{ "/A .L ..\.
S

&= Intro to Database Systems (15-445/645)

16 Two-Phase Locking

Carnegie Charlie
Viellon .
University Garrod €

ADMINISTRIVIA

Project 2 due tonight!
Project 3 released today

Final exam Monday, May 1*, 8:30 — 11:30 a.m.

£2CMU-DB

15-445/645 (Spring 2023)

LAST TIME: CONCURRENCY CONTROL

Atomicity
Consistency

Isolation

— Serial execution schedules
— Serializable

Conflict serializable

View serializable

Durabiﬁj@ﬁaﬁzable

Strict serializable

$2CMU-DB

15-445/645 (Spring 2023)

CONCURRENCY CONTROL CONCLUSIONS

Concurrency control and recovery are among the
most important functions provided by a DBMS.

CONCURRENCY CONTR Spanmer: Google’s Gl Distriuted Dot

James C. Corberr, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JT Furman,
Sanjay Ghemawart, Andrey Gubarev, Christopher Heiser, Pe

ter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,

David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Concurrency control and reco

Google, Inc.

tency over higher availability, as long as they can survive

. 1 or 2 datacenter failures,
Spanner is Google’s scalable, multi-version, globally- 5 . . .
. distributed, and synchmnnusly-rep]ica!ed database. It is S.p;mner $ main focus is managing cross-datacenter
S rO the first system to distribute data at global scale and sup- x.ephc.atedd ‘?““ff but W? ha've alst? sp.ent a great deal of
I I ‘ 10 port externally-consistent distributed transactions. This ~ lme in desig and P & Important database
mO S t 1mp O l 1 paper describes how Spanner is struq L its feature s features on top of our distributed-systems infrastructure.

Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
and its implementation are critical to supporting exter- lh.al B(glab]e can be difficult to use for some kinds of ap-
nal consistency and a variety of powerful features: non- Plications: those that have CO{nplex‘ e.volvmg schemas:
blocking reads in the past, lock-free read-only transac- or those that want strong FOFS‘S‘G"?Y in the presence of
tions, and atomic schema changes, across all of Spanner. Wide-area replication. (Similar clmrps }?ave been made
- by other authors @.) Many applications at Google
have chosen to use Megastore @ because of its semi-
relational data model and support for synchronous repli-
- pite its relatively poor write throughput. As a
€. Spanner has evolved from a Bigtable-like
. o key-value store into a temporal multi-version
e lt ala is stored in schematized semi-relationg]
We e leV is versioned, and each version is automati-
amped with its commit time; old versions of
dject to configurable garbage-collection poli-
pplications can read data at old timestamps.

icati with per- feiniio
1s better to have application programmers deal p A

lally-distributed database, Spanner provides
esting features. First, the replication con-

1 bot- pr data can be dynamically controled at 3
formance problems due to overuse of transactions as

ptrol which datacenters contain which data,

1 Introduction

is from its users (to control read latency),

: the lack premismsics
tlenecks arise, rather than always coding around

lynamically and transparently moved be-
iters by the system to balance resource us-

ficenters. Second, Spanner has two features
. It to implement in a distributed database: it
of transactions.

SO OSDT Z0T

$2CMU-DB

15-445/645 (Spring 2023)

OBSERVATION

We need a way to guarantee that all execution
schedules are correct (i.e., serializable) without
knowing the entire schedule ahead of time.

One solution: Use locks to protect database objects.
— System automatically locks & unlocks objects as needed

— Ensures that resulting execution is equivalent to some serial
execution order

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

EXECUTING WITH LOCKS

’-----------\

’

Schedule A Lock Manager
-------------- ‘\ \
T, T, : C
BEGIN I
LOCK(A)m Granted (T;»A)
R(A) BEGIN |
LOCK(A) I_ Denied!
W(A) . I
R(A) : I
UNLOCK(A)*I* Released (T1->A)
|
R(A)# Granted (T2.>A)
W(A) I _
COMMIT UNLOCK (A) -I— Released (T,»A)
COMMIT !]
|
______________ J/ - J

LOCKS VS. LATCHES

Locks Latches
Separate...| User transactions Threads

Protect...| Database Contents In-Memory Data Structures

During...| Entire Transactions Critical Sections

Modes...| Shared, Exclusive, Update, Read, Write
Intention

Deadlock| Detection & Resolution Avoidance

...by...] Waits-for, Timeout, Aborts Coding Discipline
Kept in...| Lock Manager Protected Data Structure

£2CMU-DB

15-445/645 (Spring 2023)

Source: Goetz Graefe

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

£2CMU-DB

15-445/645 (Spring 2023)

TODAY'S AGENDA

Lock Types

Two-Phase Locking

Deadlock Detection + Prevention
Hierarchical Locking

10

£2CMU-DB

15-445/645 (Spring 2023)

BASIC LOCK TYPES

S-LOCK: Shared locks for reads.
X-LOCK: Exclustve locks for writes.

Compatibility Matrix
Shared Exclusive
Shared v X

Exclusive X X

NN EEN EEN NN BN BN BN B .y,

‘—-----’

11

Compatibility of lock modes

The following table shows the
because a partition or table space cannot use both page and row locks.

Table 1. Ccompatibility matrix of page lock and r

Lock mode Share (S-lock)

share (S-lock) Yes
Update (U-lock)

Exclusive (X-lock)

|
T
ull

1
1
iy

Compatibility for table space locks
modes for partition, table space, ol

Il
il

|

Table 2. Compatibility of table and

Lock Mode

s Yes Yes
X Yes Yes
S| Yes No
U Yes No
SIX Yes No
X No No

compatibility of any two modes for page and row locks. No

question of compatibility arises between page and row locks,

ow lock modes

Existing granted mode

Update

Yes

Requested mode

No

Intent shared (IS)

Shared (S)

VN Update (U)
V Intent excl usive (1X)
NZ Shared with intent exclusive (SIX)

Table 13.2. Conflicting Lock Modes

Requested Lock Mode ACCESS SHARE ROW

ACCESS SHARE

ROW SHARE

ROW EXCL.

SHARE UPDATE EXCL.
SHARE

SHARE ROW EXCL.

EXCL.

N

15 ACCESS EXCL.

Existing Lock Mode

SHARE ROW EXCL. SHARE UPDATE EXCL. SHARE S

X
PostgreSQLx_ o X
X X X X
X X X X
X X X X X
X X X X X X
X X X X X

HARE ROW EXCL. EXCL. AC|

E L -
e Eora .
B I
BBLE table 1y — = ®
ROW 5 RS =
1 SHARE MODE y Ty
Y =
. Y T
v —

12

Table 13-
@ 13-3 Summary of Table Locks

SQL statey
ment
Mode of Table Lock

Lock Modes Permitted?

SELECT. . . 7ROy

table. .. none
T
0 table —
RX —_— Y
Y —_— Y
Yes Yes — e
UPDATE table ... py N _—
RX — _ N —
N

Yes NO | o

ROW EXCLUSIVE Mopg

LOCK TABLE tablozy § N -
e N R

Yes NO | e o 0% —
Y —_ N

L e —
OCK TEBLE tablen sy
StaRe o SRX -

No| eewsme —
corm _
g . o

LOCK TABLE taplazy x
EXCLUSIVE Mopg x

S
: Compatible
OMmpatible Compatip)

e

Compatibje Compatip)
e

£2CMU-DB

15-445/645 (Spring 2023)

EXECUTING WITH LOCKS

Transactions request locks (or upgrades).
Lock manager grants or blocks requests.
Transactions release locks.

Lock manager updates its internal lock-table.
— It keeps track of what transactions hold what locks and
what transactions are waiting to acquire any locks.

13

£2CMU-DB

15-445/645 (Spring 2023)

EXECUTING WITH LOCKS

Schedule A Lock Manager
o I T ——— b 2
\ N
: T, T, : 4
: BEGIN I
I X-LOCK(A)== Granted (T,»A)
: R(A) [
1 | WCA) :
: LOCK(A)* Released (T1_>A)
, BEGIN l
Y Y X-LOCK(A)= Granted (T,»A)
I —
| loWe VWA !
I UNLOCK (A) Released (T,>A)
: "LO Granted (T;>A)
1 | R(A)
: UNLOCK(A) Released (T,>A)
| | COMMIT COMMIT }
\ A A 2’ _J

14

15

CONCURRENCY CONTROL PROTOCOL

Two-phase locking (2PL) is a concurrency control
protocol that determines whether a txn can access
an object in the database at runtime.

The protocol does not need to know all the queries
that a txn will execute ahead of time.

$2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

TWO-PHASE LOCKING

Phase #1: Growing

— Fach txn requests the locks that it needs from the
DBMS?’s lock manager.

— The lock manager grants/denies lock requests.

Phase #2: Shrinking

— The txn is allowed to only release/downgrade locks that it
previously acquired. It cannot acquire new locks.

16

17

TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks
after the growing phase finishes.

Transaction Lifetime

of Locks

Growing Phase Shrinking Phase

£CMU-DB
15-445/645 (Spring 2023)

TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks
after the growing phase finishes.

18

2PL Violation!

Transaction Lifetime

//4

of Locks

Growing Phase Shrinking Phase

£CMU-DB
15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

EXECUTING WITH 2PL

’-----------\

X-LOCK(A) Iﬁ Denied!

R(A) : !
UNLOCK(A)% Released <T1->A)
COMMIT v :

UNLOCK(A) Released (T,*A)

COMMIT

’

______________ ’, \-

Schedule A Lock Manager
Lm0 f >
BEGIN |
X'LOCK(A>=== Granted (T;»A)
RCA) !
W(A) |
BEGIN .

19

£2CMU-DB

15-445/645 (Spring 2023)

TWO-PHASE LOCKING

2PL on its own is sufficient to guarantee conflict
serializability because it generates schedules whose
precedence graph is acyclic.

But it is subject to cascading aborts.

20

21

2PL - CASCADING ABORTS

Schedule o o .
> 1. &> O This is a permissible schedule in
: BEGIN1 : ! 2PL, but the DBMS has to also
|
I | X-LOCK(A) : abort T, when T, aborts.

: X-LOCK(B) i

1 | RCA) :

ARUCY! : :

|| ONLOWA) | BEGIN ! Any information about T,
I X-LOCK(A) | | cannot be "leaked" to the
: I : outside world

I W(CA) :

| R(B) : \

1| W) O ® | This is all wasted work!

I : I

' | ABORT oQQ I

\

(4
I
|
|
I
|
|
I
|
|
I
|
|
I
i
\

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

2PL OBSERVATIONS

There are potential schedules that are serializable

but would not be allowed by 2PL. because locking
limits concurrency.
— Most DBMSs prefer correctness before performance.

May still have "dirty reads".
— Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.

— Solution: Detection or Prevention

22

23

STRONG STRICT TWO-PHASE LOCKING

The txn is only allowed to release locks after it has
ended (i.e., committed or aborted).

Allows only conflict serializable schedules, but it 1s
often stronger than needed for some apps.

Release all locks at
end of txn.

of Locks

£2CMU-DB

15-445/645 (Spring 2023)

24

STRONG STRICT TWO-PHASE LOCKING

£2CMU-DB

15-445/645 (Spring 2023)

A schedule is strict if a value written by a txn is

not read or overwritten by other txns until that txn
finishes.

Advantages:

— Does not incur cascading aborts.

— Aborted txns can be undone by just restoring original
values of modified tuples.

EXAMPLES

T, — Move $100 from Andy's account (A) to his
bookie’s account (B).

T, — Compute the total amount in all accounts and
return it to the application.

T, T,
BEGIN BEGIN
A=A-100 {ECHO)A+B
B=B+100 COMMIT
COMMIT

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

’-----------\

’

2PL EXAMPLE

Schedule
T, VA
BEGIN BEGIN
X-LOCK(A)
R(A) S—HPCK(A)
A=A-100 . g
W(A) '
X-LOCK(B) v
UNLOCK(A) | R(A)
S-LOCK(B)
o, | iR
B=B+100 -
W(B) v
UNLOCK(B) | R(B)
COMMIT UNLOCK(A)
UNLOCK(B)
ECHO A+B
COMMIT

_----------,

In|t|al Database State

27

STRONG STRICT 2PL EXAMPLE

Schedule In|t|al Database State
e T T e e e e e e e e e e e
\
I
| T, I | A=1000, B=1000
1 [BEGIN BEGIN 1 e -
1 | X-LOCK(A) !
1| R(A) S-LOCK(A) | |
: Q?ﬁ}1®@ - [
o !
L | X-Lock(B) : g | . om0
I R(B) . I I
| | B=B+100 - I I A+B=2000
L wee) - T e J
1 | UNLOCK(A) v !
1 | UNLOCK(B) | R(A) I
§ | COMMIT S-LOCK(B) | |
1 R(B) !
i ECHO A+B U
1 UNLOCK(A) |1
i UNLocK(B) | |
I COMMIT |
| [
£2CMU-DB S ————————— ’

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

UNIVERSE OF SCHEDULES

rAII Schedules

~

View Serializable \

29

£2CMU-DB

15-445/645 (Spring 2023)

2PL OBSERVATIONS

There are potential schedules that are serializable

but would not be allowed by 2PL. because locking
limits concurrency.
— Most DBMSs prefer correctness before performance.

May still have "dirty reads".
— Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.

— Solution: Detection or Prevention

30

IT JUST GOT REAL, SON

Schedule A Lock Manager
T TTmEEEEEEmEm_m——— -~ N\
T
| | BEGIN
1 | X-LOCK(A) Granted (T,»A)
: ‘Q‘ Granted (T,»B)
|
loWo Denied!
: R(A) a I
| X—LOCK(B)* Denied!
| u u i
1| N |
' m = I
I
I m u I
- y X |}
| v A 4 |
)
S2CMU-DB A A y _ Y

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

2PL DEADLOCKS

A deadlock is a cycle of transactions waiting for
locks to be released by each other.

Two ways of dealing with deadlocks:
— Approach #1: Deadlock Detection
— Approach #2: Deadlock Prevention

32

DEADLOCK DETECTION

The DBMS creates a waits-for graph to keep track

of what locks each txn is waiting to acquire:
— Nodes are transactions

— Edge from T; to T; if T; 1s waiting for T; to release a lock.

The system periodically checks for cycles in wazts-
Jfor graph and then decides how to break it.

£2CMU-DB

15-445/645 (Spring 2023)

33

DEADLOCK DETECTION

Schedule Waits-For Graph

BEGIN BEGIN BEGIN
S-LOCK(A)

S-LOCK(C)

—-----\
-----'

S-LOCK(B)

X-LOCK(C)
X-LOCK(A)

A S S N S BN BN BN SN BN BN BN SN BN B e e e
’
|
|
I
|
|
I
|
|
I
|
|
I
|
|
I
|
\

’—----------

$2CMU-DB P ———— -

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

DEADLOCK HANDLING

When the DBMS detects a deadlock, it will select a

"victim" txn to rollback to break the cycle.

The victim txn will either restart or abort (more
common) depending on how it was invoked.

There 1s a trade-off between the tfrequency of
checking for deadlocks and how long txns wait
betore deadlocks are broken.

35

DEADLOCK HANDLING: VICTIM SELECTION

Selecting the proper victim depends on a lot of

different variables....

— By age (lowest timestamp)

— By progress (least/most queries executed)

— By the # of items already locked

— By the # of txns that we have to rollback with it

We also should consider the # of times a txn has
been restarted in the past to prevent starvation.

£2CMU-DB

15-445/645 (Spring 2023)

DEADLOCK HANDLING: ROLLBACK LENGTH

After selecting a victim txn to abort, the DBMS

can also decide on how far to rollback the txn's
changes.

Approach #1: Completely

— Rollback entire txn and tell the application it was aborted.

Approach #2: Partial (Savepoints)
— DBMS rolls back a portion of a txn (to break deadlock)
and then attempts to re-execute the undone queries.

$2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

DEADLOCK PREVENTION

When a txn tries to acquire a lock that 1s held by
another txn, the DBMS kills one of them to
prevent a deadlock.

This approach does not require a wazts-for graph
or detection algorithm.

38

£2CMU-DB

15-445/645 (Spring 2023)

DEADLOCK PREVENTION

Assign priorities based on timestamps:
— Older Timestamp = Higher Priority (e.g., T; > T,)

Wait-Die (''Old Waits for Young")

— It requesting txn has higher priority than bolding txn, then
requesting txn waits for holding txn.
— Otherwise requesting txn aborts.

Wound-Wait ("'Young Waits for Old")

— It requesting txn has higher priority than bolding txn, then
holding txn aborts and releases lock.
— Otherwise requesting txn walits.

39

£2CMU-DB

15-445/645 (Spring 2023)

DEADLOCK PREVENTION

T m—m———— N\
o n T
I | BEGIN l
! BEGIN :
I X-LOCK(A) | I
I | X-LOCK(A : :
I 5 I
\ o o 4
SN R R R R R R m—m—— N\
PNy
I | BEGIN !
I | X-LOCK(A) ,
I : BEGIN |
! “\~X-LOCK(A) :
I ‘ i
\ o o o 4

Wait-Die Wound- Walt

Wait-Die Wound- Walt

40

DEADLOCK PREVENTION

Why do these schemes guarantee no deadlocks?

Only one "type" of direction allowed when waiting
for a lock.

When a txn restarts, what is its (new) priority?

Its original timestamp to prevent it from getting
starved for resources like an old man at a corrupt
senior centet.

$2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

OBSERVATION

All these examples have a one-to-one mapping
from database objects to locks.

If a txn wants to update one billion tuples, then it
must acquire one billion locks.

Acquiring locks 1s a more expensive operation than
acquiring a latch even 1f that lock is available.

42

£2CMU-DB

15-445/645 (Spring 2023)

43

LOCK GRANULARITIES

When a txn wants to acquire a "lock", the DBMS

can decide the granularity (i.e., scope) of that lock.
— Attribute? Tuple? Page? Table?

The DBMS should ideally obtain fewest number
of locks that a txn needs.

Trade-off between parallelism versus overhead.
— Fewer Locks, Larger Granularity vs. More Locks, Smaller
Granularity.

44

DATABASE LOCK HIERARCHY

N\

Database

—

@Table 1 Table 2
@Page 1 @Page 2 @ Page 3 + @ Pagen
@Tuple1l | |@Tuple2 | |@Tuple3 -« |@Tuplen
o - @ Attr 1 8 Attr 2 ... |BAttrn

15-445/645 (Spring 2023)

4a slightly Rare

4@ Very Common

4 Common

4@ Very Common

4@ Rare

£2CMU-DB

15-445/645 (Spring 2023)

INTENTION LOCKS

An intention lock allows a higher-level object to
be locked in shared or exclusive mode without
having to check all descendent objects.

It an object is locked in an intention mode, then

some txn is doing explicit locking at a lower level.

45

£2CMU-DB

15-445/645 (Spring 2023)

INTENTION LOCKS

Intention-Shared (IS)

— Indicates explicit locking at lower level with S locks.
— Intent to get S lock(s) at finer granularity.

Intention-Exclusive (IX)

— Indicates explicit locking at lower level with X locks.
— Intent to get X lock(s) at finer granularity.

Shared+Intention-Exclusive (SIX)

— The subtree rooted by that node 1s locked explicitly in S
mode and explicit locking 1s being done at a lower level
with X locks.

46

LOCKING PROTOCOL

Fach txn obtains appropriate lock at highest level
of the database hierarchy.

To get S or IS lock, the txn must hold at least IS
on parent.

To get X, IX, or SIX lock, must hold at least IX on
parent.

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

EXAMPLE

T, — Get the balance of Andy's shady off-shore

bank account.

T, — Increase Chi’s account balance by 6%.

What locks should these txns obtain?

— Exclusive + Shared for leaves of lock tree.
— Special Intention locks for higher levels.

48

EXAMPLE - TWO-LEVEL HIERARCHY

Read Andy's record in R. Update Chi’s record in R.

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

EXAMPLE - THREE QUERIES

Assume three txns execute at same time:
— T7 — Scan all tuples in R and update one tuple.
— T, — Read a single tuple in R.

— T3 — Scan all tuples in R.

Table R
Tuple 1 Tuple2 | == | Tuplen

50

51

EXAMPLE - THREE QUERIES

Scan all tuples in R.

Scan all tuples in R and
update one tuple. g

Read a single tuple in R.

Read Read ReaRle¥dite

£2CMU-DB

15-445/645 (Spring 2023)

52

COMPATIBILITY MATRIX

[

i

1

|

1

1

m | X X X X X
m

| M_M_quxxx
I

1 =
mmSJxex
=
m_IZHJJxxx
1

1

i Al S S S x
“ N X N X X
1 - —l
_ n
i

|

“ T

_, SPIOH "1

------------------------------------'

==CMU-DB

&

)

15-445/645 (Spring 2023

£2CMU-DB

15-445/645 (Spring 2023)

LOCK ESCALATION

The DBMS can automatically switch to coarser-

grained locks when a txn acquires too many low-
level locks.

This reduces the number of requests that the lock
manager must process.

53

£2CMU-DB

15-445/645 (Spring 2023)

LOCKING IN PRACTICE

Applications typically don't acquire a txn's locks
manually (i.e., explicit SQL commands).

Sometimes you need to provide the DBMS with

hints to help it to improve concurrency.
— Update a tuple after reading it.

Explicit locks are also usetul when doing major
changes to the database.

54

£2CMU-DB

15-445/645 (Spring 2023)

LOCK TABLE

Explicitly locks a table. Not part of the SQL

standard.
— Postgres/DB2/Oracle Modes: SHARE, EXCLUSIVE
— MySQL Modes: READ, WRITE

LOCK TABLE <table> IN <mode> MODE;

SELECT 1 FROM <table> WITH (TABLOCK, <mode>);

LOCK TABLE <table> <mode>;

PostgreSQL
ORACLE

) %Qflt_ Server

WMysaL.

55

£2CMU-DB

15-445/645 (Spring 2023)

SELECT...FOR UPDATE

Perform a select and then sets an exclusive lock on
the matching tuples.

Can also set shared locks:
— Postgres: FOR SHARE
— MySQL: LOCK IN SHARE MODE

SELECT * FROM <table>
WHERE <qualification> FOR UPDATE;

56

£2CMU-DB

15-445/645 (Spring 2023)

CONCLUSION

2PL 1s used in almost every DBMS.

Automatically generates correct interleaving:

— Locks + protocol (2PL, SS2PL ...)
— Deadlock detection + handling
— Deadlock prevention

57

58

PROJECT #3 - QUERY EXECUTION

You will add support for executing
queries in BusTub.

BusTub supports (basic) SQL with a
rule-based optimizer for converting

AST into physical plans.

Prompt: A realistic photo of a bath tub with
wheels and cartoon eyes driving down a city
street.

https://15445.courses.cs.cmu.edu/spring2023/project3/

£2CMU-DB

15-445/645 (Spring 2023)

https://15445.courses.cs.cmu.edu/spring2023/project3/

£2CMU-DB

15-445/645 (Spring 2023)

PROJECT #3 - TASKS

Plan Node Executors

— Access Methods: Sequential Scan, Index Scan
— Modifications: Insert, Update, Delete

— Joins: Nested Loop Join, Hash Join

— Miscellaneous: Aggregation, Limit, Sort, Top-N

Optimizer Rules:

— Convert Nested Loop Join into a Hash Join
— Convert ORDER BY + LIMIT into a Top-N

59

PROJECT #3 - LEADERBOARD

The leaderboard requires you to add additional

rules to the optimizer to generate query plans.
— It will be impossible to get a top ranking by just having

the fastest implementations in Project #1 + Project #2.

£2CMU-DB

15-445/645 (Spring 2023)

60

DEVELOPMENT HINTS

Implement the Insert and Sequential Scan
executors first so that you can populate tables and
read from it.

You do not need to worry about transactions.

The aggregation and hash join hash tables do not
need to be backed by the buffer pool (i.e., use STL)

Gradescope 1s meant for grading, not debugging.

e Write your own local tests.

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

62

THINGS TO NOTE

Do not change any file other than the ones that
you submit to Gradescope.

Make sure you pull in the latest changes from the
BusTub main branch.

Post your questions on Piazza or come to TA
office hours.

Compare against our solution in your browset!

https://15445.courses.cs.cmu.edu/spring2023/bustub/

£2CMU-DB

15-445/645 (Spring 2023)

NEXT CLASS

Timestamp Ordering Concurrency Control

63

