{ "/A .L ..\.
S

&= Intro to Database Systems (15-445/645)

1 Timestamp

Ordering

Carnegie Charlie
Viellon .
University Garrod €

ADMINISTRIVIA

Project 3 ongoing
— Due Sunday, April 9% at 11:59 p.m.

Homework 4 released today
— Due Friday, April 7% at 11:59 p.m.

Final exam Monday, May 1%, 8:30 — 11:30 a.m.

£2CMU-DB

15-445/645 (Spring 2023)

PROJECT #3 - QUERY EXECUTION

You will add support for executing
queries in BusTub.

BusTub supports (basic) SQL with a
rule-based optimizer for converting

AST into physical plans.

Prompt: A realistic photo of a bath tub with
wheels and cartoon eyes driving down a city
street.

https://15445.courses.cs.cmu.edu/spring2023/project3/

£2CMU-DB

15-445/645 (Spring 2023)

https://15445.courses.cs.cmu.edu/spring2023/project3/

£2CMU-DB

15-445/645 (Spring 2023)

PROJECT #3 - TASKS

Plan Node Executors

— Access Methods: Sequential Scan, Index Scan
— Modifications: Insert, Update, Delete

— Joins: Nested Loop Join, Hash Join

— Miscellaneous: Aggregation, Limit, Sort, Top-N

Optimizer Rules:

— Convert Nested Loop Join into a Hash Join
— Convert ORDER BY + LIMIT into a Top-N

PROJECT #3 - LEADERBOARD

The leaderboard requires you to add additional

rules to the optimizer to generate query plans.
— It will be impossible to get a top ranking by just having
the fastest implementations in Project #1 + Project #2.

£2CMU-DB

15-445/645 (Spring 2023)

DEVELOPMENT HINTS

Implement the Insert and Sequential Scan
executors first so that you can populate tables and
read from it.

You do not need to worry about transactions.

The aggregation and hash join hash tables do not
need to be backed by the buffer pool (i.e., use STL)

Gradescope 1s meant for grading, not debugging.

S Please write your own local tests.

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

THINGS TO NOTE

Do not change any file other than the ones that
you submit to Gradescope.

Make sure you pull in the latest changes from the
BusTub main branch.

Post your questions on Piazza or come to TA
office hours.

Compare against our solution in your browset!

https://15445.courses.cs.cmu.edu/spring2023/bustub/

LAST TIME: TWO-PHASE LOCKING

Two-phase locking (2PL)
— Regular 2PL
— Strong strict 2PL

Deadlocks

— Detection
— Prevention

Hierarchical intention locks

$2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

INTENTION LOCKS

Intention-Shared (IS)

— Indicates explicit locking at lower level with S locks.
— Intent to get S lock(s) at finer granularity.

Intention-Exclusive (IX)

— Indicates explicit locking at lower level with X locks.
— Intent to get X lock(s) at finer granularity.

Shared+Intention-Exclusive (SIX)

— The subtree rooted by that node 1s locked explicitly in S
mode and explicit locking 1s being done at a lower level
with X locks.

10

COMPATIBILITY MATRIX

[

i

1

|

1

1

m | X X X X X
m

| M_M_quxxx
I

1 =
mmSJxex
=
m_IZHJJxxx
1

1

i Al S S S x
“ N X N X X
1 - —l
_ n
i

|

“ T

_, SPIOH "1

------------------------------------'

==CMU-DB

&

)

15-445/645 (Spring 2023

CONCURRENCY CONTROL APPROACHES

Two-Phase Locking (2PL) L
— Determine serializability order of conflicting P essimistic

operations at runtime while txns execute.

Timestamp Ordering (T/O) A
— Determine serializability order of txns before Op timistic

they execute.

£2CMU-DB

15-445/645 (Spring 2023)

11

T/O CONCURRENCY CONTROL

Use timestamps to determine the serializability
order of txns.

If TS(T;) < TS(T;), then the DBMS must ensure

that the execution schedule 1s equivalent to a serial
schedule where T; appears before Tj.

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

TIMESTAMP ALLOCATION

FEach txn T; is assigned a unique fixed timestamp

that 1s monotonically increasing

— Let TS(T;) be the timestamp allocated to txn T;

— Different schemes assign timestamps at different times
during the txn

Multiple implementation strategies:
— System/Wall Clock

— Logical Counter

— Hybrid

13

TODAY'S AGENDA

Basic Timestamp Ordering (T/O) Protocol
Optimistic Concurrency Control

The Phantom Problem (maybe)

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

BASIC TIMESTAMP ORDERING (T/0O)

Txns read and write objects without locks.

Every object X is tagged with timestamp of the last
txn that successfully did read/write:

— W-TS(X) — Write timestamp on X

— R-TS(X) — Read timestamp on X

Check timestamps for every operation:

— If txn tries to access an object written with a higher
(future) timestamp, it aborts and restarts

15

£2CMU-DB

15-445/645 (Spring 2023)

BASIC T/O - READS

If TS(T;) <W-TS(X), this violates timestamp

order of T; with regard to the writer of X.
— Abort T; and restart it with a new T'S.

Else:
— Allow T; to read X.
— Update R-TS(X) to max(R-TS(X), TS(T;))

— Make a local copy of X to ensure repeatable reads for T;.

16

BASIC T/O - WRITES

If TSCT;) <R-TS(X) or TS(T;) < W-TS(X)

— Abort and restart T;.

Else:
— Allow T; to write X and update W-TS(X)

— Also make a local copy of X to ensure repeatable reads.

£2CMU-DB

15-445/645 (Spring 2023)

BASIC T/O - EXAMPLE #1

Schedule
_ ~\ -
TS(T1)—1 T2 | ! :
BEGIN TS(T,)=2 | 1|
‘7 ~ |
BEGIN : :
R(B) : I
W(B) i N
|
R(A) No violations so both]
| B - txns are safe to commit.
: IT COMMIT
i
l :
I I
! [
\ /

$2CMU-DB i

15-445/645 (Spring 2023)

BASIC T/O - EXAMPLE #2

Schedule Database

Object R-TS

\ 1

! l !

i | '

! ! = :
: BEGIN : : B 0 0 1
: #gg’g;n : L Violation:

: TS(T,;) < W-TS(A)

0

i

T, cannot overwrite update by
T,, so the DBMS must abort it!

COMMIT

’-----

$2CMU-DB i

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

WIKIPEDIA

The Free Encyclopedia

Main page

If T e

Current events

> A Random article

About Wikipedia
Contact us
If T Donate

Contribute

Help

Learn to edit
Community portal
Recent changes

Els Upload file

Tools

—

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

- Notlogged in Talk Contributions Create account Login
Atticle Talk Read Edit View history | Search Wikipedia Q

Creeper and Reaper

From Wikipedia, the free encyclopedia
(Redirected from Creeper (program))

Contents [hide]
1 Creeper
2 Reaper
3 Cultural impact

4 References

Creeper fea; -

Creeper was an experimental Computer program written by Bob Thomas

Creeper
atBBN in 1971.[2] |15 original iteration was designed to move between [- .
. . . Type Computer
DEC PDP-10 mainframe computers running the TENEX operating system T
usmg. the ARPANET, with a later version by .Ray Tomhns[g]n dt.95|gned to Isolation 1971
copy lts.elf between computersA rather than simply move.[3] This sel- Author(s) Bob Thomas
replicating version of Creeper is generally accepted to be the first i
Operating system(s) TENEX
computer worm.[4] Creeper was a test created to demonstrate the affected

possibility of a self-replicating Computer program that could spread to]
other computers.

The program was not actively malicious software as it caused no damage to data, the only effect being a message it
output to the teletype reading "I'M THE CREEPER. CATCH ME IF YOU CAN!"5IE]

20

https://en.wikipedia.org/wiki/Thomas_write_rule

BASIC T/O - EXAMPLE #2

-

Schedule Database
\ -~ -
: | Object R-TS W-TS
- : | [1 \
|

! BEGIN | | B 0 0

I -y /() : l We do not

I COMMIT : | TR
! update W-TS(A)

Skip this write, and
allow T, to commit.

I
I
i
[
$2CMU-DB S —————— ’

15-445/645 (Spring 2023)

’-----

£2CMU-DB

15-445/645 (Spring 2023)

BASIC T/O

Generates a schedule that i1s conflict serializable if

you do not use the Thomas Write Rule.

— No deadlocks because no txn ever waits.
— Possibility of starvation for long txns if short txns keep
causing conflicts.

We’re not aware of any DBMS that uses the basic

T/ O protocol described here.
— It provides the building blocks for OCC / MVCC.

22

https://en.wikipedia.org/wiki/Thomas_write_rule

PARTICIPATION EXERCISE

Why does no real database system use the basic
timestamp ordering protocol?

https://bit.ly/cmu-db-quiz

£2CMU-DB

15-445/645 (Spring 2023)

https://bit.ly/cmu-db-quiz

£2CMU-DB

15-445/645 (Spring 2023)

OBSERVATION

It you assume that conflicts between txns are rare
and that most txns are short-lived, then forcing
txns to acquire locks or update timestamps adds
unnecessary overhead.

A better approach is to optimize for the no-
conflict case.

27

OPTIMISTIC CONCURRENCY CONTROL

The DBMS creates a private

workspace for each txn.
— Any object read 1s copied into workspace.
— Modifications are applied to workspace.

When a txn commits, the DBMS

compares workspace write set to see
whether it conflicts with other txns.

If there are no conflicts, the write set

is installed into the "global" database.
S2CMU-DB

15-445/645 (Spring 2023)

On Optimistic Methods for Concurrency
Control

H.T. KUNG and JOHN T. ROBINSON
Carnegie-Mellon University

Most current approaches to concurrency control in database systems rely on locking of data objects
as a control mechanism, In this paer, two families of nonlocking concurrency controls are presented.
The methods used are “optimistic” in the sense that they rely mainly on transaction backup as a
control mechanism, “hoping” that conflicts between transactions will not occur. Applications for
which these methods should be more efficient than locking are discussed.

Key Words and Phrases: databases, concurrency controls, transaction processing
CR Categories: 4.32, 4.33

1. INTRODUCTION

Consider the problem of providing shared access to a database organized as a
collection of objects. We assume that certain distinguished objects, called the
roots, are always present and access to any object other than a root is gained only
by first accessing a root and then following pointers to that object. Any sequence
of accesses to the database that preserves the integrity constraints of the data is
called a transaction (see, e.g., [4]).

If our goal is to maximize the throughput of accesses to the database, then
there are at least two cases where highly concurrent access is desirable.

(1) The amount of data is sufficiently great that at any given time only a fraction
of the database can be present in primary memory, so that it is necessary to
swap parts of the database from secondary memory as needed.

(2) Even if the entire database can be present in primary memory, there may be
‘multiple processors.

In both cases the hardware will be underutilized if the degree of concurrency
is too low.

However, as is well known, unrestricted concurrent access to a shared database
will, in general, cause the integrity of the database to be lost. Most current

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying s by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
This research was supported in part by the National Science Foundation under Grant MCS 78-236-76
and the Office of Naval Research under Contract N00014-76-C-0370.

Authors' address: Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA

15213.
© 1981 ACM 0362-5915/81/0600:0213 $00.75
ACM tems, Vol. 6, No. 2, June 1981,

28

£2CMU-DB

15-445/645 (Spring 2023)

OCC PHASES

#1 — Read Phase:

— Track the read /write sets of txns and store their writes in
a private workspace.

#2 — Validation Phase:

— When a txn commits, check whether it conflicts with
other txns.

#3 — Write Phase:

— If validation succeeds, apply private changes to database.
Otherwise abort and restart the txn.

29

$2CMU-DB

15-445/645 (Spring 2023)

OCC - EXAMPLE

Schedule
T T T ———— ~\
: T, T, I
1B :
READ I
READ
TS(T,)=1
R — (IZ)
|
WRITE !
TS(T,)=2 ! !
VALIDAT | |
U |
|
COMMIT :
|
[
_____________ -

Database

456 |

A 123 |0

30

OCC - READ PHASE

Track the read/write sets of txns and store their
writes in-memory in a private workspace.

The DBMS copies every tuple that the txn accesses
from the shared database to its workspace ensure
repeatable reads.

— We can ignore for now what happens if a txn
reads/writes tuples via indexes.

£2CMU-DB

15-445/645 (Spring 2023)

33

OCC - VALIDATION PHASE

When txn T; invokes COMMIT, the DBMS checks

if 1t conflicts with other txns.

— The DBMS needs to guarantee only serializable schedules
are permitted.

— Checks other txns for RW and WW conflicts and ensure
that conflicts are 1n one direction (e.g., older>younger).

Approach #1: Backward Validation
Approach #2: Forward Validation

£2CMU-DB

15-445/645 (Spring 2023)

34

OCC - BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

Validation Scope

Txn #1

Txn #3

1
1
1
|
£CMU-DB
15-445/645 (Spring 2023)

2 COMMIT [

OCC - FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

|

Txn #3

£2CMU-DB

15-445/645 (Spring 2023)

35

OCC - FORWARD VALIDATION

Each txn's timestamp 1s assigned at the beginning
of the validation phase.

Check the timestamp ordering of the committing
txn with all other running txns.

If TS(T;) < TS(T;), then one of three cases:

£2CMU-DB

15-445/645 (Spring 2023)

OCC - FORWARD VALIDATION CASE #1

Schedule
T; completes all three phases before T T
5] 5 1 1 2
. i
T; begins its execution. ! [BEGIN !
| |[READ | :
q : - - : V| [VALIDATE | 0
This is 2 serial ordering, so there is no N i :
conflict. | COMMIT .
. BEGIN I
! READ | |
| [VALIDATE] | 1
I wrRITE]|}
| COMMIT !
i i
i i
I [
i i
\)
&CMU-DB A ———— s

15-445/645 (Spring 2023)

OCC - FORWARD VALIDATION CASE #2

T; completes before T starts its Write phase.

If T; does not write to any object read by T;, then
there 1s no conflict.

Abort T; if WriteSet(T;) N ReadSet(T;) + O

£2CMU-DB

15-445/645 (Spring 2023)

OCC - FORWARD VALIDATION CASE #2

T; must abort even
though T, will never
write to the database.

Schedule Database
o TmEEEEmm—_—_—_———— ~ [——————
. T, T, \I I \I
I i W Object Value W-TS i
| | BEGIN BEGIN I I [, e 0 |
1 | [READ : : - - - :
UIRCAD I | !
1| WCA) READ : e —
I R(A) I
| | T, Workspace T, Workspace
1) AT ———— \ . \
: |VALIDATE| i 1 Object Value W-TS " i Object Value W-TS I
: WRITE | : : A 456 o : : A 123 0 :
I TT n I - - - I l - - - I
I
!
I
I
\

(4
I

$2CMU-DB

15-445/645 (Spring 2023)

OCC - FORWARD VALIDATION CASE #2

Schedule Database
"— ~\ Y v v 2
I T1 T2 I I I
i I @ Object Value W-TS I
| | BEGIN BEGIN I n 123 0 I
1 | [READ ! I - - !
UIRCAD | I !
1| WA READ ! e e e e e e e =
U R(A) I
V| ———<||VALIDATE | T, Workspace T, Workspace
1 ((] R —— \ f ===)
| QL roaze) IR voiic w15 RO oecc varie vrs I
| N
I 1 |A 456 |« 1 1A 123 e I
|| COMMLT L : I N _ Loy : : |
! Safe to commit T, because T, fe==—=== Jd === B
I commits logically before T, J
| I
\ !
$2CMU-DB N e e s

15-445/645 (Spring 2023)

OCC - FORWARD VALIDATION CASE #3

T; completes its Read phase before T; completes
its Read phase.

If T; does not write to any object that is either read
or written by T;, then there is no contlict.

Abort T; if WriteSet(T;) N ReadSet(T;) + &
or if WriteSet(T;) N WriteSet(T;) # @

£2CMU-DB

15-445/645 (Spring 2023)

42

OCC - FORWARD VALIDATION CASE #3
Schedule

$2CMU-DB

15-445/645 (Spring 2023)

-----\

because T, sees the DB
after T, has executed.

Safe to commit T, }

P o 1 1

Database
\ g ——— \
! 1 po I
I ‘@ Object Value W-TS I
i I i
| P A 456 1 |
| I |B XYZ 0 |
I I J
I e " rrrr i r [~ 4
I
! T, Workspace T, Workspace
£ "ASARS\ " " - - - - - - Y f U T - . R
R oioc o T oot vrue vrs
I 1 [A 456 |« 1 1B XYz |0
) - 11
Lo lA__l4s6 i

43

£2CMU-DB

15-445/645 (Spring 2023)

OCC - WRITE PHASE

Propagate changes in the txn's write set to database
to make them visible to other txns.

Serial Commits:

— Use a global latch to limit a single txn to be in the
Validation/Write phases at a time.

Parallel Commits:
— Use fine-grained write latches to support parallel
Validation/Write phases.

— Txns acquire latches in primary key order to avoid

deadlocks.

44

OCC - OBSERVATIONS

OCC works well when the # of conflicts is low:

— All txns are read-only (ideal).
— T'xns access disjoint subsets of data.

If the database is large and the workload 1s not
skewed, then there is a low probability of conflict,
then locking is wastetul.

£2CMU-DB

15-445/645 (Spring 2023)

OCC - PERFORMANCE ISSUES

High overhead for copying data locally.
Validation/Write phase bottlenecks.

Aborts are more wasteful than in 2PL. because they
only occur after a txn has already executed.

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

DYNAMIC DATABASES

Recall that so far, we have only dealt with
transactions that read and update existing objects
in the database.

But now if txns perform insertions, updates, and
deletions, we have new problems...

47

THE PHANTOM PROBLEM

Schedule

P A N huiylel by Y 4 ~ |CREATE TABLE people (
T, T, id SERIAL,
BEGIN BEGIN name VARCHAR,
— age INT,
SELECT COUNT
FROM peopleage - 99 status VARCHAR
WHERE status='lit');

INSERT INTO people
(age=30, status='lit')

’----------\
____________________l

COMMIT
SELECT COUNT (age)
FROM people -'] 00 ’QO
WHERE status='lit'
ome
COMMIT
) YV AR U A, G -

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

HOW DID THIS HAPPEN?

Because T, locked only existing records and not
ones under way!

Contflict serializability on reads and writes of

individual items guarantees serializability only if
the set of objects 1s fixed.

49

£2CMU-DB

15-445/645 (Spring 2023)

THE PHANTOM PROBLEM

Approach #1: Re-Execute Scans

— Run queries again at commit to see whether they produce
a different result to identify missed changes.

Approach #2: Predicate Locking

— Logically determine the overlap of predicates before
queries start running,

Approach #3: Index Locking

— Use keys 1n indexes to protect ranges.

50

£2CMU-DB

15-445/645 (Spring 2023)

RE-EXECUTE SCANS

The DBMS tracks the WHERE clause for all queries
that the txn executes.
— Retain the scan set for every range query in a txn.

Upon commit, re-execute just the scan portion of

each query and check whether it generates the
same result.

— Example: Run the scan for an UPDATE query but do not
modify matching tuples.

51

£2CMU-DB

15-445/645 (Spring 2023)

PREDICATE LOCKING

Proposed locking scheme from System R.

— Shared lock on the predicate in a WHERE clause of a
SELECT query.

— BExclusive lock on the predicate in a WHERE clause of any
UPDATE, INSERT, or DELETE query.

Never implemented in any system except for
HyPer (precision locking).

52

https://hyper-db.de/
http://www-db.in.tum.de/~muehlbau/papers/mvcc.pdf

PREDICATE LOCKING

SELECT COUNT(age)

FROM people
WHERE status='lit'

Records in Table "people”

astatus:'lit'

age=30 A
status="1lit'

£2CMU-DB

15-445/645 (Spring 2023)

53

INDEX LOCKING SCHEMES

Key-Value Locks
Gap Locks
Key-Range Locks
Hierarchical Locking

$2CMU-DB

15-445/645 (Spring 2023)

KEY-VALUE LOCKS

Locks that cover a single key-value 1n an index.

Need “virtual keys” for non-existent values.

B+Tree Leaf Node

10 12 16

£2CMU-DB

15-445/645 (Spring 2023)

56

GAP LOCKS

FEach txn acquires a key-value lock on the single
key that it wants to access. Then get a gap lock on

the next key gap.
B+Tree Leaf Node
10 |{Gap} 12 |{Gap} 14 . 16
Gap
(14, 16)

£2CMU-DB

15-445/645 (Spring 2023)

57

£2CMU-DB

15-445/645 (Spring 2023)

KEY-RANGE LOCKS

A txn takes locks on ranges in the key space.

— Fach range is from one key that appears in the relation, to
the next that appears.

— Define lock modes so conflict table will capture
commutativity of the operations available.

58

£2CMU-DB

555555 /645 (Spring 2023)

KEY-RANGE LOCKS

Locks that cover a key value and the gap to the

next key value in a single index.
— Need “virtual keys” for artificial values (infinity)

B+Tree Leaf Node

10

{Gap}

Next Key [14, 16)

12 (fearf™14 [Yoar] 16

Prior Key (12, 14]

59

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with
different locking modes.

— Reduces the number of visits to lock manager.

[10, 16)

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

LOCKING WITHOUT AN INDEX

If there is no suitable index, then to avoid

phantoms the txn must obtain:

— A lock on every page in the table to prevent a record’s
status='lit' from being changed to 1it.

— The lock for the table itself to prevent records with
status='lit' from being added or deleted.

61

£2CMU-DB

15-445/645 (Spring 2023)

CONCLUSION

Every concurrency control can be broken down
into the basic concepts that I've described in the
last two lectures.

Every protocol has pros and cons.

72

£2CMU-DB

15-445/645 (Spring 2023)

NEXT CLASS

Multi-Version Concurrency Control

73

