
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

07 Hash Tables

15-445/645 (Spring 2023)

ADMINISTRIVIA

Homework 2 due February 17th.

Project 1 due February 19th.
→ Saturday office hours: February 18th 3-5 p.m.

2

15-445/645 (Spring 2023)

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

COURSE STATUS

We are now going to talk about how
to support the DBMS's execution
engine to read/write data from pages.

Two types of data structures:
→ Hash Tables
→ Trees

3

15-445/645 (Spring 2023)

DATA STRUCTURES

Internal Meta-data
Core Data Storage
Temporary Data Structures
Table Indexes

4

15-445/645 (Spring 2023)

DESIGN DECISIONS

Data Organization
→ How we layout data structure in memory/pages and what

information to store to support efficient access.

Concurrency
→ How to enable multiple threads to access the data

structure at the same time without causing problems.

5

15-445/645 (Spring 2023)

HASH TABLES

A hash table implements an unordered associative
array that maps keys to values.

It uses a hash function to compute an offset into
this array for a given key, from which the desired
value can be found.

Space Complexity: O(n)
Time Complexity:
→ Average: O(1)

6

Databases need to care about constants!

15-445/645 (Spring 2023)

STATIC HASH TABLE

Allocate a giant array that has one slot
for every element you need to store.

To find an entry, mod the key by the
number of elements to find the offset
in the array.

7

hash(key) % N

⋮

0
1
2

n

A

B

Z

Ø A | val

B | val

Z | val

15-445/645 (Spring 2023)

UNREALISTIC ASSUMPTIONS

Assumption#1: Number of elements
is known ahead of time and fixed.

Assumption #2: Each key is unique.

Assumption #3: Perfect hash function.
→ If key1≠key2, then

hash(key1)≠hash(key2)

8

hash(key) % N

⋮

0
1
2

n

A | val

B | val

Z | val

15-445/645 (Spring 2023)

HASH TABLE

Design Decision #1: Hash Function
→ How to map a large key space into a smaller domain.
→ Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme
→ How to handle key collisions after hashing.
→ Trade-off between allocating a large hash table vs.

additional instructions to get/put keys.

9

15-445/645 (Spring 2023)

TODAY'S AGENDA

Hash Functions
Static Hashing Schemes
Dynamic Hashing Schemes

10

15-445/645 (Spring 2023)

HASH FUNCTIONS

For any input key, return an integer representation
of that key.

We do not want to use a cryptographic hash
function for DBMS hash tables (e.g., SHA-2) .

We want something that is fast and has a low
collision rate.

11

https://en.wikipedia.org/wiki/SHA-2

15-445/645 (Spring 2023)

HASH FUNCTIONS

CRC-64 (1975)
→ Used in networking for error detection.

MurmurHash (2008)
→ Designed as a fast, general-purpose hash function.

Google CityHash (2011)
→ Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
→ From the creator of zstd compression.

Google FarmHash (2014)
→ Newer version of CityHash with better collision rates.

12

← State-of-the-art

https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash

15-445/645 (Spring 2023)

HASH FUNCTION BENCHMARK

13

0

7000

14000

21000

28000

1 51 101 151 201 251

Th
ro

ug
hp

ut
 (M

B/
se

c)

Key Size (bytes)

crc64 std::hash MurmurHash3 CityHash FarmHash XXHash3

Source: Fredrik Widlund

Intel Core i7-8700K @ 3.70GHz

32

64
128

192

https://github.com/apavlo/hash-function-benchmark

15-445/645 (Spring 2023)

STATIC HASHING SCHEMES

Approach #1: Linear Probe Hashing

Approach #2: Robin Hood Hashing

Approach #3: Cuckoo Hashing

14

15-445/645 (Spring 2023)

LINEAR PROBE HASHING

Single giant table of slots.

Resolve collisions by linearly searching for the next
free slot in the table.
→ To determine whether an element is present, hash to a

location in the index and scan for it.
→ Must store the key in the index to know when to stop

scanning.
→ Insertions and deletions are generalizations of lookups.

15

15-445/645 (Spring 2023)

<key>|<value>

LINEAR PROBE HASHING

16

A
B
C
D

hash(key) % N

| valA

| valB

| valC
| valDE
| valEF

| valF

15-445/645 (Spring 2023)

LINEAR PROBE HASHING – DELETES

17

Approach #1: Movement
→ Rehash keys until you find the

first empty slot.
→ Nobody actually does this.

A
B
C
D

hash(key) % N

| valA

| valB

| valC
E
F

| valD
| valE
| valF

Delete
Get

15-445/645 (Spring 2023)

LINEAR PROBE HASHING – DELETES

18

Approach #2: Tombstone
→ Set a marker to indicate that

the entry in the slot is
logically deleted.

→ You can reuse the slot for
new keys.

→ May need periodic garbage
collection.

A
B
C
D

hash(key) % N

| valA

| valB

| valC
E
F

| valD
| valE
| valF

Delete
Get

G

| valG

Put

15-445/645 (Spring 2023)

NON-UNIQUE KEYS

Choice #1: Separate Linked List
→ Store values in separate storage area for

each key.

Choice #2: Redundant Keys
→ Store duplicate keys entries together in

the hash table.
→ This is what most systems do.

19

XYZ
ABC

value1
value2
value3

Value Lists

value1
value2

XYZ | value2
ABC | value1
XYZ | value3
XYZ | value1
ABC | value2

15-445/645 (Spring 2023)

ROBIN HOOD HASHING

Variant of linear probe hashing that steals slots
from "rich" keys and give them to "poor" keys.
→ Each key tracks the number of positions they are from

where its optimal position in the table.
→ On insert, a key takes the slot of another key if the first

key is farther away from its optimal position than the
second key.

20

15-445/645 (Spring 2023)

ROBIN HOOD HASHING

21

A
B
C
D

hash(key) % N

| val [0]A

| val [0]B

| val [1]C
| val [1]DE | val [2]E

of "Jumps" From First PositionA[0] == E[0]

C[1] == E[1]

D[1] < E[2]

F | val [2]D
| val [1]F

D[2] > F[0]

A[0] == C[0]

C[1] > D[0]

15-445/645 (Spring 2023)

CUCKOO HASHING

Use multiple hash tables with different hash
function seeds.
→ On insert, check every table and pick anyone that has a

free slot.
→ If no table has a free slot, evict the element from one of

them and then re-hash it find a new location.

Look-ups and deletions are always O(1) because
only one location per hash table is checked.

Best open-source implementation is from CMU.

22

https://github.com/efficient/libcuckoo

15-445/645 (Spring 2023)

CUCKOO HASHING

23

Hash Table #1

⋮

Hash Table #2

⋮

Put A
hash1(A) hash2(A)

Put B
hash1(B) hash2(B)A | val

B | val

Put C
hash1(C) hash2(C)

C | val

hash1(B)

B | val

hash2(A)

A | val

Get B
hash1(B) hash2(B)

15-445/645 (Spring 2023)

LIES, LIES, AND …

I think we’re lying: cuckoo hashing does not
actually use multiple hash tables.
→ The essence is that multiple hash functions map a key to

different slots (in a single hash table).

hash(key) % N is not a good way to map a key
within the size (N) of the hash table.
→ Make N a power of 2 and bit-mask instead.

Hashing is not actually O(1)…

24

15-445/645 (Spring 2023)

OBSERVATION

The previous hash tables require the DBMS to
know the number of elements it wants to store.
→ Otherwise, it must rebuild the table if it needs to

grow/shrink in size.

Dynamic hash tables incrementally resize
themselves as needed.
→ Chained Hashing
→ Extendible Hashing
→ Linear Hashing

25

15-445/645 (Spring 2023)

CHAINED HASHING

Maintain a linked list of buckets for each slot in
the hash table.
Resolve collisions by placing all elements with the
same hash key into the same bucket.
→ To determine whether an element is present, hash to its

bucket and scan for it.
→ Insertions and deletions are generalizations of lookups.

26

15-445/645 (Spring 2023)

CHAINED HASHING

27

A
B
C
D

hash(key) % N

E
F

| valA

| valB

Buckets
| valC

| valD

| valE

| valF

Bucket
Pointers

15-445/645 (Spring 2023)

EXTENDIBLE HASHING

Chained-hashing approach where we split buckets
instead of letting the linked list grow forever.

Multiple slot locations can point to the same
bucket chain.

Reshuffle bucket entries on split and increase the
number of bits to examine.
→ Data movement is localized to just the split chain.

28

15-445/645 (Spring 2023)

EXTENDIBLE HASHING

29

global 2

0 1 …
0 0 …

1 0 …
1 1 …

local

local

local

00010…
01110…

1

10101…
10011…

2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 1 0 …
0 0 0 …

1 0 0 …
1 1 0 …

0 1 1 …
0 0 1 …

1 0 1 …
1 1 1 …

3

10111…
10011…

3

10101…

10111…

3
10100…

15-445/645 (Spring 2023)

LINEAR HASHING

The hash table maintains a pointer that tracks the
next bucket to split.
→ When any bucket overflows, split the bucket at the

pointer location.

Use multiple hashes to find the right bucket for a
given key.

Can use different overflow criterion:
→ Space Utilization
→ Average Length of Overflow Chains

30

15-445/645 (Spring 2023)

LINEAR HASHING

31

1
0

2
3

8

hash1(6) = 6 % 4 = 2
Get 6

5
9
13

6

7
11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

hash1(20) = 20 % 4 = 0
Get 20

17

4

20hash2(key) = key % 2n

20

hash2(20) = 20 % 8 = 4

Overflow!

hash1(9) = 9 % 4 = 1
Get 9

15-445/645 (Spring 2023)

LINEAR HASHING

Splitting buckets based on the split pointer will
eventually get to all overflowed buckets.
→ When the pointer reaches the last slot, delete the first

hash function and move back to beginning.

32

15-445/645 (Spring 2023)

CONCLUSION

Fast data structures that support O(1) look-ups
that are used all throughout DBMS internals.
→ Trade-off between speed and flexibility.

Hash tables are usually not what you want to use
for a table index…

34

15-445/645 (Spring 2023)

NEXT CLASS

B+Trees
→ aka "The Greatest Data Structure of All Time"

35

