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ADMINISTRIVIA

Homework 1 due last Friday (Feb 3rd).

Homework 2 available today, due February 17th.

Project 1 available, due February 19th.
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DATABASE STORAGE

Problem #1: How the DBMS represents the 
database in files on disk.

Problem #2: How the DBMS manages its 
memory and move data back-and-forth from disk.
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DATABASE STORAGE

Spatial Control:
→ Where to write pages on disk.
→ The goal is to keep pages that are used together often as 

physically close together as possible on disk.

Temporal Control:
→ When to read pages into memory, and when to write 

them to disk.
→ The goal is to minimize the number of  stalls from having 

to read data from disk.
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DISK-ORIENTED DBMS

5

Disk

Memory

D
at

ab
as

e 
Fi

le

1
HeaderDirectory

2
Header

3
Header

… Pages

Bu
ff

er
 P

oo
l

4
Header

5
Header

Get page #2

Pointer to page #2

Execution
Engine

2
Header

2
HeaderDirectory



15-445/645 (Spring 2023)

TODAY'S AGENDA

Buffer Pool Manager
Replacement Policies
Other Memory Pools
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BUFFER POOL ORGANIZATION

Memory region organized as an array 
of  fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an 
exact copy is placed into one of  these 
frames.

Dirty pages are buffered and not
written to disk immediately
→ Write-Back Cache
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BUFFER POOL META-DATA

The page table keeps track of  pages 
that are currently in memory.

Also maintains additional meta-data 
per page:
→ Dirty Flag
→ Pin/Reference Counter
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LOCKS VS.  LATCHES

Locks:
→ Protects the database's logical contents from other 

transactions.
→ Held for transaction duration.
→ Need to be able to rollback changes.

Latches:
→ Protects the critical sections of  the DBMS's internal data 

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.
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PAGE TABLE VS.  PAGE DIRECTORY

The page directory is the mapping from page ids 
to page locations in the database files.
→ All changes must be recorded on disk to allow the DBMS 

to find on restart.

The page table is the mapping from page ids to a 
copy of  the page in buffer pool frames.
→ This is an in-memory data structure that does not need to 

be stored on disk.
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ALLOCATION POLICIES

Global Policies:
→ Make decisions for all active queries.

Local Policies:
→ Allocate frames to a specific queries without considering 

the behavior of  concurrent queries.
→ Still need to support sharing pages.
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BUFFER POOL OPTIMIZATIONS

Multiple Buffer Pools
Pre-Fetching
Scan Sharing
Buffer Pool Bypass
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MULTIPLE BUFFER POOLS

The DBMS does not always have a single buffer 
pool for the entire system.
→ Multiple buffer pool instances
→ Per-database buffer pool
→ Per-page type buffer pool

Partitioning memory across multiple pools helps 
reduce latch contention and improve locality.
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MULTIPLE BUFFER POOLS
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CREATE BUFFERPOOL custom_pool
�SIZE 250 PAGESIZE 8k;

CREATE TABLESPACE custom_tablespace
�PAGESIZE 8k BUFFERPOOL custom_pool;

CREATE TABLE new_table
�TABLESPACE custom_tablespace ( ... );

DB2



15-445/645 (Spring 2023)

GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.
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PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Sequential Scans
→ Index Scans
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PRE-FETCHING
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SCAN SHARING

Queries can reuse data retrieved from storage or 
operator computations.
→ Also called synchronized scans.
→ This is different from result caching.

Allow multiple queries to attach to a single cursor 
that scans a table.
→ Queries do not have to be the same.
→ Can also share intermediate results.

18



15-445/645 (Spring 2023)

SCAN SHARING

If  a query wants to scan a table and another query 
is already doing this, then the DBMS will attach the 
second query's cursor to the existing cursor.

Examples:
→ Fully supported in IBM DB2, MSSQL, and Postgres.
→ Oracle only supports cursor sharing for identical queries.
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BUFFER POOL BYPASS

The sequential scan operator will not store fetched 
pages in the buffer pool to avoid overhead.
→ Memory is local to running query.
→ Works well if  operator needs to read a large sequence of  

pages that are contiguous on disk.
→ Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.
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https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm
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OS PAGE CACHE

Most disk operations go through the 
OS API. Unless the DBMS tells it not 
to, the OS maintains its own 
filesystem cache (aka page cache, 
buffer cache).

Most DBMSs use direct I/O 
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of  pages.
→ Different eviction policies.
→ Loss of  control over file I/O.
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BUFFER REPLACEMENT POLICIES

When the DBMS needs to free up a frame to make 
room for a new page, it must decide which page to 
evict from the buffer pool.

Goals:
→ Correctness
→ Accuracy
→ Speed
→ Meta-data overhead
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LEAST-RECENTLY USED

Maintain a single timestamp of  when each page 
was last accessed.

When the DBMS needs to evict a page, select the 
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce the search time 

on eviction.
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CLOCK

Approximation of  LRU that does not 
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer 
with a "clock hand":
→ Upon sweeping, check if  a page's bit is set 

to 1.
→ If  yes, set to zero. If  no, then evict.
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PROBLEMS

LRU and CLOCK replacement policies are 
susceptible to sequential flooding.
→ A query performs a sequential scan that reads every page.
→ This pollutes the buffer pool with pages that are read 

once and then never again.

In some workloads the most recently used page is 
the most unneeded page.
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BETTER POLICIES:  LRU-K

Track the history of  last K references to each page 
as timestamps and compute the interval between 
subsequent accesses.

The DBMS then uses this history to estimate the 
next time that page is going to be accessed.
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BETTER POLICIES:  LOCALIZATION

The DBMS chooses which pages to evict on a per 
query basis. This minimizes the pollution of  the 
buffer pool from each query.
→ Keep track of  the pages that a query has accessed.

Example: Postgres maintains a small ring buffer 
that is private to the query.
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BETTER POLICIES:  PRIORITY HINTS

The DBMS knows about the context of  each page 
during query execution.
It can provide hints to the buffer pool on whether 
a page is important or not.
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DIRTY PAGES

Fast Path: If  a page in the buffer pool is not dirty, 
then the DBMS can simply "drop" it.

Slow Path: If  a page is dirty, then the DBMS must 
write back to disk to ensure that its changes are 
persisted.

Trade-off  between fast evictions versus dirty 
writing pages that will not be read again in the 
future.
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BACKGROUND WRITING

The DBMS can periodically walk through the page 
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can 
either evict the page or just unset the dirty flag.

Need to be careful that the system doesn't write 
dirty pages before their log records are written…
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OTHER MEMORY POOLS

The DBMS needs memory for things other than 
just tuples and indexes.
These other memory pools may not always backed
by disk. Depends on implementation.
→ Sorting + Join Buffers
→ Query Caches
→ Maintenance Buffers
→ Log Buffers
→ Dictionary Caches
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CONCLUSION

The DBMS can almost always manage memory 
better than the OS.

Leverage the semantics about the query plan to 
make better decisions:
→ Evictions
→ Allocations
→ Pre-fetching
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NEXT CLASS

Hash Tables
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