
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

15 Concurrency
Control Theory

15-445/645 (Spring 2023)

ADMINISTRIVIA

Project 2 still ongoing
→ Due Wednesday, March 22nd
→ Special office hours today and tomorrow 5 – 7 p.m.

Project 3 released late this week

Final exam Monday, May 1st, 8:30 – 11:30 a.m.

2

15-445/645 (Spring 2023)

LAST TIME: QUERY OPTIMIZATION

Heuristics / Rules
→ Rewrite the query to remove stupid / inefficient things.
→ These techniques may need to examine catalog, but they

do not need to examine data.

Cost-based Search
→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick

the one with the lowest cost.

3

15-445/645 (Spring 2023)

Concurrency Control

Recovery

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

COURSE STATUS

A DBMS's concurrency control and
recovery components permeate
throughout the design of its entire
architecture.

4

15-445/645 (Spring 2023)

MOTIVATION

We both change the same record in a
table at the same time.
How to avoid race conditions?

You transfer $100 between bank
accounts but there is a power failure.
What is the correct database state?

5

Lost Updates
Concurrency Control

Durability
Recovery

15-445/645 (Spring 2023)

CONCURRENCY CONTROL & RECOVERY

Valuable properties of DBMSs.
Based on concept of transactions with ACID
properties.

Let's talk about transactions…

6

15-445/645 (Spring 2023)

TRANSACTIONS

A transaction (txn) is the execution of a sequence
of one or more operations (e.g., SQL queries) on a
database to perform some higher-level function.

It is the basic unit of change in a DBMS.

7

15-445/645 (Spring 2023)

TRANSACTION EXAMPLE

Move $100 from Andy's bank account to his
bookie's account.

Transaction:
→ Check whether Andy has $100.
→ Deduct $100 from his account.
→ Add $100 to his bookie's account.

8

15-445/645 (Spring 2023)

STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.
→ One and only one txn can be running at the same time in

the DBMS.

Before a txn starts, copy the entire database to a
new file and make all changes to that file.
→ If the txn completes successfully, overwrite the original

file with the new one.
→ If the txn fails, just remove the dirty copy.

9

15-445/645 (Spring 2023)

PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?
→ Better utilization/throughput
→ Increased response times to users.

But we also would like:
→ Correctness
→ Fairness

10

15-445/645 (Spring 2023)

PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
→ Temporary internal inconsistency (ok, unavoidable)
→ Permanent inconsistency (bad!)

We need formal correctness criteria to determine
whether an interleaving is valid.

Caveat: We’re only concerned with what’s
happening inside the database: reads, writes, etc.

12

15-445/645 (Spring 2023)

FORMAL DEFINITIONS

Database: A fixed set of named data objects (e.g.,
A, B, C, …).
→ We do not need to define what these objects are now.
→ We will discuss how to handle inserts/deletes later.

Transaction: A sequence of read and write
operations (R(A), W(B), …)
→ DBMS's abstract view of a user program

14

15-445/645 (Spring 2023)

TRANSACTIONS IN SQL

A new txn starts with the BEGIN command.

The txn stops with either COMMIT or ABORT:
→ If commit, the DBMS either saves all the txn's changes

or aborts it.
→ If abort, all changes are undone so that it's like as if the

txn never executed at all.

Abort can be either self-inflicted or caused by the
DBMS.

15

15-445/645 (Spring 2023)

CORRECTNESS CRITERIA: ACID

16

Atomicity All actions in txn happen, or none happen.
"All or nothing…"

Consistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.
"It looks correct to me…"

Isolation Each txn sees the DB as if it’s running
alone in the DB.
"All by myself…"

Durability If a txn commits, its effects persist.
"I will survive…"

15-445/645 (Spring 2023)

TODAY'S AGENDA

Atomicity
Isolation
Durability
Consistency

17

15-445/645 (Spring 2023)

ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:
→ Commit after completing all its actions.
→ Abort (or be aborted by the DBMS) after executing some

actions.

DBMS guarantees that txns are atomic.
→ From user's point of view: txn always either executes all

its actions or executes no actions at all.

18A

15-445/645 (Spring 2023)

ATOMICITY OF TRANSACTIONS

Scenario #1:
→ We take $100 out of Andy's account but then the DBMS

aborts the txn before we transfer it.

Scenario #2:
→ We take $100 out of Andy's account but then there is a

power failure before we transfer it.

What should be the correct state of Andy's account
after both txns abort?

19A

15-445/645 (Spring 2023)

MECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging
→ DBMS logs all actions so that it can undo the actions of

aborted transactions.
→ Maintain undo records both in memory and on disk.
→ Think of this like the black box in airplanes…

Logging is used by almost every DBMS.
→ Audit Trail
→ Efficiency Reasons

20A

15-445/645 (Spring 2023)

MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging
→ DBMS makes copies of pages and txns make changes to

those copies. Only when the txn commits is the page
made visible to others.

→ Originally from IBM System R.

Few systems do this:
→ CouchDB
→ Tokyo Cabinet
→ LMDB (OpenLDAP)

21A

15-445/645 (Spring 2023)

ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it
was running by itself.
→ Easier programming model to reason about.

But the DBMS achieves concurrency by
interleaving the actions (reads/writes of DB
objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

22I

15-445/645 (Spring 2023)

MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the
DBMS decides the proper interleaving of
operations from multiple transactions.

Two categories of protocols:
→ Pessimistic: Don't let problems arise in the first place.
→ Optimistic: Assume conflicts are rare, deal with them

after they happen.

23I

15-445/645 (Spring 2023)

EXAMPLE

Assume at first A and B each have $1000.
T1 transfers $100 from A's account to B's
T2 credits both accounts with 6% interest.

24

BEGIN
A=A-100
B=B+100
COMMIT

T1
BEGIN
A=A*1.06
B=B*1.06
COMMIT

T2

I

15-445/645 (Spring 2023)

EXAMPLE

Assume at first A and B each have $1000.
What are the possible outcomes of running T1 and T2?

25

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

T1 T2

I

15-445/645 (Spring 2023)

SERIAL EXECUTION EXAMPLE

26

A=954, B=1166 A=960, B=1160

TI
M
E

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule Schedule

A+B=$2120

I

15-445/645 (Spring 2023)

EXAMPLE

Assume at first A and B each have $1000.
What are the possible outcomes of running T1 and T2?
→ More than one! But A+B should be $2000*1.06=$2120

There is no guarantee that T1 will execute before T2 or
vice-versa, if both are submitted together.
But the net effect must be equivalent to these two
transactions running serially in some order.

27I

15-445/645 (Spring 2023)

EXAMPLE

Legal outcomes:
→ A=954, B=1166
→ A=960, B=1160

The outcome depends on whether T1 executes
before T2 or vice versa.

28

→ A+B=$2120
→ A+B=$2120

I

15-445/645 (Spring 2023)

INTERLEAVING TRANSACTIONS

We interleave txns to maximize concurrency.
→ Slow disk/network I/O.
→ Multi-core CPUs.

When one txn stalls because of a resource (e.g.,
page fault), another txn can continue executing and
make forward progress.

29I

15-445/645 (Spring 2023)

INTERLEAVING EXAMPLE (GOOD)

30

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡
BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=954, B=1166

I
TI
M
E

A+B=$2120

15-445/645 (Spring 2023)

INTERLEAVING EXAMPLE (BAD)

31

≢
A=954, B=1166

or
A=960, B=1160

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

The bank is missing $6!

Schedule
T1 T2

A=954, B=1160

A+B=$2114

I
TI
M
E

15-445/645 (Spring 2023)

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

DBMS View
T1 T2

INTERLEAVING EXAMPLE (BAD)

32

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule
T1 T2

A=954, B=1160

I
TI
M
E

A+B=$2114

A schedule is correct if it is
equivalent to some serial
execution.

15-445/645 (Spring 2023)

FORMAL PROPERTIES OF SCHEDULES

Serial Schedule
→ A schedule that does not interleave the actions of

different transactions.

Equivalent Schedules
→ For any database state, the effect of executing the first

schedule is identical to the effect of executing the second
schedule.

33I

15-445/645 (Spring 2023)

FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule
→ A schedule that is equivalent to some serial execution of

the transactions.
→ If each transaction preserves consistency, every

serializable schedule preserves consistency.

Serializability is a less intuitive notion of
correctness compared to txn initiation time or
commit order, but it provides the DBMS with
more flexibility in scheduling operations.
→ More flexibility means better parallelism.

34I

15-445/645 (Spring 2023)

CONFLICTING OPERATIONS

Serializability can be enforced efficiently based on
the notion of conflicting operations.
Two operations conflict if:
→ They are by different transactions,
→ They are on the same object and ≥1 of them is a write.

Interleaved Execution Anomalies
→ Read-Write Conflicts (R-W)
→ Write-Read Conflicts (W-R)
→ Write-Write Conflicts (W-W)

35I

15-445/645 (Spring 2023)

READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

36

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

I

15-445/645 (Spring 2023)

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

37

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$15

I

15-445/645 (Spring 2023)

WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted
data from another uncommitted txn.

38

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Charlie
$19

T1 T2

$10

Andy

I

15-445/645 (Spring 2023)

FORMAL PROPERTIES OF SCHEDULES

We can use these conflicts to prove that a schedule
of operations is serializable.

There are different subtypes of serializability:
→ Conflict Serializability
→ View Serializability

39

Most DBMSs support this
(or something like this).

No DBMS does this.

I

15-445/645 (Spring 2023)

CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
→ They involve the same actions of the same transactions.
→ Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:
→ S is conflict equivalent to some serial schedule.
→ Intuition: You can transform S into a serial schedule by

swapping consecutive non-conflicting operations of
different transactions.

40I

15-445/645 (Spring 2023)

CONFLICT SERIALIZABILITY INTUITION

41

≡
BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

R(B) W(A)

R(A)
R(B) W(A)R(A)
R(B)

W(B)
W(B)

W(A)
R(A)

W(B)

Schedule
T1 T2

Serial Schedule
T1 T2

I
TI
M
E

15-445/645 (Spring 2023)

Schedule
T1 T2

Serial Schedule
T1 T2

CONFLICT SERIALIZABILITY INTUITION

42

BEGIN
R(A)

W(A)
COMMIT

BEGIN

R(A)
W(A)

COMMIT

BEGIN
R(A)
W(A)
COMMIT BEGIN

R(A)
W(A)
COMMIT

≢

TI
M
E

I

15-445/645 (Spring 2023)

DEPENDENCY GRAPHS

One node per txn.
Edge from Ti to Tj if:
→ An operation Oi of Ti conflicts with an

operation Oj of Tj and
→ Oi appears earlier in the schedule than Oj.
Also known as a precedence graph.

A schedule is conflict serializable iff
its dependency graph is acyclic.

44

Ti Tj

I

Dependency Graph

15-445/645 (Spring 2023)

EXAMPLE #1

45

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B

The cycle in the graph
reveals that the output

of T1 depends on T2, and
vice-versa.

Schedule
T1 T2

Dependency Graph

I
TI
M
E

15-445/645 (Spring 2023)

EXAMPLE #2 – THREE TRANSACTIONS

47

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule
T1 T2 T3

Yes: T2, T1, T3
→ T3 is after T2 in the equivalent serial

schedule, although it starts before it!

I
TI
M
E

Dependency Graph

15-445/645 (Spring 2023)

VIEW SERIALIZABILITY

Alternative (broader) notion of serializability.

Schedules S1 and S2 are view equivalent if:
→ If T1 reads initial value of A in S1, then T1 also reads

initial value of A in S2.
→ If T1 reads value of A written by T2 in S1, then T1 also

reads value of A written by T2 in S2.
→ If T1 writes final value of A in S1, then T1 also writes final

value of A in S2.

49I

15-445/645 (Spring 2023)

VIEW SERIALIZABILITY

50

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A
AA

A

T1 T2

T3

Schedule
T1 T2 T3

I
TI
M
E

Dependency Graph

15-445/645 (Spring 2023)

VIEW SERIALIZABILITY

51

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡VIEW

Schedule
T1 T2 T3

Allows all conflict
serializable schedules

+ "blind writes"

Schedule
T1 T2 T3

I
TI
M
E

15-445/645 (Spring 2023)

SERIALIZABILITY

View Serializability allows for (slightly) more
schedules than Conflict Serializability does.
→ But it is difficult to enforce efficiently.

Neither definition allows all serializable schedules.

52I

15-445/645 (Spring 2023)

SERIALIZABILITY

In practice, Conflict Serializability is what
systems support because it can be enforced
efficiently.

To allow more concurrency, some special cases get
handled separately at the application level.

53I

15-445/645 (Spring 2023)

All Schedules

UNIVERSE OF SCHEDULES

54

View Serializable

Conflict Serializable

I

Serial

15-445/645 (Spring 2023)

TRANSACTION DURABILITY

All the changes of committed transactions should
be persistent.
→ No torn updates.
→ No changes from failed transactions.

The DBMS can use either logging or shadow
paging to ensure that all changes are durable.

55D

15-445/645 (Spring 2023)

CONSISTENCY

56C

The database is consistent if it satisfies application-
specific correctness constraints.
→ Implicit: Informally specified real-world constraints
→ Explicit: DBMS-enforced integrity constraints

Future transactions see the effects of past
committed transactions.

A transaction is consistent if it takes the database
from a consistent state to a consistent state.

15-445/645 (Spring 2023)

CORRECTNESS CRITERIA: ACID

57

Atomicity All actions in txn happen, or none happen.
"All or nothing…"

Consistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.
"It looks correct to me…"

Isolation Each txn sees the DB as if it’s running
alone in the DB.
"All by myself…"

Durability If a txn commits, its effects persist.
"I will survive…"

15-445/645 (Spring 2023)

CONCLUSION

Concurrency control and recovery are among the
most important functions provided by a DBMS.
Concurrency control is automatic
→ System automatically inserts lock/unlock requests and

schedules actions of different txns.
→ Ensures that resulting execution is equivalent to executing

the txns one after the other in some order.

58

15-445/645 (Spring 2023)

NEXT CLASS

Two-Phase Locking
Isolation Levels

65

