
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

06 Memory
Management

15-445/645 (Spring 2023)

ADMINISTRIVIA

Homework 1 due last Friday (Feb 3rd).

Homework 2 available today, due February 17th.

Project 1 available, due February 19th.

2

15-445/645 (Spring 2023)

DATABASE STORAGE

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its
memory and move data back-and-forth from disk.

3

15-445/645 (Spring 2023)

DATABASE STORAGE

Spatial Control:
→ Where to write pages on disk.
→ The goal is to keep pages that are used together often as

physically close together as possible on disk.

Temporal Control:
→ When to read pages into memory, and when to write

them to disk.
→ The goal is to minimize the number of stalls from having

to read data from disk.

4

15-445/645 (Spring 2023)

DISK-ORIENTED DBMS

5

Disk

Memory

D
at

ab
as

e
Fi

le

1
HeaderDirectory

2
Header

3
Header

… Pages

Bu
ff

er
 P

oo
l

4
Header

5
Header

Get page #2

Pointer to page #2

Execution
Engine

2
Header

2
HeaderDirectory

15-445/645 (Spring 2023)

TODAY'S AGENDA

Buffer Pool Manager
Replacement Policies
Other Memory Pools

6

15-445/645 (Spring 2023)

BUFFER POOL ORGANIZATION

Memory region organized as an array
of fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an
exact copy is placed into one of these
frames.

Dirty pages are buffered and not
written to disk immediately
→ Write-Back Cache

7

Buffer
Pool
frame1

frame2

frame3

frame4

page1

page3

On-Disk File

page1 page2 page3 page4

15-445/645 (Spring 2023)

BUFFER POOL META-DATA

The page table keeps track of pages
that are currently in memory.

Also maintains additional meta-data
per page:
→ Dirty Flag
→ Pin/Reference Counter

8

page1 page2 page3 page4

On-Disk File

Buffer
Pool
frame1

frame2

frame3

frame4

page1

page3

Page
Table
page1

page3

page2

page2

15-445/645 (Spring 2023)

LOCKS VS. LATCHES

Locks:
→ Protects the database's logical contents from other

transactions.
→ Held for transaction duration.
→ Need to be able to rollback changes.

Latches:
→ Protects the critical sections of the DBMS's internal data

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

9

←Mutex

15-445/645 (Spring 2023)

PAGE TABLE VS. PAGE DIRECTORY

The page directory is the mapping from page ids
to page locations in the database files.
→ All changes must be recorded on disk to allow the DBMS

to find on restart.

The page table is the mapping from page ids to a
copy of the page in buffer pool frames.
→ This is an in-memory data structure that does not need to

be stored on disk.

10

15-445/645 (Spring 2023)

ALLOCATION POLICIES

Global Policies:
→ Make decisions for all active queries.

Local Policies:
→ Allocate frames to a specific queries without considering

the behavior of concurrent queries.
→ Still need to support sharing pages.

11

15-445/645 (Spring 2023)

BUFFER POOL OPTIMIZATIONS

Multiple Buffer Pools
Pre-Fetching
Scan Sharing
Buffer Pool Bypass

12

15-445/645 (Spring 2023)

MULTIPLE BUFFER POOLS

The DBMS does not always have a single buffer
pool for the entire system.
→ Multiple buffer pool instances
→ Per-database buffer pool
→ Per-page type buffer pool

Partitioning memory across multiple pools helps
reduce latch contention and improve locality.

13

15-445/645 (Spring 2023)

MULTIPLE BUFFER POOLS

14

CREATE BUFFERPOOL custom_pool
�SIZE 250 PAGESIZE 8k;

CREATE TABLESPACE custom_tablespace
�PAGESIZE 8k BUFFERPOOL custom_pool;

CREATE TABLE new_table
�TABLESPACE custom_tablespace (...);

DB2

15-445/645 (Spring 2023)

GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids

and then maintain a mapping from objects
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

15

Buffer Pool #1 Buffer Pool #2

<ObjectId, PageId, SlotNum> HASH(123) % n

15-445/645 (Spring 2023)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Sequential Scans
→ Index Scans

16

Buffer Pool
page0

page1

page2

Disk Pages
page0

page1

page2

page3

page4

page5

Q1

page3

page4

page5

15-445/645 (Spring 2023)

PRE-FETCHING

17

Buffer Pool
index-page0

index-page1

Disk Pages
index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

SELECT * FROM A
WHERE val BETWEEN 100 AND 250

Q1

0 99 100 199 200 299 300 399

15-445/645 (Spring 2023)

SCAN SHARING

Queries can reuse data retrieved from storage or
operator computations.
→ Also called synchronized scans.
→ This is different from result caching.

Allow multiple queries to attach to a single cursor
that scans a table.
→ Queries do not have to be the same.
→ Can also share intermediate results.

18

15-445/645 (Spring 2023)

SCAN SHARING

If a query wants to scan a table and another query
is already doing this, then the DBMS will attach the
second query's cursor to the existing cursor.

Examples:
→ Fully supported in IBM DB2, MSSQL, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

19

15-445/645 (Spring 2023)

Buffer Pool
page0

page1

page2

SCAN SHARING

20

Disk Pages
page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2
Q1

page3

Q2

Q2

page4

page5

SELECT AVG(val) FROM A LIMIT 100Q2

15-445/645 (Spring 2023)

BUFFER POOL BYPASS

The sequential scan operator will not store fetched
pages in the buffer pool to avoid overhead.
→ Memory is local to running query.
→ Works well if operator needs to read a large sequence of

pages that are contiguous on disk.
→ Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.

21

https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm

15-445/645 (Spring 2023)

OS PAGE CACHE

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own
filesystem cache (aka page cache,
buffer cache).

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

22

DBMS

Filesystem

Page Cache

User-space

Kernel-space

read(...)

https://linux.die.net/man/2/open

15-445/645 (Spring 2023)

BUFFER REPLACEMENT POLICIES

When the DBMS needs to free up a frame to make
room for a new page, it must decide which page to
evict from the buffer pool.

Goals:
→ Correctness
→ Accuracy
→ Speed
→ Meta-data overhead

23

15-445/645 (Spring 2023)

LEAST-RECENTLY USED

Maintain a single timestamp of when each page
was last accessed.

When the DBMS needs to evict a page, select the
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce the search time

on eviction.

24

15-445/645 (Spring 2023)

CLOCK

Approximation of LRU that does not
need a separate timestamp per page.
→ Each page has a reference bit.
→ When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a "clock hand":
→ Upon sweeping, check if a page's bit is set

to 1.
→ If yes, set to zero. If no, then evict.

25

page1

page3

page4 page2

ref=0ref=1

ref=0

ref=0ref=1

ref=0ref=1
page5

15-445/645 (Spring 2023)

PROBLEMS

LRU and CLOCK replacement policies are
susceptible to sequential flooding.
→ A query performs a sequential scan that reads every page.
→ This pollutes the buffer pool with pages that are read

once and then never again.

In some workloads the most recently used page is
the most unneeded page.

26

15-445/645 (Spring 2023)

Buffer Pool
page0

page1

page2

SEQUENTIAL FLOODING

27

Disk Pages
page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2 Q1

page3

Q2

SELECT * FROM A WHERE id = 1Q3

Q2

15-445/645 (Spring 2023)

BETTER POLICIES: LRU-K

Track the history of last K references to each page
as timestamps and compute the interval between
subsequent accesses.

The DBMS then uses this history to estimate the
next time that page is going to be accessed.

28

15-445/645 (Spring 2023)

BETTER POLICIES: LOCALIZATION

The DBMS chooses which pages to evict on a per
query basis. This minimizes the pollution of the
buffer pool from each query.
→ Keep track of the pages that a query has accessed.

Example: Postgres maintains a small ring buffer
that is private to the query.

29

15-445/645 (Spring 2023)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.
It can provide hints to the buffer pool on whether
a page is important or not.

30

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

SELECT * FROM A WHERE id = ?Q2

INSERT INTO A VALUES (id++)Q1

MIN MAXid

15-445/645 (Spring 2023)

DIRTY PAGES

Fast Path: If a page in the buffer pool is not dirty,
then the DBMS can simply "drop" it.

Slow Path: If a page is dirty, then the DBMS must
write back to disk to ensure that its changes are
persisted.

Trade-off between fast evictions versus dirty
writing pages that will not be read again in the
future.

31

15-445/645 (Spring 2023)

BACKGROUND WRITING

The DBMS can periodically walk through the page
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can
either evict the page or just unset the dirty flag.

Need to be careful that the system doesn't write
dirty pages before their log records are written…

32

15-445/645 (Spring 2023)

OTHER MEMORY POOLS

The DBMS needs memory for things other than
just tuples and indexes.
These other memory pools may not always backed
by disk. Depends on implementation.
→ Sorting + Join Buffers
→ Query Caches
→ Maintenance Buffers
→ Log Buffers
→ Dictionary Caches

33

15-445/645 (Spring 2023)

CONCLUSION

The DBMS can almost always manage memory
better than the OS.

Leverage the semantics about the query plan to
make better decisions:
→ Evictions
→ Allocations
→ Pre-fetching

34

15-445/645 (Spring 2023)

NEXT CLASS

Hash Tables

35

