
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

11 Join Algorithms

15-445/645 (Spring 2023)

ADMINISTRIVIA

Homework 3 due Sunday
→ You may not turn in Homework 3 late

Midterm exam Wednesday, March 1st
→ Practice exam coming tomorrow
→ Exam accommodations? Schedule with EOS

Project 2 is available
→ First checkpoint due Friday, March 3rd (15% of P2 grade)
→ Overall due Wednesday, March 22nd (85% of P2 grade)

2

15-445/645 (Spring 2023)

LAST TIME

Finished concurrent B+Trees

Sorting
→ Top-k heap sort
→ External merge sort

Aggregations
→ External hashing

3

15-445/645 (Spring 2023)

RECALL: QUERY PLAN

The operators are arranged in a tree.

Data flows from the leaves of the tree
up towards the root.
→ We will discuss the granularity of the data

movement next week.

The output of the root node is the
result of the query.

4

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

15-445/645 (Spring 2023)

WHY DO WE NEED TO JOIN?

We normalize tables in a relational database to
avoid unnecessary repetition of information.

We then use the join operator to reconstruct the
original tuples without any information loss.

5

15-445/645 (Spring 2023)

JOIN ALGORITHMS

We will focus on performing binary joins (two
tables) using inner equijoin algorithms.
→ These algorithms can be tweaked to support other joins.
→ Multi-way joins exist primarily in research literature.

In general, we want the smaller table to always be
the left table ("outer table") in the query plan.
→ The optimizer will (try to) figure this out when generating

the physical plan.

6

15-445/645 (Spring 2023)

JOIN OPERATORS

Decision #1: Output
→ What data does the join operator emit to

its parent operator in the query plan tree?

Decision #2: Cost Analysis Criteria
→ How do we determine whether one join

algorithm is better than another?

7

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

15-445/645 (Spring 2023)

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

OPERATOR OUTPUT

For tuple r ∈ R and tuple s ∈ S that
match on join attributes, concatenate
r and s together into a new tuple.

Output contents can vary:
→ Depends on processing model
→ Depends on storage model
→ Depends on data requirements in query

8

15-445/645 (Spring 2023)

OPERATOR OUTPUT: DATA

Early Materialization:
→ Copy the values for the attributes in outer

and inner tuples into a new output tuple.

Subsequent operators in the query
plan never need to go back to the base
tables to get more data.

9

id name
123 abc

id value cdate
123 1000 2/23/23
123 2000 2/23/23

⨝
R(id,name) S(id,value,cdate)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

R.id R.name S.id S.value S.cdate
123 abc 123 1000 2/23/23
123 abc 123 2000 2/23/23

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

15-445/645 (Spring 2023)

OPERATOR OUTPUT: RECORD IDS

Late Materialization:
→ Only copy the joins keys along with the

Record IDs of the matching tuples.

Ideal(?) for column stores because the
DBMS does not copy data that is not
needed for the query.

10

id name
123 abc

id value cdate
123 1000 2/23/23
123 2000 2/23/23

⨝
R(id,name) S(id,value,cdate)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

R.id R.RID S.id S.RID
123 R.### 123 S.###
123 R.### 123 S.###

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

15-445/645 (Spring 2023)

COST ANALYSIS CRITERIA

Assume:
→ M pages in table R, m tuples in R
→ N pages in table S, n tuples in S

Cost Metric: # of I/Os to compute join

We ignore overall output costs because it depends
on the data and is the same for all algorithms.

12

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

15-445/645 (Spring 2023)

JOIN VS CROSS-PRODUCT

R⨝S is the most common operation and thus
must be carefully optimized.
R×S followed by a selection is inefficient because
the cross-product is large.

There are many algorithms for reducing join cost,
but no algorithm works well in all scenarios.

13

15-445/645 (Spring 2023)

JOIN ALGORITHMS

Nested Loop Join
→ Naïve
→ Block
→ Index
Sort-Merge Join
Hash Join
→ Simple
→ GRACE (Externally Partitioned)
→ Hybrid

14

15-445/645 (Spring 2023)

NAÏVE NESTED LOOP JOIN

15

foreach tuple r ∈ R:
foreach tuple s ∈ S:

if r and s match then emit

Outer
Inner

R(id,name) S(id,value,cdate)
id name
600 MethodMan
200 GZA
100 Andy
300 ODB
500 RZA
700 Ghostface
400 Raekwon

id value cdate
100 2222 2/23/23
500 7777 2/23/23
400 6666 2/23/23
100 9999 2/23/23
200 8888 2/23/23

R S
⨝

15-445/645 (Spring 2023)

NAÏVE NESTED LOOP JOIN

Why is this algorithm bad?
→ For every tuple in R, it scans S once
Cost: M + (m ∙ N)

16

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name
600 MethodMan
200 GZA
100 Andy
300 ODB
500 RZA
700 Ghostface
400 Raekwon

id value cdate
100 2222 2/23/23
500 7777 2/23/23
400 6666 2/23/23
100 9999 2/23/23
200 8888 2/23/23

15-445/645 (Spring 2023)

NAÏVE NESTED LOOP JOIN

Example database:
→ Table R: M = 1000, m = 100,000
→ Table S: N = 500, n = 40,000

Cost Analysis:
→ M + (m ∙ N) = 1000 + (100000 ∙ 500) = 50,001,000 IOs
→ At 0.1 ms/IO, Total time ≈ 1.3 hours

What if smaller table (S) is used as the outer table?
→ N + (n ∙ M) = 500 + (40000 ∙ 1000) = 40,000,500 IOs
→ At 0.1 ms/IO, Total time ≈ 1.1 hours

17

4 KB pages → 6 MB

15-445/645 (Spring 2023)

BLOCK NESTED LOOP JOIN

18

foreach block BR ∈ R:
foreach block BS ∈ S:

foreach tuple r ∈ BR:
foreach tuple s ∈ Bs:

if r and s match then emit

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name
600 MethodMan
200 GZA
100 Andy
300 ODB
500 RZA
700 Ghostface
400 Raekwon

id value cdate
100 2222 2/23/23
500 7777 2/23/23
400 6666 2/23/23
100 9999 2/23/23
200 8888 2/23/23

15-445/645 (Spring 2023)

BLOCK NESTED LOOP JOIN

This algorithm performs fewer disk accesses.
→ For every block in R, it scans S once.
Cost: M + ((# blocks in R) ∙ N)

19

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name
600 MethodMan
200 GZA
100 Andy
300 ODB
500 RZA
700 Ghostface
400 Raekwon

id value cdate
100 2222 2/23/23
500 7777 2/23/23
400 6666 2/23/23
100 9999 2/23/23
200 8888 2/23/23

15-445/645 (Spring 2023)

BLOCK NESTED LOOP JOIN

The smaller table should be the outer table.
We determine size based on the number of pages,
not the number of tuples.

20

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name
600 MethodMan
200 GZA
100 Andy
300 ODB
500 RZA
700 Ghostface
400 Raekwon

id value cdate
100 2222 2/23/23
500 7777 2/23/23
400 6666 2/23/23
100 9999 2/23/23
200 8888 2/23/23

15-445/645 (Spring 2023)

BLOCK NESTED LOOP JOIN

If we have B buffers available:
→ Use B-2 buffers for each block of the outer table.
→ Use one buffer for the inner table, one buffer for output.

22

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name
600 MethodMan
200 GZA
100 Andy
300 ODB
500 RZA
700 Ghostface
400 Raekwon

id value cdate
100 2222 2/23/23
500 7777 2/23/23
400 6666 2/23/23
100 9999 2/23/23
200 8888 2/23/23

15-445/645 (Spring 2023)

BLOCK NESTED LOOP JOIN

If we have B buffers available:
→ Use B-2 buffers for each block of the outer table.
→ Use one buffer for the inner table, one buffer for output.

23

foreach B - 2 pages pR ∈ R:
foreach page pS ∈ S:

foreach tuple r ∈ B - 2 pages:
foreach tuple s ∈ ps:

if r and s match then emit

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name
600 MethodMan
200 GZA
100 Andy
300 ODB
500 RZA
700 Ghostface
400 Raekwon

id value cdate
100 2222 2/23/23
500 7777 2/23/23
400 6666 2/23/23
100 9999 2/23/23
200 8888 2/23/23

15-445/645 (Spring 2023)

BLOCK NESTED LOOP JOIN

This algorithm uses B-2 buffers for scanning R.
Cost: M + (éM / (B-2)ù ∙ N)

If the outer relation fits in memory (M < B-2):
→ Cost: M + N = 1000 + 500 = 1500 I/Os
→ At 0.1ms per I/O, Total time ≈ 0.15 seconds

If we have B=102 buffer pages:
→ Cost: M + (éM / (B-2)ù ∙ N) = 1000 + 10*500 = 6000 I/Os
→ Or can switch inner/outer relations, giving us cost:

500 + 5*1000 = 5500 I/Os

24

15-445/645 (Spring 2023)

NESTED LOOP JOIN

Why is the basic nested loop join so bad?
→ For each tuple in the outer table, we must do a sequential

scan to check for a match in the inner table.

We can avoid sequential scans by using an index to
find inner table matches.
→ Use an existing index for the join.

25

15-445/645 (Spring 2023)

INDEX NESTED LOOP JOIN

Assume the cost of each index probe is some
constant C per tuple.
Cost: M + (m ∙ C)

26

foreach tuple r ∈ R:
foreach tuple s ∈ Index(ri = sj):

if r and s match then emit

Index(S.id)

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name
600 MethodMan
200 GZA
100 Andy
300 ODB
500 RZA
700 Ghostface
400 Raekwon

id value cdate
100 2222 2/23/23
500 7777 2/23/23
400 6666 2/23/23
100 9999 2/23/23
200 8888 2/23/23

15-445/645 (Spring 2023)

NESTED LOOP JOIN SUMMARY

Key Takeaways
→ Pick the smaller table as the outer table.
→ Buffer as much of the outer table in memory as possible.
→ Loop over the inner table (or use an index).

Algorithms
→ Naïve
→ Block
→ Index

27

15-445/645 (Spring 2023)

SORT-MERGE JOIN

Phase #1: Sort
→ Sort both tables on the join key(s).
→ You can use any appropriate sort algorithm
→ These phases are distinct from the sort/merge phases of

an external merge sort, from the previous class

Phase #2: Merge
→ Step through the two sorted tables with cursors and emit

matching tuples.
→ May need to backtrack depending on the join type.

28

15-445/645 (Spring 2023)

SORT-MERGE JOIN

29

sort R,S on join keys
cursorR ← Rsorted, cursorS ← Ssorted
while cursorR and cursorS:

if cursorR > cursorS:
increment cursorS

if cursorR < cursorS:
increment cursorR (and possibly

backtrack cursors)
elif cursorR and cursorS match:

emit
increment cursorS

15-445/645 (Spring 2023)

SORT-MERGE JOIN

30

R(id,name) S(id,value,cdate)
id name
600 MethodMan
200 GZA
100 Andy
300 ODB
500 RZA
700 Ghostface
200 GZA
400 Raekwon

id value cdate
100 2222 2/23/23
500 7777 2/23/23
400 6666 2/23/23
100 9999 2/23/23
200 8888 2/23/23

id name
100 Andy
200 GZA
200 GZA
300 ODB
400 Raekwon
500 RZA
600 MethodMan
700 Ghostface

id value cdate
100 2222 2/23/23
100 9999 2/23/23
200 8888 2/23/23
400 6666 2/23/23
500 7777 2/23/23

Sort!

Sort!
R.id R.name S.id S.value S.cdate
100 Andy 100 2222 2/23/23
100 Andy 100 9999 2/23/23
200 GZA 200 8888 2/23/23
200 GZA 200 8888 2/23/23
400 Raekwon 200 6666 2/23/23
500 RZA 500 7777 2/23/23

Output Buffer

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.id
WHERE S.value > 100

15-445/645 (Spring 2023)

SORT-MERGE JOIN

Sort Cost (R): 2M ∙ (1 + ⌈ logB-1 ⌈M / B⌉ ⌉)
Sort Cost (S): 2N ∙ (1 + ⌈ logB-1 ⌈N / B⌉ ⌉)
Merge Cost: (M + N)

Total Cost: Sort + Merge

31

15-445/645 (Spring 2023)

SORT-MERGE JOIN

Example database:
→ Table R: M = 1000, m = 100,000
→ Table S: N = 500, n = 40,000

With B=100 buffer pages, both R and S can be
sorted in two passes:
→ Sort Cost (R) = 2000 ∙ (1 + ⌈log99 1000 /100⌉) = 4000 I/Os
→ Sort Cost (S) = 1000 ∙ (1 + ⌈ log99 500 / 100⌉) = 2000 I/Os
→ Merge Cost = (1000 + 500) = 1500 I/Os
→ Total Cost = 4000 + 2000 + 1500 = 7500 I/Os
→ At 0.1 ms/IO, Total time ≈ 0.75 seconds

32

15-445/645 (Spring 2023)

SORT-MERGE JOIN

The worst case for the merging phase is when the
join attribute of all the tuples in both relations
contains the same value.
Cost: (M ∙ N) + (sort cost)

33

15-445/645 (Spring 2023)

WHEN IS SORT-MERGE JOIN USEFUL?

One or both tables are already sorted on join key.
Output must be sorted on join key.

The input relations may be sorted either by an
explicit sort operator, or by scanning the relation
using an index on the join key.

34

15-445/645 (Spring 2023)

HASH JOIN

If tuple r ∈ R and a tuple s ∈ S satisfy the join
condition, then they have the same value for the
join attributes.

If that value is hashed to some partition i, the R
tuple must be in ri and the S tuple in si.

Therefore, R tuples in ri need only to be compared
with S tuples in si.

35

15-445/645 (Spring 2023)

SIMPLE HASH JOIN ALGORITHM

Phase #1: Build
→ Scan the outer relation and populate a hash table using

the hash function h1 on the join attributes.

Phase #2: Probe
→ Scan the inner relation and use h1 on each tuple to jump

to a location in the hash table and find a matching tuple.

36

15-445/645 (Spring 2023)

SIMPLE HASH JOIN ALGORITHM

37

build hash table HTR for R
foreach tuple s ∈ S

output, if h1(s) ∈ HTR

h1
⋮

Hash Table
HTR

h1

R(id,name) S(id,value,cdate)

15-445/645 (Spring 2023)

HASH TABLE CONTENTS

Key: The attribute(s) that the query is joining on
→ The hash table needs to store the key to verify that we

have a correct match, in case of hash collisions.

Value: It varies
→ Depends on what the next query operators will do with

the output from the join
→ Early vs. Late Materialization

38

15-445/645 (Spring 2023)

OPTIMIZATION: PROBE FILTER

Create a probe filter (such as a Bloom Filter)
during the build phase if the key is likely to not
exist in the inner relation
→ Check the filter before probing the hash table
→ Fast because the filter fits in CPU cache

40

A B

⨝
Bloom Filter

https://en.wikipedia.org/wiki/Bloom_filter

15-445/645 (Spring 2023)

BLOOM FILTERS

Uses a bitmap to probabilistically answer set
membership queries
→ False negatives will never occur
→ False positives can sometimes occur

Insert(x):
→ Use k hash functions to set bits in the filter to 1

Lookup(x):
→ Check whether the bits are 1 for each hash function

See the Bloom Filter Calculator if you build one

41

https://hur.st/bloomfilter/

15-445/645 (Spring 2023)

BLOOM FILTERS

Insert('RZA')

Insert('GZA')

Lookup(RZA')

Lookup('Raekwon')

Lookup('ODB')

42

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash2('RZA') = 4444 % 8 = 4

hash1('RZA') = 2222 % 8 = 6

hash2('GZA') = 7777 % 8 = 1

hash1('GZA') = 5555 % 8 = 3
hash1('Raekwon') = 3333 % 8 = 5

3hash2('Raekwon') = 8899 % 8 =

hash1('ODB') = 6699 % 8 = 3
6 hash2('ODB') = 9966 % 8 =

1 11 1

→ FALSE

→ TRUE

→ TRUE

15-445/645 (Spring 2023)

HASH JOINS OF LARGE RELATIONS

What happens if we do not have enough memory
to fit the entire hash table?

We do not want to let the buffer pool manager
swap out the hash table pages at random.

43

15-445/645 (Spring 2023)

PARTITIONED HASH JOIN

Hash join when tables do not fit in
memory.
→ Partition Phase: Hash both tables on the

join attribute into partitions.
→ Probe Phase: Compares tuples in

corresponding partitions for each table.

Sometimes called GRACE Hash
Join.
→ Named after the GRACE database

machine from Japan in the 1980s.

44

GRACE
University of Tokyo

https://en.wikipedia.org/wiki/Database_machine
https://en.wikipedia.org/wiki/Database_machine

15-445/645 (Spring 2023)

GRACE PARTITIONED HASH JOIN

Hash join when tables do not fit in
memory.
→ Build Phase: Hash both tables on the

join attribute into partitions.
→ Probe Phase: Compares tuples in

corresponding partitions for each table.

Sometimes called GRACE Hash
Join.
→ Named after the GRACE database

machine from Japan in the 1980s.

45

GRACE
University of Tokyo

https://en.wikipedia.org/wiki/Database_machine
https://en.wikipedia.org/wiki/Database_machine

15-445/645 (Spring 2023)

PARTITIONED HASH JOIN PARTITION PHASE

Hash R into k buckets.
Hash S into k buckets with same hash function.
Write buckets to disk when they get full.

46

h1
⋮

HTR

h1
⋮

HTS
0
1
2

k-1

R(id,name) S(id,value,cdate)

15-445/645 (Spring 2023)

PARTITIONED HASH JOIN PROBE PHASE

Read corresponding partitions into memory one
pair at a time, hash join their contents.

47

h1
⋮

HTR

h1
⋮

HTS
0
1
2

k-1

R(id,name) S(id,value,cdate)

15-445/645 (Spring 2023)

PARTITIONED HASH JOIN EDGE CASES

If a partition does not fit in memory, recursively
partition it with a different hash function
→ Repeat as needed
→ Eventually hash join the corresponding (sub-)partitions

If a single join key has so many matching records
that they don’t fit in memory, use a block nested
loop join for that key

48

15-445/645 (Spring 2023)

RECURSIVE PARTITIONING

49

h1 h2

⋮

R(id,name) 0

1'

1''

1'''

k-1

h1

0

k-1

1 h2

S(id,value,cdate)

15-445/645 (Spring 2023)

ANALYSIS OF PARTITIONED HASH JOIN

How big a table can be joined without recursive
partitioning?
→ Up to B-1 partitions
→ Each could be about as big as B-2 pages

Answer: About (B-1) ∙ (B-2) pages
→ If the partitions are approximately equal size, a table of

N pages needs about sqrt(N) buffers
→ In practice, use a "fudge factor" f > 1: sqrt(f ∙ N)
→ Only partitions of the outer table need to fit in memory

50

15-445/645 (Spring 2023)

COST OF PARTITIONED HASH JOIN

If we don’t need recursive partitioning:
→ Cost: 3(M + N)

Partition phase:
→ Read+write both tables
→ 2(M+N) I/Os
Probe phase:
→ Read both tables (in total, one partition at a time)
→ M+N I/Os

51

15-445/645 (Spring 2023)

PARTITIONED HASH JOIN

Example database:
→ M = 1000, m = 100,000
→ N = 500, n = 40,000

Cost Analysis:
→ 3 ∙ (M + N) = 3 ∙(1000 + 500) = 4,500 IOs
→ At 0.1 ms/IO, Total time ≈ 0.45 seconds

52

15-445/645 (Spring 2023)

OPTIMIZATION: HYBRID HASH JOIN

Use some buckets for a simple in-memory hash
join, have some buckets spill to disk.

53

h1
⋮

h1
⋮

0
1
2

k-1

R(id,name) S(id,value,cdate)

15-445/645 (Spring 2023)

HASH JOIN OBSERVATIONS

The inner table can be any size.
→ Only outer table (or its partitions) need to fit in memory

If we know the size of the outer table, then we can
use a static hash table.
→ Less computational overhead

If we do not know the size, then we must use a
dynamic hash table or allow for overflow pages.

54

15-445/645 (Spring 2023)

JOIN ALGORITHMS: SUMMARY

55

Algorithm IO Cost Example

Naïve Nested Loop Join M + (m · N) 1.3 hours

Block Nested Loop Join M + (éM / (B-2)ù · N) 0.55 seconds

Index Nested Loop Join M + (m · C) Variable

Sort-Merge Join M + N + (sort cost) 0.75 seconds

Hash Join 3 · (M + N) 0.45 seconds

15-445/645 (Spring 2023)

CONCLUSION

Hashing is almost always better than sorting for
operator execution.

Caveats:
→ Sorting is better on non-uniform data.
→ Sorting is better when result needs to be sorted.

Good DBMSs use either (or both).

56

15-445/645 (Spring 2023)

NEXT CLASS

Composing operators together to execute queries.

57

