{ "/A .L ..\.
S

&= Intro to Database Systems (15-445/645)

1 Concurrency

Control Theory

Carnegie Charlie
Viellon .
University Garrod €




ADMINISTRIVIA

Project 2 still ongoing
— Due Wednesday, March 2204
— Special office hours today and tomorrow 5 — 7 p.m.

Project 3 released late this week

Final exam Monday, May 1%, 8:30 — 11:30 a.m.
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LAST TIME: QUERY OPTIMIZATION

Heuristics / Rules

— Rewrite the query to remove stupid / inefficient things.

— These techniques may need to examine catalog, but they
do not need to examine data.

Cost-based Search

— Use a2 model to estimate the cost of executing a plan.
— Enumerate multiple equivalent plans for a query and pick
the one with the lowest cost.
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COURSE STATUS

A DBMS's concurrency control and
recovery components permeate

throughout the design of its entire Operator Execution
architecture.

Query Planning

Access Methods

Buffer Pool Manager

DISk Manager
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MOTIVATION

We both change the same record in a « Lost Updates

table at the same time. Concurrency Control
How to avoid race conditions?

You transfer $100 between bank « Durabi"ty

accounts but there is a power failure. Recovery
What is the corrvect database state?
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CONCURRENCY CONTROL & RECOVERY

Valuable properties of DBMS:s.

Based on concept of transactions with ACID
properties.

I et's talk about transactions...
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TRANSACTIONS

A transaction (txn) is the execution of a sequence

of one or more operations (e.g., SQL queries) on a
database to perform some higher-level function.

It 1s the basic unit of change in a DBMS.



TRANSACTION EXAMPLE

Move $100 from Andy's bank account to his
bookie's account.

Transaction:
— Check whether Andy has $100.

— Deduct $100 from his account.
— Add $100 to his bookie's account.
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STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.

— One and only one txn can be running at the same time in

the DBMS.

Before a txn starts, copy the entire database to a

new file and make all changes to that file.

— If the txn completes successfully, overwrite the original
file with the new one.

— If the txn fails, just remove the dirty copy.
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PROBLEM STATEMENT

A (potentially) better approach 1s to allow
concurrent execution of independent transactions.

Why do we want that?
— Better utilization/throughput
— Increased response timCS tO users.

But we also would like:
— Correctness
— Fairness
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PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
— Temporary internal inconsistency (ok, unavoidable)
— Permanent inconsistency (bad!)

We need formal correctness criteria to determine
whether an interleaving 1s valid.

Caveat: We’re only concerned with what’s
happening inside the database: reads, writes, etc.
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FORMAL DEFINITIONS

Database: A fixed set of named data objects (e.g,,
AB,C,..).

— We do not need to define what these objects are now.

— We will discuss how to handle inserts/deletes later.

Transaction: A sequence of read and write
operations (R(A), W(B), ...)

— DBMS's abstract view of a user program

14
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TRANSACTIONS IN SQL

A new txn starts with the BEGIN command.

The txn stops with either COMMIT or ABORT:

— If commit, the DBMS either saves all the txn's changes
or aborts it.

— If abort, all changes are undone so that it's like as if the
txn never executed at all.

Abort can be either self-inflicted or caused by the
DBMS.
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CORRECTNESS CRITERIA: ACID

Atomicity All actions 1n txn happen, or none happen.
"All or nothing..."

Qonsistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.

"It Jooks correct to me..."

Isolation Fach txn sees the DB as if it’s running
alone in the DB.

" Al by myself..."

Qurability If a txn commits, its effects persist.
£2CMU-DB HI will survive. . . ¢
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TODAY'S AGENDA

Atomicity
Isolation
Durability

Consistency
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ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:
— Commit after completing all its actions.
— Abort (or be aborted by the DBMYS) after executing some

actions.

DBMS guarantees that txns are atomic.

— From user's point of view: txn always either executes all
1ts actions or executes no actions at all.
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ATOMICITY OF TRANSACTIONS

Scenario #1:
— We take $100 out of Andy's account but then the DBMS
aborts the txn before we transfer it.

Scenario #2:
— We take $100 out of Andy's account but then there is a
power failure before we transfer it.

What should be the correct state of Andy's account
after both txns abort?
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MECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging

— DBMS logs all actions so that it can undo the actions of
aborted transactions.

— Maintain undo records both in memory and on disk.

— Think of this like the black box in airplanes...

Logging 1s used by almost every DBMS.
— Audit Trail

— Efficiency Reasons
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15-445/645 (Spring 2023)



MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging

— DBMS makes copies of pages and txns make changes to
those copies. Only when the txn commits 1s the page
made visible to others.

— Originally from IBM System R.

Few systems do this:
— CouchDB

— Tokyo Cabinet

— LMDB (Openl.LDAP)
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ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it

was running by itself.
— Hasier programming model to reason about.

But the DBMS achieves concurrency by
interleaving the actions (reads/writes of DB
objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

22



MECHANISMS FOR ENSURING ISOLATION
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A concurrency control protocol is how the
DBMS decides the proper interleaving of
operations from multiple transactions.

Two categories of protocols:

— Pessimistic: Don't let problems arise in the first place.

— Optimistic: Assume conflicts are rare, deal with them
after they happen.
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EXAMPLE

Assume at first A and B each have $1000.

T, transfers $100 from A's account to B's

T, credits both accounts with 6% interest.

T

T

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT
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EXAMPLE

Assume at first A and B each have $1000.

What are the possible outcomes of running T, and T,?

T

T

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT
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SERIAL EXECUTION EXAMPLE

Schedule Schedule
)~ - B e e N
: T T I : T T,
| | BEGIN | I BEGIN
1] A=A-100 I ! A=A%1.06
| | B=B+100 | I B=B*1.06
I | COMMIT I | COMMIT
| BEGIN ! | | BEGIN
I A=A*1.06 | I I | A=A-100
| B=Bx1.06 | | | | B=B+100
I COMMIT i I | COMMIT
| I I
: I

c — | £ —

] [ A=954, B=1166 je—r1 I » A=960, B=1160 |
N e e e e e e o i — ——— / N e e e e e e i ————
A+B=$2120

\---------'
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EXAMPLE

Assume at first A and B each have $1000.

What are the possible outcomes of running T, and T,?
— More than one! But A+B should be $2000*1.06=$2120

There 1s no guarantee that T; will execute before T, or
vice-versa, if both are submitted together.

But the net effect must be equivalent to these two
transactions running serially in some order.

27
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EXAMPLE

Legal outcomes:
— A=954 B=1166— A+B=$2120
— A=9060,B=1160 — A+B=%$2120

The outcome depends on whether T, executes
before T, or vice versa.

28
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INTERLEAVING TRANSACTIONS

We interleave txns to maximize concurrency.
— Slow disk/network 1/0O.
— Multi-core CPUSs.

When one txn stalls because of a resource (e.g,,
page fault), another txn can continue executing and
make forward progress.

29



INTERLEAVING EXAMPLE (GOOD)

| A=954, B=1166 |¢ » A=954, B=1166 |

Schedule Schedule
)+~ B e va N R
| T Tp I | T T, I

I 1
| | BEGIN | I | BEGIN |
1| A=A-100 ! 1 | A=A-100 :
| BEGIN | || B=B+100 l
1 ASAXT.06 11 e | COMMIT |
| | COMMIT | | A=A%1.06 | I
| B=Bx1.06 | | : B=Bx1.06 | |
I COMMIT I | COMMIT I
I I I 1
I I | |
I | I |
| ! | I
\ / \ /

S2CMU-DB A+B=$2120
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INTERLEAVING EXAMPLE (BAD)

___Schedule ___
T T, )
| [ BEGIN |
|| A=A-T00 |
| BEGIN I A=954, B=1166
| A=AX1.06 | 1 E

B=Bx1.06

: COMIT | i or
|| B=B+100 | A=960, B=1160
I | coMMIT :
l l
i I
| I
\

A=954, B=1160

~

AN I I N BN BN B B S S S e e .

ﬁ! The bank is missing 56!
SCMUDB A+B=%$2114
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INTERLEAVING EXAMPLE (BAD)

Schedule DBMS View
l’ -------------- \\ , —————————————— n\
] L

|

1 | BEGIN I of it
|| aoh-100 | iﬁ%ﬁ&lels correct |f|.t IS
! BEGIN |1 wabent to some sdrial
I A=A*1.06 BEGIN I
| B=B*1.06 ~fuu R(A)
I COMMIT 1 W(A)
| | B=B+100 ! I R(B)
| | COMMIT .~""'=====::: ] I W(B)
|
|
|
|
\

N COMMIT
= _ I R(B)
A=954, B=1160 | WeB)

I
______________ | |COMMIT

SCMUDB A+B=%$2114 Ve &
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FORMAL PROPERTIES OF SCHEDULES

Serial Schedule

— A schedule that does not interleave the actions of
different transactions.

Equivalent Schedules
— For any database state, the effect of executing the first
schedule 1s identical to the effect of executing the second

schedule.
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FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

— A schedule that is equivalent to some serial execution of
the transactions.

— If each transaction preserves consistency, every
serializable schedule preserves consistency.

Serializability 1s a less intuitive notion of
correctness compared to txn initiation time or
commit order, but it provides the DBMS with

more tlexibility in scheduling operations.
— More flexibility means better parallelism.

34



£2CMU-DB

15-445/645 (Spring 2023)

CONFLICTING OPERATIONS

Serializability can be enforced efficiently based on
the notion of conflicting operations.

Two operations conflict if:
— They are by different transactions,
— They are on the same object and =1 of them i1s a write.

Interleaved Execution Anomalies
— Read-Write Conflicts (R-W)

— Write-Read Conflicts (W-R)

— Write-Write Conflicts (W-W)

35



READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

BEGIN
RCA)
W(A)
COMMIT

\---

$2CMU-DB
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$10
$19
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WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

$12
$15

$2CMU-DB
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WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted
data from another uncommitted txn.

T2
BEGIN
W(A) $19
Ww(B) Charlie
COMMIT :
i
I
i
]
V4

S‘i CMU.DB --------------

15-445/645 (Spring 2023)
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FORMAL PROPERTIES OF SCHEDULES

We can use these contlicts to prove that a schedule
of operations 1s serializable.

There are ditferent subtypes of serializability:

— Conflict Serializabili Most DBMSs support this
— View Serializability (or something like this).
No DBMS does this.

£2CMU-DB
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CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
— They involve the same actions of the same transactions.
— Every pair of conflicting actions is ordered the same way:.

Schedule S is conflict serializable if:
— S is conflict equivalent to some serial schedule.
— Intuition: You can transform S into a serial schedule by

swapping consecutive non-conflicting operations of
different transactions.

40



CONFLICT SERIALIZABILITY INTUITION

Schedule Serial Schedule

P - - —— (R Sy ————— ~
S T, T, T, )
| | BEGIN BEGIN | | | BEGIN :
|| RCA) : 1 | RCA) !
L wea) . I | WCA) .
| R Ry L= ) =
1| R | == | | W(B)

BILIGY R(A) I = 1] commT BEGIN :
1| W(B) W(A) ! l R(A) :
| | comMIT l ! W(A) I
| R(B) : I R(B) :
! W(B) I ! W(B) I
| COMMIT | |} I COMMIT |1
) S, S s | /'

£2CMU-DB
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CONFLICT SERIALIZABILITY INTUITION

Schedule Serial Schedule
, -------------- ‘\ , -------------- N‘
: T, T, : : T, T, I
: BEGIN BEGIN I : BEGIN :
1| R(A) | 1| RGA) !
: R(A) ! L WA -
I WCA) COMMIT BEGIN 0
| i
| W(A)/ | ] R(A) :
1 | COMMI OMMIT ! : W(A) i
! I I COMMIT !
: oo i i |
I I I I
I I I I
i I ! i
| ' : I
\ ! \ /'

(4
|
|
|
|
1
|
|
|
|
|
|
|
|
i
\
’

£2CMU-DB
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DEPENDENCY GRAPHS

One node per txn.
Edge ffom Ti to TJ lf

— An operation 0; of T; conflicts with an
operation 05 of T; and
— 0; appears earlier in the schedule than O;

Jo

Also known as a precedence graph.

A schedule is conflict serializable iff
its dependency graph is acyclic.

£2CMU-DB
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Dependency Graph

44



EXAMPLE #1

Schedule Dependency Graph
L N~ .~ ~\ SRR T mm———
: T, T, : : A
| | BEGIN BEGIN I !
[ oo
W(A) I
| o e TR : I
: W(A) 1 ! B
I R(B) ! . N B y;
! R(B >/ COMMIT : The cycle in the graph
Il w(B) | reveals that the output
' commIT : of T, depends on T,, and
| P N ’ \ vice-versa. )

£2CMU-DB
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EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph

R(A)

W(CA) BEGIN
% R(A)
WCA)

BEGIN | COMMIT

-----\
-----’

\---------‘
F
i
\

’—--------~

R(B)

W(B) Is this equivalent to a serial execution?
R(B) o | COMMIT
W(B) YeSZ T2, T-I, T3
COMMIT — T, is after T, in the equivalent serial

schedule, although it starts before it!
£2CMU-DB
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VIEW SERIALIZABILITY

Alternative (broader) notion of serializability.

Schedules S; and S, are view equivalent if:

— If T, reads initial value of A in S;, then T, also reads
initial value of A in S,.

— If T, reads value of A written by T, in S;, then T, also
reads value of A written by T, in S,.

— If T, writes final value of A in S,, then T4 also writes final
value of A in S,.

49



VIEW SERIALIZABILITY

Schedule Dependency Graph

W(A)

COMMIT | COMMIT | COMMIT

’-------\
\-------,

’—--------~
\---------‘

£2CMU-DB
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VIEW SERIALIZABILITY

Schedule Schedule
" ---------------- \‘ ---------------- \\
| T1 T2 T3 | T1 T2 T3 |
| | BEGIN ! BEGIN :
1| R(A) BEGIN [ R(A) i
: W(A) ! W(A) :
| BEGIN | COMMIT |
W(A) BEGIN
I Qv i W(A) I
| | COMMIT | COMMIT | COMMIT !
I BEEEN~_ |
| Allows all conflict Qv D
I serializable schedules I
'\ ( + "blind writes" = __,'

£2CMU-DB
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SERIALIZABILITY

View Serializability allows for (slightly) more

schedules than Conflict Serializability does.
— But it 1s difficult to enforce efficiently.

Neither definition allows all serializable schedules.

£2CMU-DB
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SERIALIZABILITY

In practice, Conflict Serializability is what
systems support because it can be enforced
efficiently.

To allow more concurrency, some special cases get
handled separately at the application level.
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TRANSACTION DURABILITY

All the changes of committed transactions should

be persistent.
— No torn updates.
— No changes from failed transactions.

The DBMS can use either logging or shadow
paging to ensure that all changes are durable.

£2CMU-DB
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CONSISTENCY

The database is consistent it it satisfies application-

specific correctness constraints.

— Implicit: Informally specified real-world constraints
— Explicit: DBMS-enforced integrity constraints

Future transactions see the etfects of past
committed transactions.

A transaction is consistent if 1t takes the database
from a consistent state to a consistent state.

£2CMU-DB
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CORRECTNESS CRITERIA: ACID

Atomicity All actions 1n txn happen, or none happen.
"All or nothing..."

Qonsistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.

"It looks correct to me..."

Isolation Fach txn sees the DB as if it’s running
alone in the DB.
"All by myself..."

Qurability If a txn commits, its effects persist.

$2CMU-DB HI will survive. . . ¢
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C O N ‘ L U S Spanner: Google’s Globally-Distributed Database

James C. Corberr, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JT Furman,
Sanjay Ghemawart, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Concurrency COﬁtrOl and reCO SPannerisGoogle‘s:::s:hll-:c;ulﬁ-version.globally,
most important functions pro

Google, Inc.

tency over higher availability, as long as they can survive
1 or 2 datacenter failures,

distributed, and synchronously-replicated database. It is SPa""er $ main focus is managing cross-datacenter
the first system to distribute data at global scale and sup- l.ephc.ated ‘?““ff but we have a]s¢.) SPent a great deal of
port externally-consistent distributed transactions. This time in desig and P 1ng Impor database
paper describes how Spanneris structured, its feature set, features on top of our distributed-systems infrastructure.

Concurrency control is auto

the rationale underlying various design decisions, anda ~ Even though many projects happily use ?ig.tab]e (9], we
novel time API that exposes clock uncertainty. This AP[ have also consistently received complaints from users

and its implementation are critical to supporting exter- lh.al B(glab]e canbe difficult o use for some Kinds of ap-
nal consistency and a variety of powerful features: non- Plications: those that have corvnplex‘ e.volvmg schemas:
blocking reads in the past, lock-free read-only transac- Or, those that v&(ant‘s[mng Fo?slslen?y in the presence of
tions, and atomic schema changes, across all of Spanner. Wide-area replication. (Similar chims have been made

by other authors [37].) Many applications at Google

1 Introduction

have chosen to use Megastore because of its semi-
relational data model and support for synchronous repli-

pite its relatively poor write throughput. As a
€, Spanner has evolved from a Bigtable-like

We believe it

L b Der
1s better to have application programmers detgl “;1;}; Eot_
to overuse of transaction
formance problems due f bo
tlenecks arise, rather than always coding around the

of transactions.

SOOI 20T

key-value store into 2 temporal multi-version
ata is stored in schematized semi-relational
is versioned, and each version is automati-
amped with its commit time; old versions of
dject to configurable garbage-collection poli-
oplications can read data at old timestamps.
iPorts general-purpose transactions, and pro-
“based query language.

ally-distributed database, Spanner provides
esting features. First, the replication con-
r data can be dynamically controlled at a
applications. Applications can specify con-
fitrol which datacenters contain which data,
is from its users (to control read latency),
as are from each other (to control write la-
OW many replicas are maintained (to con-
availability, and read performance). Data
lynamically and transparently moved be-
tters by the system to balance resource us-
centers. Second, Spanner has two features
It to implement in a distributed database: it

$2CMU-DB
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NEXT CLASS

Two-Phase Locking

Isolation Levels
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