
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

09 Index Concurrency
Control

15-445/645 (Spring 2023)

ADMINISTRIVIA

Homework 2 due February 17th.

Project 1 due February 19th.
→ Saturday office hours: February 18th 3-5 p.m.

2

15-445/645 (Spring 2023)

ADMINISTRIVIA

Homework 2 due February 17th.

Project 1 due February 19th.
→ Saturday office hours: February 18th 3-5 p.m.

3

You’re the page I’d

never evict from my

buffer pool.

Can I be your lock
manager? So that I
can grant you an

exclusive lock to my heart.

You won’t need

NoSQL after we join

all our relations.

15-445/645 (Spring 2023)

15-445 / 15-645 PARTICIPATION QUIZ

For a cuckoo hashing scheme with 1000 buckets, 2
hash functions, and 4 slots per bucket: In the
worst-case scenario, what is the minimum number
of insertions (into an initially empty table) that
might require the table to be rehashed?

https://bit.ly/cmu-db-quiz

4

15-445/645 (Spring 2023)

LAST TIME

B+Trees
→ Use in a DBMS
→ Design Choices
→ Optimizations

5

15-445/645 (Spring 2023)

LEAF NODE VALUES

Approach #1: Record IDs
→ A pointer to the location of the tuple to

which the index entry corresponds.

Approach #2: Tuple Data
→ The leaf nodes store the actual contents

of the tuple.
→ Secondary indexes must store the Record

ID as their values.

6

15-445/645 (Spring 2023)

CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than sorting
data for each query.

7

Table Pages

(Directs search)
Index

Data Entries
("Sequence set")

101 102 103 104

Scan Direction

15-445/645 (Spring 2023)

INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

8

101 102 103 104

Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Page 102

Page 101

Page 102
Page 102

Page 103

Page 104

Page 103

Page 104

Page 101

Page 102

Page 103

Page 104

Scan Direction

15-445/645 (Spring 2023)

B+TREE DESIGN CHOICES

Node Size
Merge Threshold
Variable-Length Keys
Intra-Node Search

9

15-445/645 (Spring 2023)

TODAY

Finish B+Tree Design and Optimization
Index Concurrency Control

10

15-445/645 (Spring 2023)

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key

based on known distribution of keys.

11

Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

5 6 7 8 9 104
Offset: (8-4)*7/(10-4)=4

_mm_cmpeq_epi32_mask(a, b)

8 8 88 8 8 88

15-445/645 (Spring 2023)

OPTIMIZATIONS

Prefix Compression
Deduplication
Suffix Truncation
Pointer Swizzling
Bulk Insert
Buffer Updates
Many more…

12

15-445/645 (Spring 2023)

PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store
only unique suffix for each key.
→ Many variations.

13

robbed robbing robot

bed bing ot

Prefix: rob

15-445/645 (Spring 2023)

SUFFIX TRUNCATION

The keys in the inner nodes are only
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

15

abcdefghijk lmnopqrstuv

… …… …

abc lmn

15-445/645 (Spring 2023)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers instead
of page ids. This avoids address
lookups from the page table.

16

6 9

6 71 3

Page #2

Page #3

Bu
ff

er
 P

oo
l

1
Header

2
Header

3
Header

Page #2 → <Page*>
Page #3 → <Page*>

Find Key>3

<Page*>

<Page*>

15-445/645 (Spring 2023)

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

17

6 9

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1
Sorted Keys: 1, 3, 6, 7, 9, 13

15-445/645 (Spring 2023)

B+TREE CONCLUSION

The venerable B+Tree is (almost) always a good
choice for your DBMS.

18

15-445/645 (Spring 2023)

TODAY

Finish B+Tree Design and Optimization
Index Concurrency Control

19

15-445/645 (Spring 2023)

OBSERVATION

We (mostly) assumed all the data structures that we
have discussed so far are single-threaded.

But a DBMS needs to allow multiple threads to
safely access data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

20

They Don't Do This!

15-445/645 (Spring 2023)

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
→ Logical Correctness: Can a thread see the data that it is

supposed to see?
→ Physical Correctness: Is the internal representation of

the object sound?

21

15-445/645 (Spring 2023)

TODAY'S AGENDA

Latches Overview
Hash Table Latching
B+Tree Latching
Leaf Node Scans

22

15-445/645 (Spring 2023)

LOCKS VS. LATCHES

Locks
→ Protect the database's logical contents from other txns.
→ Held for txn duration.
→ Need to be able to rollback changes.

Latches
→ Protect the critical sections of the DBMS's internal data

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

23

15-445/645 (Spring 2023)

LOCKS VS. LATCHES

24

Locks Latches
Separate… User Transactions Threads

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update,
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure

Source: Goetz Graefe

Lecture #15

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

15-445/645 (Spring 2023)

LATCH MODES

Read Mode
→ Multiple threads can read the same object

at the same time.
→ A thread can acquire the read latch if

another thread has it in read mode.

Write Mode
→ Only one thread can access the object.
→ A thread cannot acquire a write latch if

another thread has it in any mode.

25

Read Write

Read ✔ X
Write X X

Compatibility Matrix

15-445/645 (Spring 2023)

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex

26

std::mutex m;
⋮

m.lock();
// Do something special...
m.unlock();

pthread_mutex futex

Userspace Latch
OS Queue

15-445/645 (Spring 2023)

LATCH IMPLEMENTATIONS

Approach #2: Reader-Writer Latches
→ Allows for concurrent readers. Must manage read/write

queues to avoid starvation.
→ Can be implemented on top of spinlocks.
→ Example: std::shared_mutex

27

read write

Latch

=0
=0

=0
=0

=1=2
=1=1

pthread_rwlock

15-445/645 (Spring 2023)

HASH TABLE LATCHING

Easy to support concurrent access due to the
limited ways threads access the data structure.
→ All threads move in the same direction and only access a

single page/slot at a time.
→ Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (e.g., in the header page).

28

15-445/645 (Spring 2023)

HASH TABLE LATCHING

Approach #1: Page Latches
→ Each page has its own reader-writer latch that protects its

entire contents.
→ Threads acquire either a read or write latch before they

access a page.

Approach #2: Slot Latches
→ Each slot has its own latch.
→ Can use a single-mode latch to reduce meta-data and

computational overhead.

29

15-445/645 (Spring 2023)

| valD
| valE

| valA
| valC

HASH TABLE – PAGE LATCHES

30

| valB

Rhash(D)
T1: Find D

R

hash(E)
T2: Insert E

W

0

1

2

W

It’s safe to release the
latch on Page #1.

15-445/645 (Spring 2023)

| valD
| valE

| valA
| valC

HASH TABLE – SLOT LATCHES

31

| valB

R

R

0

1

2
W

WR

W

hash(D)
T1: Find D

hash(E)
T2: Insert E

It’s safe to release the
latch on A

15-445/645 (Spring 2023)

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of problems:
→ Threads trying to modify the contents of a node at the

same time.
→ One thread traversing the tree while another thread

splits/merges nodes.

32

15-445/645 (Spring 2023)

38

B+TREE MULTI-THREADED EXAMPLE

33

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44
T2: Find 41

41

Rebalance!

41

???

15-445/645 (Spring 2023)

LATCH CRABBING/COUPLING

Protocol to allow multiple threads to
access/modify B+Tree at the same time.
→ Get latch for parent
→ Get latch for child
→ Release latch for parent if “safe”

A safe node is one that will not split or merge
when updated.
→ Not full (on insertion)
→ More than half-full (on deletion)

34

15-445/645 (Spring 2023)

LATCH CRABBING/COUPLING

Find: Start at root and traverse down the tree:
→ Acquire R latch on child,
→ Then unlatch parent.
→ Repeat until we reach the leaf node.

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is
latched, check if it is safe:
→ If child is safe, release all latches on ancestors

35

15-445/645 (Spring 2023)

EXAMPLE #1 – FIND 38

36

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R

R

R

R

It is now safe to
release the latch on A.

A

15-445/645 (Spring 2023)

38 41

EXAMPLE #2 – DELETE 38

37

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

W

W
We know that D will not

merge with C, so it is safe to
release latches on A and B.

We may need to coalesce B, so
we can’t release the latch on A.

15-445/645 (Spring 2023)

38 41

EXAMPLE #3 – INSERT 45

38

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

W

W

Node I will not split, so
we can release B+D.

We know that if D needs to
split, B has room so it is safe

to release the latch on A.

15-445/645 (Spring 2023)

38 41

EXAMPLE #4 – INSERT 25

39

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

W

W

W

W
25

We need to split F, so we need to
hold the latch on its parent node.

31 J

15-445/645 (Spring 2023)

What was the first step that all the update
examples did on the B+Tree?

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

20 A
W

Insert 45

OBSERVATION

40

20 A
W

Delete 38

20 A
W

Insert 25

15-445/645 (Spring 2023)

BETTER LATCHING ALGORITHM

Most modifications to a B+Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

If you guess wrong, repeat traversal
with the pessimistic algorithm.

41

15-445/645 (Spring 2023)

BETTER LATCHING ALGORITHM

Search: Same as before.
Insert/Delete:
→ Set latches as if for search, get to leaf, and set W latch on

leaf.
→ If leaf is not safe, release all latches, and restart thread

using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

42

15-445/645 (Spring 2023)

38 41

EXAMPLE #2 – DELETE 38

43

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

R

R

W

Node H will not coalesce,
so we’re safe!

15-445/645 (Spring 2023)

38 41

EXAMPLE #4 – INSERT 25

44

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

R

R

W

We need to split F, so we
have to restart and re-

execute like before.

15-445/645 (Spring 2023)

38 41

EXAMPLE #4 – INSERT 25

45

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

W

W

15-445/645 (Spring 2023)

OBSERVATION

The threads in all the examples so far have
acquired latches in a "top-down" manner.
→ A thread can only acquire a latch from a node that is

below its current node.
→ If the desired latch is unavailable, the thread must wait

until it becomes available.

But what if threads want to move from one leaf
node to another leaf node?

46

15-445/645 (Spring 2023)

LEAF NODE SCAN EXAMPLE #1

47

A

B

3

1 2 3 4

C

T1: Find Keys < 4
R

R R

Do not release latch on C
until thread has latch on B

15-445/645 (Spring 2023)

LEAF NODE SCAN EXAMPLE #2

48

A

B

3

1 2 3 4

C

T1: Find Keys < 4
T2: Find Keys > 1

R

R R

Both T1 and T2 now
hold this read latch.

Both T1 and T2 now
hold this read latch.

Only T1 holds
this read latch.

Only T2 holds
this read latch.

15-445/645 (Spring 2023)

LEAF NODE SCAN EXAMPLE #3

49

A

B

3

1 2 3 4

C

T1: Delete 4
T2: Find Keys > 1

R

R W

T2 does not know
what T1 is doing…

T2 cannot acquire
the read latch on C

15-445/645 (Spring 2023)

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed
latch acquisitions.

50

15-445/645 (Spring 2023)

CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data structures.

51

15-445/645 (Spring 2023)

NEXT CLASS

We are finally going to discuss how to execute
some queries…

52

