
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

17 Timestamp
Ordering

15-445/645 (Spring 2023)

ADMINISTRIVIA

Project 3 ongoing
→ Due Sunday, April 9th at 11:59 p.m.

Homework 4 released today
→ Due Friday, April 7th at 11:59 p.m.

Final exam Monday, May 1st, 8:30 – 11:30 a.m.

2

15-445/645 (Spring 2023)

PROJECT #3 – QUERY EXECUTION

You will add support for executing
queries in BusTub.

BusTub supports (basic) SQL with a
rule-based optimizer for converting
AST into physical plans.

3

Prompt: A realistic photo of a bath tub with
wheels and cartoon eyes driving down a city
street.

https://15445.courses.cs.cmu.edu/spring2023/project3/

https://15445.courses.cs.cmu.edu/spring2023/project3/

15-445/645 (Spring 2023)

PROJECT #3 – TASKS

Plan Node Executors
→ Access Methods: Sequential Scan, Index Scan
→ Modifications: Insert, Update, Delete
→ Joins: Nested Loop Join, Hash Join
→ Miscellaneous: Aggregation, Limit, Sort, Top-N

Optimizer Rules:
→ Convert Nested Loop Join into a Hash Join
→ Convert ORDER BY + LIMIT into a Top-N

4

15-445/645 (Spring 2023)

PROJECT #3 - LEADERBOARD

The leaderboard requires you to add additional
rules to the optimizer to generate query plans.
→ It will be impossible to get a top ranking by just having

the fastest implementations in Project #1 + Project #2.

5

15-445/645 (Spring 2023)

DEVELOPMENT HINTS

Implement the Insert and Sequential Scan
executors first so that you can populate tables and
read from it.

You do not need to worry about transactions.

The aggregation and hash join hash tables do not
need to be backed by the buffer pool (i.e., use STL)

Gradescope is meant for grading, not debugging.
Please write your own local tests.

6

15-445/645 (Spring 2023)

THINGS TO NOTE

Do not change any file other than the ones that
you submit to Gradescope.

Make sure you pull in the latest changes from the
BusTub main branch.

Post your questions on Piazza or come to TA
office hours.

Compare against our solution in your browser!

7

https://15445.courses.cs.cmu.edu/spring2023/bustub/

15-445/645 (Spring 2023)

LAST TIME: TWO-PHASE LOCKING

Two-phase locking (2PL)
→ Regular 2PL
→ Strong strict 2PL

Deadlocks
→ Detection
→ Prevention
Hierarchical intention locks

8

15-445/645 (Spring 2023)

INTENTION LOCKS

Intention-Shared (IS)
→ Indicates explicit locking at lower level with S locks.
→ Intent to get S lock(s) at finer granularity.

Intention-Exclusive (IX)
→ Indicates explicit locking at lower level with X locks.
→ Intent to get X lock(s) at finer granularity.

Shared+Intention-Exclusive (SIX)
→ The subtree rooted by that node is locked explicitly in S

mode and explicit locking is being done at a lower level
with X locks.

9

15-445/645 (Spring 2023)

COMPATIBILITY MATRIX

10

IS IX S SIX X
IS ✓ ✓ ✓ ✓ ×
IX ✓ ✓ × × ×
S ✓ × ✓ × ×

SIX ✓ × × × ×
X × × × × ×

T 1
Ho

ld
s

T2 Wants

15-445/645 (Spring 2023)

CONCURRENCY CONTROL APPROACHES

Two-Phase Locking (2PL)
→ Determine serializability order of conflicting

operations at runtime while txns execute.

Timestamp Ordering (T/O)
→ Determine serializability order of txns before

they execute.

11

Pessimistic

Optimistic

15-445/645 (Spring 2023)

T/O CONCURRENCY CONTROL

Use timestamps to determine the serializability
order of txns.

If TS(Ti) < TS(Tj), then the DBMS must ensure
that the execution schedule is equivalent to a serial
schedule where Ti appears before Tj.

12

15-445/645 (Spring 2023)

TIMESTAMP ALLOCATION

Each txn Ti is assigned a unique fixed timestamp
that is monotonically increasing
→ Let TS(Ti) be the timestamp allocated to txn Ti
→ Different schemes assign timestamps at different times

during the txn

Multiple implementation strategies:
→ System/Wall Clock
→ Logical Counter
→ Hybrid

13

15-445/645 (Spring 2023)

TODAY'S AGENDA

Basic Timestamp Ordering (T/O) Protocol
Optimistic Concurrency Control
The Phantom Problem (maybe)

14

15-445/645 (Spring 2023)

BASIC TIMESTAMP ORDERING (T/O)

Txns read and write objects without locks.

Every object X is tagged with timestamp of the last
txn that successfully did read/write:
→ W-TS(X) – Write timestamp on X
→ R-TS(X) – Read timestamp on X

Check timestamps for every operation:
→ If txn tries to access an object written with a higher

(future) timestamp, it aborts and restarts

15

15-445/645 (Spring 2023)

BASIC T/O – READS

If TS(Ti) < W-TS(X), this violates timestamp
order of Ti with regard to the writer of X.
→ Abort Ti and restart it with a new TS.

Else:
→ Allow Ti to read X.
→ Update R-TS(X) to max(R-TS(X), TS(Ti))
→ Make a local copy of X to ensure repeatable reads for Ti.

16

15-445/645 (Spring 2023)

BASIC T/O – WRITES

If TS(Ti) < R-TS(X) or TS(Ti) < W-TS(X)
→ Abort and restart Ti.
Else:
→ Allow Ti to write X and update W-TS(X)
→ Also make a local copy of X to ensure repeatable reads.

17

15-445/645 (Spring 2023)

Object R-TS W-TS
A 0 0
B 0 0

Schedule
T1 T2

BASIC T/O – EXAMPLE #1

18

BEGIN
R(B)

R(A)

R(A)

COMMIT

BEGIN
R(B)
W(B)

R(A)

W(A)
COMMIT

TS(T2)=2 1
12 2
2 2

Database
TS(T1) < TS(T2)

TI
M
E

TS(T1)=1

No violations so both
txns are safe to commit.

15-445/645 (Spring 2023)

Object R-TS W-TS
A 0 0
B 0 0

DatabaseSchedule
T1 T2

BASIC T/O – EXAMPLE #2

19

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

Violation:
TS(T1) < W-TS(A)

T1 cannot overwrite update by
T2, so the DBMS must abort it!

TI
M
E

15-445/645 (Spring 2023)

THOMAS WRITE RULE

If TS(Ti) < R-TS(X):
→ Abort and restart Ti.
If TS(Ti) < W-TS(X):
→ Thomas Write Rule: Skip the write and allow the txn to

continue executing without aborting.
Else:
→ Allow Ti to write X and update W-TS(X)

20

https://en.wikipedia.org/wiki/Thomas_write_rule

15-445/645 (Spring 2023)

Object R-TS W-TS
A 0 0
B 0 0

DatabaseSchedule
T1 T2

BASIC T/O – EXAMPLE #2

21

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

We do not
update W-TS(A)

Skip this write, and
allow T1 to commit.

TI
M
E

15-445/645 (Spring 2023)

BASIC T/O

Generates a schedule that is conflict serializable if
you do not use the Thomas Write Rule.
→ No deadlocks because no txn ever waits.
→ Possibility of starvation for long txns if short txns keep

causing conflicts.

We’re not aware of any DBMS that uses the basic
T/O protocol described here.
→ It provides the building blocks for OCC / MVCC.

22

https://en.wikipedia.org/wiki/Thomas_write_rule

15-445/645 (Spring 2023)

PARTICIPATION EXERCISE

Why does no real database system use the basic
timestamp ordering protocol?

https://bit.ly/cmu-db-quiz

25

https://bit.ly/cmu-db-quiz

15-445/645 (Spring 2023)

OBSERVATION

If you assume that conflicts between txns are rare
and that most txns are short-lived, then forcing
txns to acquire locks or update timestamps adds
unnecessary overhead.

A better approach is to optimize for the no-
conflict case.

27

15-445/645 (Spring 2023)

OPTIMISTIC CONCURRENCY CONTROL

The DBMS creates a private
workspace for each txn.
→ Any object read is copied into workspace.
→ Modifications are applied to workspace.

When a txn commits, the DBMS
compares workspace write set to see
whether it conflicts with other txns.

If there are no conflicts, the write set
is installed into the "global" database.

28

15-445/645 (Spring 2023)

OCC PHASES

#1 – Read Phase:
→ Track the read/write sets of txns and store their writes in

a private workspace.

#2 – Validation Phase:
→ When a txn commits, check whether it conflicts with

other txns.

#3 – Write Phase:
→ If validation succeeds, apply private changes to database.

Otherwise abort and restart the txn.

29

15-445/645 (Spring 2023)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS
A 123 0
- - -

Schedule
T1 T2

OCC – EXAMPLE

30

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

T2 Workspace

456 1

456 2

123 0A 123 0A456 ∞

TS(T2)=1

TS(T1)=2TI
M
E

15-445/645 (Spring 2023)

OCC – READ PHASE

Track the read/write sets of txns and store their
writes in-memory in a private workspace.

The DBMS copies every tuple that the txn accesses
from the shared database to its workspace ensure
repeatable reads.
→ We can ignore for now what happens if a txn

reads/writes tuples via indexes.

31

15-445/645 (Spring 2023)

OCC – VALIDATION PHASE

When txn Ti invokes COMMIT, the DBMS checks
if it conflicts with other txns.
→ The DBMS needs to guarantee only serializable schedules

are permitted.
→ Checks other txns for RW and WW conflicts and ensure

that conflicts are in one direction (e.g., older→younger).

Approach #1: Backward Validation
Approach #2: Forward Validation

33

15-445/645 (Spring 2023)

OCC – BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

34

Txn #1

Txn #2

Txn #3

CO
MM
IT

CO
MM
IT

CO
MM
IT

Validation Scope

T IME

15-445/645 (Spring 2023)

OCC – FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

35

Txn #1

Txn #2

Txn #3

CO
MM
IT

CO
MM
IT

CO
MM
IT

Validation Scope

T IME

15-445/645 (Spring 2023)

OCC – FORWARD VALIDATION

Each txn's timestamp is assigned at the beginning
of the validation phase.

Check the timestamp ordering of the committing
txn with all other running txns.

If TS(Ti) < TS(Tj), then one of three cases:

36

15-445/645 (Spring 2023)

OCC – FORWARD VALIDATION CASE #1

Ti completes all three phases before
Tj begins its execution.

This is a serial ordering, so there is no
conflict.

38

BEGIN
READ
VALIDATE
WRITE
COMMIT

BEGIN
READ
VALIDATE
WRITE
COMMIT

Schedule
T1 T2

TI
M
E

15-445/645 (Spring 2023)

OCC – FORWARD VALIDATION CASE #2

Ti completes before Tj starts its Write phase.

If Ti does not write to any object read by Tj, then
there is no conflict.

Abort Ti if WriteSet(Ti) ∩ ReadSet(Tj) ≠ Ø

39

15-445/645 (Spring 2023)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace T2 Workspace

Schedule
T1 T2

OCC – FORWARD VALIDATION CASE #2

40

BEGIN
READ
R(A)
W(A)

VALIDATE

BEGIN

READ
R(A)

VALIDATE
WRITE
COMMIT

456 0A 123 0A∞

T1 must abort even
though T2 will never

write to the database.

Object Value W-TS
A 123 0
- - -

TI
M
E

15-445/645 (Spring 2023)

Schedule
T1 T2

OCC – FORWARD VALIDATION CASE #2

41

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN

READ
R(A)
VALIDATE

WRITE
COMMIT

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace T2 Workspace

456 0A 123 0A∞

Object Value W-TS
A 123 0
- - -

Safe to commit T1 because T2
commits logically before T1

TI
M
E

15-445/645 (Spring 2023)

OCC – FORWARD VALIDATION CASE #3

Ti completes its Read phase before Tj completes
its Read phase.

If Ti does not write to any object that is either read
or written by Tj, then there is no conflict.

Abort Ti if WriteSet(Ti) ∩ ReadSet(Tj) ≠ Ø
or if WriteSet(Ti) ∩ WriteSet(Tj) ≠ Ø

42

15-445/645 (Spring 2023)

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace T2 Workspace

Object Value W-TS
A 123 0
B XYZ 0

Schedule
T1 T2

OCC – FORWARD VALIDATION CASE #3

43

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

BEGIN

READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

123 0A XYZ 0B456 ∞
456 1A

456 1

TS(T1)=1

Safe to commit T1
because T2 sees the DB
after T1 has executed.

TI
M
E

15-445/645 (Spring 2023)

OCC – WRITE PHASE

Propagate changes in the txn's write set to database
to make them visible to other txns.

Serial Commits:
→ Use a global latch to limit a single txn to be in the

Validation/Write phases at a time.

Parallel Commits:
→ Use fine-grained write latches to support parallel

Validation/Write phases.
→ Txns acquire latches in primary key order to avoid

deadlocks.

44

15-445/645 (Spring 2023)

OCC – OBSERVATIONS

OCC works well when the # of conflicts is low:
→ All txns are read-only (ideal).
→ Txns access disjoint subsets of data.

If the database is large and the workload is not
skewed, then there is a low probability of conflict,
then locking is wasteful.

45

15-445/645 (Spring 2023)

OCC – PERFORMANCE ISSUES

High overhead for copying data locally.

Validation/Write phase bottlenecks.

Aborts are more wasteful than in 2PL because they
only occur after a txn has already executed.

46

15-445/645 (Spring 2023)

DYNAMIC DATABASES

Recall that so far, we have only dealt with
transactions that read and update existing objects
in the database.

But now if txns perform insertions, updates, and
deletions, we have new problems…

47

15-445/645 (Spring 2023)

THE PHANTOM PROBLEM

48

BEGIN

COMMIT

BEGIN

COMMIT

INSERT INTO people
(age=30, status='lit')

99

100

Schedule
T1 T2

SELECT COUNT(age)
FROM people
WHERE status='lit'

CREATE TABLE people (
id SERIAL,
name VARCHAR,
age INT,
status VARCHAR

);

SELECT COUNT(age)
FROM people
WHERE status='lit'

TI
M
E

15-445/645 (Spring 2023)

HOW DID THIS HAPPEN?

Because T1 locked only existing records and not
ones under way!

Conflict serializability on reads and writes of
individual items guarantees serializability only if
the set of objects is fixed.

49

15-445/645 (Spring 2023)

THE PHANTOM PROBLEM

Approach #1: Re-Execute Scans
→ Run queries again at commit to see whether they produce

a different result to identify missed changes.

Approach #2: Predicate Locking
→ Logically determine the overlap of predicates before

queries start running.

Approach #3: Index Locking
→ Use keys in indexes to protect ranges.

50

15-445/645 (Spring 2023)

RE-EXECUTE SCANS

The DBMS tracks the WHERE clause for all queries
that the txn executes.
→ Retain the scan set for every range query in a txn.

Upon commit, re-execute just the scan portion of
each query and check whether it generates the
same result.
→ Example: Run the scan for an UPDATE query but do not

modify matching tuples.

51

15-445/645 (Spring 2023)

PREDICATE LOCKING

Proposed locking scheme from System R.
→ Shared lock on the predicate in a WHERE clause of a

SELECT query.
→ Exclusive lock on the predicate in a WHERE clause of any

UPDATE, INSERT, or DELETE query.

Never implemented in any system except for
HyPer (precision locking).

52

https://hyper-db.de/
http://www-db.in.tum.de/~muehlbau/papers/mvcc.pdf

15-445/645 (Spring 2023)

PREDICATE LOCKING

53

SELECT COUNT(age)
FROM people

WHERE status='lit'
INSERT INTO people VALUES
(age=30, status='lit')

status='lit'

age=30 ∧
status='lit'

Records in Table "people"

15-445/645 (Spring 2023)

INDEX LOCKING SCHEMES

Key-Value Locks
Gap Locks
Key-Range Locks
Hierarchical Locking

55

15-445/645 (Spring 2023)

KEY-VALUE LOCKS

Locks that cover a single key-value in an index.
Need “virtual keys” for non-existent values.

56

10 12 14 16

B+Tree Leaf Node
Key

[14, 14]

15-445/645 (Spring 2023)

GAP LOCKS

Each txn acquires a key-value lock on the single
key that it wants to access. Then get a gap lock on
the next key gap.

57

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node

Gap
(14, 16)

15-445/645 (Spring 2023)

KEY-RANGE LOCKS

A txn takes locks on ranges in the key space.
→ Each range is from one key that appears in the relation, to

the next that appears.
→ Define lock modes so conflict table will capture

commutativity of the operations available.

58

15-445/645 (Spring 2023)

KEY-RANGE LOCKS

Locks that cover a key value and the gap to the
next key value in a single index.
→ Need “virtual keys” for artificial values (infinity)

59

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf Node
Next Key [14, 16)

Prior Key (12, 14]

15-445/645 (Spring 2023)

HIERARCHICAL LOCKING

Allow for a txn to hold wider key-range locks with
different locking modes.
→ Reduces the number of visits to lock manager.

60

10 12 14 16{Gap}{Gap} {Gap}

B+Tree Leaf NodeIX

[10, 16)

[14, 16)X
IX [12, 12]X

15-445/645 (Spring 2023)

LOCKING WITHOUT AN INDEX

If there is no suitable index, then to avoid
phantoms the txn must obtain:
→ A lock on every page in the table to prevent a record’s

status='lit' from being changed to lit.
→ The lock for the table itself to prevent records with

status='lit' from being added or deleted.

61

15-445/645 (Spring 2023)

CONCLUSION

Every concurrency control can be broken down
into the basic concepts that I've described in the
last two lectures.

Every protocol has pros and cons.

72

15-445/645 (Spring 2023)

NEXT CLASS

Multi-Version Concurrency Control

73

