! [T
’"- . '
*
) b

&= Intro to Database Systems (15-445/645)

0 Index Concurrency

Control

Carnegie [lie - 3
Mellon h
University Garrod

V. e

e - 3 ’

ADMINISTRIVIA

Homewotk 2 due February 17,

Project 1 due February 19t
— Saturday office hours: February 18% 3-5 p.m.

$ZCMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

15-445 / 15-645 PARTICIPATION QUIZ

For a cuckoo hashing scheme with 1000 buckets, 2
hash functions, and 4 slots per bucket: In the
wotst-case scenario, what 1s the minimum number
of insertions (into an initially empty table) that
might require the table to be rehashed?

https:/ /bit.ly/cmu-db-quiz

$ZCMU-DB

15-445/645 (Spring 2023)

LAST TIME

B+Trees

— Use 1n 2a DBMS
— Design Choices
— Optimizations

£2CMU-DB

15-445/645 (Spring 2023)

LEAF NODE VALUES

Microsoft®

Approach #1: Record IDs @ PostgreSAL. #SQL Server

— A pointer to the location of the tuple to
which the index entry corresponds.

ORACLE

Approach #2: Tuple Data ~——

— The leaf nodes store the actual contents WS QLite % SQL Server
of the tuple.

— Secondary indexes must store the Record RMI__I sQL. ORACLE

ID as their values.

$2CMU-DB

15-445/645 (Spring 2023)

CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf

pages.

This will always be better than sorting
data for each query.

Table Pages

£2CMU-DB

15-445/645 (Spring 2023)

INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

The DBMS can first figure out all the
tuples that it needs and then sort them
based on their Page ID.

N G T W QM QT W G {
SO OO0

SO
AR PhwWwwNDNDNODN——

£2CMU-DB

15-445/645 (Spring 2023)

B+TREE DESIGN CHOICES

Node Size

Merge Threshold
Variable-Length Keys
Intra-Node Search

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

TODAY

Finish B+Tree Design and Optimization

Index Concurrency Control

10

INTRA-NODE SEARCH
Find Key=8

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation
— Approximate location of desired key
based on known distribution of keys.

$ZCMU-DB

15-445/645 (Spring 2023)

7

8

L N)

Tt

91110
818|8

iy

o

9]

8_[85

Y

_mm_cmpeq_epi32_mask(a, b)

VN

VN

N

Offset: (8-4)*7/(10-4)=4

4

5

6

7

8

9

10

*

11

OPTIMIZATIONS

Pretix Compression
Deduplication
Suffix Truncation
Pointer Swizzling
Bulk Insert

Buffer Updates

Many more...

$ZCMU-DB

15-445/645 (Spring 2023)

PREFIX COMPRESSION

Sorted keys in the same leat node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store

only unique suftfix for each key.
— Many variations.

£2CMU-DB

15-445/645 (Spring 2023)

13

robbed ||robbing|| robot
Prefix: rob
bed [|bing]|| ot

SUFFIX TRUNCATION

The keys in the inner nodes are only

used to "direct traffic".
— We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

$ZCMU-DB

15-445/645 (Spring 2023)

abc

1mn|

—

15

16

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers instead
of page ids. This avoids address
lookups from the page table.

£2CMU-DB

15-445/645 (Spring 2023)

:uRﬂgge#Q

~
)
.
[L)
. u
Al 1]]73 7
. L
"
0’. .
[}
., [
.
LS

Find Key>3

(6|9

Page #2 » <Page*>
Page #3 > <Page*>

|/~/caa’cr| |Hcaa’er|

Buffer Poole-::....

BULK INSERT

The fastest way to build a new
B+Tree for an existing table 1s to first Keys:3,7,9,13,6,1
sort the keys and then build the index

Sorted Keys: 1, 3,6, 7,9, 13
from the bottom up.

AN

"

\

—_
w

(

$ZCMU-DB

15-445/645 (Spring 2023)

B+TREE CONCLUSION

The venerable B+Tree 1s (almost) always a good
choice for your DBMS.

$ZCMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

TODAY

Finish B+Tree Design and Optimization

Index Concurrency Control

19

20

OBSERVATION

We (mostly) assumed all the data structures that we
have discussed so far are single-threaded.

But a DBMS needs to allow multiple threads to

safely access data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

K They Don't Do This!

YOLTDB
&8 redis [i]-Store

$2CMU-DB
15-445/645 (Spring 2023)

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:

— Logical Correctness: Can a thread see the data that it 1s
supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?

£2CMU-DB

15-445/645 (Spring 2023)

TODAY'S AGENDA

Latches Overview

Hash Table Latching
B+Tree Latching
ILLeaf Node Scans

$ZCMU-DB

15-445/645 (Spring 2023)

$ZCMU-DB

15-445/645 (Spring 2023)

LOCKS VS. LATCHES

Locks

— Protect the database's logical contents from other txns.
— Held for txn duration.
— Need to be able to rollback changes.

Latches

— Protect the critical sections of the DBMS's internal data
structure from other threads.

— Held for operation duration.

— Do not need to be able to rollback changes.

23!

Lccure oy

24

LOCKS VS. LATCHES

Locks Latches
Separate... User Transactions Threads

Protect... Database Contents In-Memory Data Structures

During... Entire Transactions Critical Sections

Modes... Shared, Exclusive, Update, Read, Write
Intention

Deadlock Detection & Resolution Avoidance

...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure

£2CMU-DB

15-445/645 (Spring 2023)

Source: Goetz Graefe

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

LATCH MODES

Read Mode

— Multiple threads can read the same object
at the same time.

— A thread can acquire the read latch if
another thread has it in read mode.

Write Mode

— Only one thread can access the object.
— A thread cannot acquire a write latch 1f
another thread has it in any mode.

$ZCMU-DB

15-445/645 (Spring 2023)

SEEEN EEN BN BN BN BN BN BN N By,

Compatibility Matrix

Read Write
Read v X
Write X X

25

‘_________'

26

LATCH IMPLEMENTATIONS

Approach #1: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex—> pthread_mutex — futex

B 0s Queue

std: :mutex m; B Userspace Latch

X

m.lock(); a
// Do something special. ..
m.unlock();

£2CMU-DB

15-445/645 (Spring 2023)

LATCH IMPLEMENTATIONS

Approach #2: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write
queues to avold starvation.

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock

g ﬂ a Latch

ti-6i-G o ﬂ*ﬁ

read wrlte

-2
£2CMU-DB K= Z B

15-445/645 (Spring 2023)

27

$ZCMU-DB

15-445/645 (Spring 2023)

HASH TABLE LATCHING

Easy to support concurrent access due to the

limited ways threads access the data structure.

— All threads move in the same direction and only access a
single page/slot at a time.

— Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (e.g., in the header page).

28

$ZCMU-DB

15-445/645 (Spring 2023)

HASH TABLE LATCHING

Approach #1: Page Latches

— Bach page has its own reader-writer latch that protects its
entire contents.

— Threads acquire either a read or write latch before they
access a page.

Approach #2: Slot Latches

— FEach slot has its own latch.

— Can use a single-mode latch to reduce meta-data and
computational overhead.

25

HASH TABLE - PAGE LATCHES

g T,: Insert E

/hash(E)

et onpage st 8| val

T,: Find D

hash(D)
A | val
C | val
D | val

E | val

X

30

HASH TABLE - SLOT LATCHES

T,: Find D

B | val

h a{lt S safe to release the| R

latch on A

T,: Insert E

R W

/hash(E)

$ZCMU-DB

15-445/645 (Spring 2023)

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.

32

33

B+TREE MULTI-THREADED EXAMPLE

A dm

/

10

20

12

/[

35

4

B

41

J

w
AN
(@))]
O

117

13

20

221

23

31

135

£2CMU-DB

15-445/645 (Spring 2023)

E

F

Rebalance!
: 3¥ a:P X
H\ X1

T,: Delete 44
T,: Find 41

o X

g2

LATCH CRABBING/COUPLING

Protocol to allow multiple threads to

access/modify B+Tree at the same time.

— Get latch for parent
— Get latch for child

—> Release latch for parent if “safe”

A safe node is one that will not split or merge

when updated.

— Not full (on insertion)
— More than half-full (on deletion)

$ZCMU-DB

15-445/645 (Spring 2023)

LATCH CRABBING/COUPLING

Find: Start at root and traverse down the tree:
— Acquire R latch on child,

— Then unlatch parent.

— Repeat until we reach the leaft node.

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child 1s

latched, check if it 1s safe:
— If child is safe, release all latches on ancestors

$ZCMU-DB

15-445/645 (Spring 2023)

EXAMPLE #1 - FIND 38
nfr A «

G

10 35 B

It is now safe to
release the latch on A. A R

6 T? 73 38 (|44 ||D

\/\4¢\; R

w
AN
(@))]
O

1101111012({1320(22123|317135(36 144

£2CMU-DB

15-445/645 (Spring 2023)

EXAMPLE #2 - DELETE 38

G 1a
_— w«

10 35 B

We may need to coalesce B, so
we can’t release the latchon A. R W

6 12 23 38|44 ||D
j \ ‘l' We know that D will not
merge with C, so it is safe to
31416]910|111 release latches on A and B. 1

E F G H

£2CMU-DB

15-445/645 (Spring 2023)

38

EXAMPLE #3 - INSERT 45

5

A 4u

/

W
10 35 B
[We know that if D needs to
split, B has room so it is safe
6 | to release the latch on A. 38 (1 244 ||D

O e

w
AN
(@))]
O

11

.

J

L

3135|36

221 38 (41

£2CMU-DB

15-445/645 (Spring 2023)

[

Node I will not split, so |
we can release B+D.

£2CMU-DB

15-445/645 (Spring 2023)

EXAMPLE #4 - INSERT 25

10

6

o\

12

l

3140106

9

110

11

112

13

We need to split F, so we nee
hold the latch on its parent node.

dto ~

35

44

38

39

£2CMU-DB

15-445/645 (Spring 2023)

OBSERVATION

What was the first step that all the update
examples did on the B+Tree?

7

Delete 38

%2@ A

.

~\

J

s

Insert 45

T

.

A

~

J

r

Insert 25

%

.

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

40

BETTER LATCHING ALGORITHM

Most modifications to a B+Tree will
not require a split or merge.

Instead of assuming that there will be
a split/merge, optimistically traverse
the tree using read latches.

If you guess wrong, repeat traversal
with the pessimistic algorithm.

$2CMU-DB

15-445/645 (Spring 2023)

Acta Informatica 9, 1-21 (1977)

Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that each operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures are being used to support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for cach
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high.

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements. An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-trees can be used in a multi-user envi

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees. This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been examined for possible use in a multi-user
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation [1, 6], and [11].

An accessing schema which achieves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance to the profile of the current set of users. Another property of the
* Permanent address: Institut fiir Informatik der Technischen Universitit Miinchen, Arcisstr. 21,
D-8000 Miinchen 2, Germany (Fed. Rep.)

41

42

BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:

— Set latches as if for search, get to leaf, and set W latch on
leaf.

— If leaf 1s not safe, release all latches, and restart thread
using previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

$ZCMU-DB

15-445/645 (Spring 2023)

EXAMPLE #2 - DELETE 38

Ci 1 ¢
— G

1

6 12 23

[V N Lk

11012113201227123(31735(36

w
N
(@))]
(o)
—_
S

r o
Node H will not coalesce,
so we’re safe!

£2CMU-DB \

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

EXAMPLE #4 - INSERT 25

1320

/

10

12

A 4u

w

We need to split F, so we
have to restart and re-
execute like before.

44

EXAMPLE #4 - INSERT 25

i 1h @
— G

1 35 B

W €
N

o €&
o)
5‘<\
—

—
e
E)

—

o)

|

N

)

N
ol =
w)

—

w
U‘I\
o)

o)

w

(0]

N

—
i—h/
N

£2CMU-DB

15-445/645 (Spring 2023)

$ZCMU-DB

15-445/645 (Spring 2023)

OBSERVATION

The threads in all the examples so far have

acquired latches in a "top-down" manner.

— A thread can only acquire a latch from a node that 1s
below its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if threads want to move from one leaf
node to another leaf node?

46

£2CMU-DB

15-445/645 (Spring 2023)

LEAF NODE SCAN EXAMPLE #1
T;: Find Keys < 4

= = 4
Do not release latch on C
until thread has latch on B

47

LEAF NODE SCAN EXAMPLE #2
T;: Find Keys < 4

N oty 7, ol }fT] Find Keys > 1

Only T, holds

[hT this read latch. this read latch.

£2CMU-DB

15-445/645 (Spring 2023)

$2CMU-DB

15-445/645 (Spring 2023)

LEAF NODE SCAN EXAMPLE #3

T,: Delete 4
0. 4 T-): Find KeyS > 1

T, cannot acquire
the read latch on C

€A

T, does not know
what T, is doing...

49

LEAF NODE SCANS

Latches do not support deadlock detection or
avoldance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed
latch acquisitions.

$ZCMU-DB

15-445/645 (Spring 2023)

$ZCMU-DB

15-445/645 (Spring 2023)

CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data structures.

51

NEXT CLASS

We are finally going to discuss how to execute
some quetries...

$ZCMU-DB

15-445/645 (Spring 2023)

