB < vectorwise
2010s: Everyone
. ! QuestDB amazon
presto . ClickHouse @ UMBRA)= - : . . REDSHIFT
. S Dj druid cloudera
pinot SAP » % @ ORACLE - , e MHYRB
Yellowbrick a7 8580 Server Exasol 4 Greenplum - =iozs

%trlno ‘ N SRESPS R QOsinglestore |nfiniDB
MariaDB v S “

noise
$2CMU-DB FIREBOLT

page Yel Iowbrlck
15-445/645 (Spring 2023)

http://dl.acm.org/citation.cfm?id=655555

21

OBSERVATION

I/0O is the main bottleneck if the DBMS fetches
data from disk during query execution.

The DBMS can compress pages to increase the
utility of the data moved per 1/O operation.

Key trade-off is speed vs. compression ratio
— Compressing the database reduces DRAM requirements.
— It may decrease CPU costs during query execution.

$ZCMU-DB

15-445/645 (Spring 2023)

REAL-WORLD DATA CHARACTERISTICS

Data sets tend to have highly skewed distributions

for attribute values.
— Example: Zipfian distribution of the Brown Corpus

Data sets tend to have high correlation between

attributes of the same tuple.
— BExample: Zip Code to City, Order Date to Ship Date

$ZCMU-DB

15-445/645 (Spring 2023)

https://en.wikipedia.org/wiki/Brown_Corpus

DATABASE COMPRESSION

Goal #1: Must produce fixed-length values.

— Only exception is var-length data stored in separate pool.

Goal #2: Postpone decompression for as long as

possible during query execution.
— Also known as late materialization.

Goal #3: Must be a lossless scheme.

$ZCMU-DB

15-445/645 (Spring 2023)

LOSSLESS VS. LOSSY COMPRESSION

When a DBMS uses compression, it is always
lossless because people don't like losing data.

Any kind of lossy compression must be
performed at the application level.

$ZCMU-DB

15-445/645 (Spring 2023)

COMPRESSION GRANULARITY

Choice #1: Block-level

— Compress a block of tuples for the same table.

Choice #2: Tuple-level

— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

— Compress a single attribute within one tuple (overflow).
— Can target multiple attributes for the same tuple.

Choice #4: Column-level

— Compress multiple values for one or more attributes
stored for multiple tuples (DSM-only).

£2CMU-DB

15-445/645 (Spring 2023)

NAIVE COMPRESSION

Compress data using a general-purpose algorithm.
Scope of compression 1s only based on the data

provided as input.
— LZO (1996), LZ4 (2011), Snappy (2011),
Oracle OZIP (2014), Zstd (2015)

Considerations
— Computational overhead
— Compress vs. decompress speed.

£2CMU-DB

15-445/645 (Spring 2023)

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard

27

MYSQL INNODB COMPRESSION

Buffer Pool Disk Pages

Updates ‘ mod log
Compressed Page,

Uncompressed
16 KB Page,

mod log
Compressed Page, [1,2,4,8] KB

mod log

}

Compressed Page,

mod log

Compressed Page,

$=CMU-DB Source: MySQL 5.7 Documentation

15-445/645 (Spring 2023)

https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

NAIVE COMPRESSION

The DBMS must decompress data first before it

can be read and (potentially) modified.
— This limits the "scope" of the compression scheme.

These schemes also do not consider the high-level
meaning or semantics of the data.

$ZCMU-DB

15-445/645 (Spring 2023)

OBSERVATION

Ideally, we want the DBMS to operate on
compressed data without decompressing it first.

SELECT * FROM users
WHERE name = 'Andy'

NAME SALARY

Andy 99999
Matt 88888

$ZCMU-DB

15-445/645 (Spring 2023)

Database Magic!

—)
»E»

ll-l

SELECT * FROM users
WHERE name = XX

NAME SALARY

XX AA
YY BB

25

COMPRESSION GRANULARITY

Choice #1: Block-level

— Compress a block of tuples for the same table.

Choice #2: Tuple-level

— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

— Compress a single attribute within one tuple (overflow).
— Can target multiple attributes for the same tuple.

Choice #4: Column-level

— Compress multiple values for one or more attributes
stored for multiple tuples (DSM-only).

£2CMU-DB

15-445/645 (Spring 2023)

COLUMNAR COMPRESSION

Run-length Encoding
Bit-Packing Encoding
Bitmap Encoding
Delta Encoding
Incremental Encoding

Dictionary Encoding

$ZCMU-DB

15-445/645 (Spring 2023)

$ZCMU-DB

15-445/645 (Spring 2023)

RUN-LENGTH ENCODING

Compress runs of the same value in a single

column into triplets:

— The value of the attribute.

— The start position in the column segment.
— The # of elements in the run.

Requires the columns to be sorted intelligently to
maximize compression opportunities.

32

33

RUN-LENGTH ENCODING

Suigeial) Bt a Compressed Data
1 M 1
. y .
SELECT sex, COUNT(*)
FROM users 3
GROUP BY sex 6
o N 8 (M,6,2)
> i 9 | RLE Triplet
4 F 4 - Value
7 F 7 - Offset
- Length

$2CMU-DB

15-445/645 (Spring 2023)

BIT-PACKING ENCODING

When values for an attribute are always less than
the value's declared largest size, store them as
smaller data type.

Original Data Compressed Data

»

packed-int8

00000010

. oo 00 .
5 X 64'blts = 90 PEE a¢ FEEEEEEEEL 00000011 (5 X 8'.bltS)
320 bits i 20011101 = 40 bits

90080 00000110
210010 00010010

$2CMU-DB

15-445/645 (Spring 2023)

34

35

MOSTLY ENCODING

Bit-packing variant that uses a special marker to
indicate when a value exceeds largest size and then
maintain a look-up table to store them.

Original Data Compressed Data
offset value .
5 x 64-bits = 2 = 3 |99999999| (5 X 8-bits) +
.- - 4 4 1 _ . + _ .
320 bits 999969999 x>éx =6112210tsbl. tS64 bits
18 18

$ZCMU-DB

15-445/645 (Spring 2023)

Source: Redshift Documentation

http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

£2CMU-DB

15-445/645 (Spring 2023)

BITMAP ENCODING

Store a separate bitmap for each unique value for
an attribute where an offset in the vector

corresponds to a tuple.

— The i” position in the Bitmap corresponds to the i” tuple
in the table.

— 'Typically segmented into chunks to avoid allocating large
blocks of contiguous memory.

Only practical if the value cardinality is low.

Some DBMSs provide bitmap indexes.

36

https://dbdb.io/browse?indexes=bitmap

37

BITMAP ENCODING

Original Data Compressed Data

sex o
| - I
M 1 1{|le '\
M 2 1 (%)
M 3 1116
- Ml 9 % 5-b + |[e 1ﬁ9><2—bits=
] k2 bits s Wzllo| [18 bits
F 7 (%) 1
M 8 1116
M 9 1 (%)

O |0 |IN]JOO IR lW]INM -

$2CMU-DB

15-445/645 (Spring 2023)

BITMAP ENCODING: EXAMPLE

Assume we have 10 million tuples.

43,000 zip codes in the US.
— 10000000 x 32-bits = 40 MB
— 10000000 x 43000 = 53.75 GB

Every time the application inserts a

new tuple, the DBMS must extend
43,000 different bitmaps.

$ZCMU-DB

15-445/645 (Spring 2023)

CREATE TABLE customer_dim (
id INT PRIMARY KEY,

name VARCHAR(32),

email VARCHAR(64),
address VARCHAR(64),
lzip_code INT |

);

38

DELTA ENCODING

Recording the difference between values that

follow each other in the same column.
— Store base value in-line or in a separate look-up table.
— Combine with RLE to get even better compression ratios.

Original Data Compressed Data Compressed Data
12:00 99.5 12:00 99.5 12:00 99.5
12:01 99.4 +1 -0.1 (+1,4) -0.1
12:02 99.5 +1 +0.1 +0.1
12:03 99.6 +1 +0.1 +0.1
12:04 99.4 +1 -0.2 -0.2

5 x 32-bits 32-bits + (4 x 16-bits) 32-bits + (2 x 16-bits)
= 160 bits = 96 bits = 64 bits

$ZCMU-DB

15-445/645 (Spring 2023)

39

40

INCREMENTAL ENCODING

Type of delta encoding that avoids duplicating
common prefixes/suffixes between consecutive
tuples. This works best with sorted data.

Original Data Common Prefix Compressed Data
3 x 8-bits = 24 bits - 0| rob 3 x 8-bits = 24 bits
6 x 8-bits = 48 bits » rob » 3| bed 3 x 8-bits = 24 bits
7 x 8-bits = 56 bits robb 41 ing 3 x 8-bits = 24 bits
5 x 8-bits = 40 bits rob 3] ot 2 x 8-bits = 16 bits
= 168 bits 5 ; 3 = 88 bits
rejix Suffix
Length f

£CMU-DB 4 x 8-bits = 32 bits

15-445/645 (Spring 2023)

DICTIONARY COMPRESSION

Build a data structure that maps variable-length
values to a smaller integer identitier.

Replace those values with their corresponding

identifier in the dictionary data structure.
— Need to support fast encoding and decoding,
— Need to also support range quertes.

Most widely used compression scheme in DBMSs.

$ZCMU-DB

15-445/645 (Spring 2023)

DICTIONARY COMPRESSION

SELECT * FROM users
WHERE name = 'Andy'

Original Data

Andrea

Prashanth

Andy

Matt

Prashanth

$ZCMU-DB

15-445/645 (Spring 2023)

»

»

SELECT * FROM users
WHERE name = 30

Compressed Data

10 Andrea 10
20 Prashanth 20
30 Andy 30
40 Matt 40
20

Aipbuoiiqg

42

$ZCMU-DB

15-445/645 (Spring 2023)

43

ENCODING / DECODING

A dictionary needs to support two operations:

— Encode/Locate: For a given uncompressed value,
convert it into its compressed form.

— Decode/Extract: For a given compressed value, convert
it back into its original form.

No typical hash function will do this for us.

ORDER-PRESERVING ENCODING

The encoded values need to support the same
collation as the original values.

SELECT * FROM users
WHERE name LIKE 'And%'

Original Data

Andrea
Prashanth
Andy
Matt
Prashanth

$ZCMU-DB

15-445/645 (Spring 2023)

»

=

SELECT * FROM users

WHERE name BETWEEN 10 AND 20

Compressed Data

name value code

10 Andrea 10
40 Andy 20
20 Matt 30
30 Prashanth 40
40

Aipuoipiqg
pa3ios

44

ORDER-PRESERVING ENCODING

SELECT name FROM users
WHERE name LIKE 'And%'

SELECT DISTINCT name
FROM users
WHERE name LIKE 'And%'

Original Data

Andrea
Prashanth
Andy
Matt
Prashanth

$ZCMU-DB

15-445/645 (Spring 2023)

Still must perform scan on

column

‘B Only need to access dictionary

=

Compressed Data

name value code

Andrea
40 Andy 20
20 Matt 30
30 Prashanth 40
40

Aipuoipiqg
pa3ios

45

$ZCMU-DB

15-445/645 (Spring 2023)

46

CONCLUSION

It is important to choose the right storage model

for the target workload:
— OLTP = Row Store
— OLAP = Column Store

DBMSs can combine different approaches for
even better compression.

Dictionary encoding is probably the most useful
scheme because it does not require pre-sorting.

47

DATABASE STORAGE

Problem #1: How the DBMS represents the
database in files on disk.

£2CMU-DB

15-445/645 (Spring 2023)

