{ "’4 .‘ *\
S

&= Intro to Database Systems (15-445/645)

1 8 Multi-Version
Concurrency Control

- 3 \ ’
Carnegie Phavlia \ ‘
Viellon charlie
University Garrod &

ADMINISTRIVIA

Project 3 ongoing
— Due Sunday, April 9% at 11:59 p.m.

Homework 4 released today
— Due Friday, April 7% at 11:59 p.m.

Final exam Monday, May 1%, 8:30 — 11:30 a.m.

£2CMU-DB

15-445/645 (Spring 2023)

LAST TIME: TIMESTAMP ORDERING

Basic timestamp ordering
Optimistic concurrency control

The phantom problem

— Re-execute scans

— Predicate locking

— Index locking schemes
Key-value locks
Gap locks
Key-range locks
Hierarchical locking

£2CMU-DB

15-445/645 (Spring 2023)

TODAY’S PLAN

Isolation levels

Multi-version concurrency control

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

WEAKER LEVELS OF ISOLATION

Serializability is useful because it allows
programmers to 1gnore concurrency 1ssues.

But enforcing it may allow too little concurrency
and limit performance.

We may want to use a weaker level of consistency
to improve scalability.

£2CMU-DB

15-445/645 (Spring 2023)

ISOLATION LEVELS

Controls the extent that a txn is exposed to the
actions of other concurrent txns.

Provides for greater concurrency at the cost of

exposing txns to uncommitted changes:
— Dirty Reads

— Unrepeatable Reads

— Phantom Reads

ISOLATION LEVELS

SERIALIZABLE: No phantoms, all reads repeatable,
no dirty reads.

REPEATABLE READS: Phantoms may happen.

READ COMMITTED: Phantoms and unrepeatable
reads may happen.

READ UNCOMMITTED: All of them may happen.

(YSIH«mo7) uoijpjos]

£2CMU-DB

15-445/645 (Spring 2023)

United States Department of Justice

Offices of the United States Attorneys

Search
THE UNITED STATES ATTORNEY’S OFFICE eare

SOUTHERN DIS'I’RIC'I‘(f)NEW YORK

HOME ABOUT PRIORITIES NEWS

RESOURCES PROGRAMS EMPLOYMENT CONTACT

U.S. Attorneys » Southern District of New York » News » Press Releases

S E R I AL I Z Department of Justice

U.S. Attorney’s Office

n O dirty r e Southern District of New York
FOR IMMEDIATE RELEASE

RE P EATAB U.S. Attorney Announces Historic $3.36 Billion Cryptocurrency

Seizure And Conviction In Connection With Silk Road Dark

READ COM) Web Fraud

In November 2021, Law Enforcement Seized Over 50,676 Bitcoin Hidden in Devices
r ead S may in Defendant JAMES ZHONG’s Home; ZHONG Has Now Pled Guilty to Unlawfully

Monday, November 7, 2022

Obtaining that Bitcoin From the Silk Road Dark Web in 2012

Click here to report information
on Amazon warehouses.

Damian Williams, the United States Attorney for the Southern District of New York, and Tyler Hatcher,
R E AD U NC(the Special Agent in Charge of the Internal Revenue Service, Criminal Investigation, Los Angeles Field
Office (“IRS-CI”), announced today that JAMES ZHONG pled guilty to committing wire fraud in
September 2012 when he unlawfully obtained over 50,000 Bitcoin from the Silk Road dark web internet

marketplace. ZHONG pled guilty on Friday, November 4, 2022, before United States District J udge Paul
G. Gardephe.

(YBIH<mo7]) uolypjosj

On November 9, 2021, pursuant to a Judicially authorized premises search warrant of ZHONG’s
Gainesville, Georgia, house, law enforcement seized approximately 50,676.17851897 Bitcoin, then valued
at over $3.36 billion. This seizure was then the largest cryptocurrency seizure in the history of the U.S.
Department of Justice and today remains the Department’s second largest financial seizure ever. The
Government is seeking to forfeit, collectively: approximately 51,680.32473733 Bitcoin; ZHONG's 80%
interest in RE&D Investments, LLC, a Memphis-based company with substantial real estate holdings;
$661,900 in cash seized from ZHONG’s home; and various metals also seized from ZHONG’

s home.

$2CMU-DB

15-445/645 (Spring 2023)

ISOLATION LEVELS

LN N B N N N N B _§ § N § N § =8 B § B N §N B _§N B § § § § § §B § § §N § § §N B § §N § §N N §B _§N J

1 Unrepeatable

: Dirty Read Read Phantom
|

|

! SERIALIZABLE No No No

:

i REPEATABLE READ| No No Maybe
|

|

| READ COMMITTED No Maybe Maybe
:

:

| READ UNCOMMITTED Maybe Maybe Maybe
i

IS o e e e Y e T e e e e e e e e e e Y e e e e e e e e e e e e e Y e e e e e

$2CMU-DB

15-445/645 (Spring 2023)

N N N N N N S S B S N B B B B B B B e e s

ISOLATION LEVELS

SERIALIZABLE: Obtain all locks first; plus index
locks, plus strict 2PL.

REPEATABLE READS: Same as above, but no index
locks.

READ COMMITTED: Same as above, but S locks are
released immediately.

READ UNCOMMITTED: Same as above but allows
dirty reads (no S locks).

£2CMU-DB

15-445/645 (Spring 2023)

SQL-92 ISOLATION LEVELS

You set a txn's isolation level before
you execute any queries in that txn.

Not all DBMS support all isolation

levels 1n all execution scenarios
— Replicated Environments

The default depends on

implementation...

£2CMU-DB

15-445/645 (Spring 2023)

SET TRANSACTION ISOLATION LEVEL
<isolation-level>;

BEGIN TRANSACTION ISOLATION LEVEL
<isolation-level>;

11

ISOLATION LEVELS

Actian Ingres
IBM DB2
CockroachDB
Google Spanner
MSFT SQL Server
MySQL

Oracle
PostgreSQL

SAP HANA
VoltDB

£2CMU-DB YugaByte

15-445/645 (Spring 2023)

Default Maximum
SERIALIZABLE SERIALIZABLE
SERIALIZABLE
SERIALIZABLE
STRICT SERIALIZABLE STRICT SERIALIZABLE |
READ COMMITTED SERIALIZABLE
REPEATABLE READS SERIALIZABLE
READ COMMITTED |SNAPSHOT ISOLATION |
| READ COMMITTED | SERIALIZABLE
READ COMMITTED SERIALIZABLE
| SERIALIZABLE | SERIALIZABLE
SNAPSHOT ISOLATION SERIALIZABLE

12

$2CMU-DB

15-445/645 (Spring 2023)

STRICT SERIALIZABLE

SERIALIZABLE

REPEATABLE READS

CURSOR STABILITY

READ COMMITTED

READ UNCOMMITTED

SNAPSHOT ISOLATION

13

N
o

of Responses
[HEY
o

£2CMU-DB

15-445/645 (Spring 2023)

DATABASE ADMIN SURVEY

What 1solation level do transactions execute at on

this DBMS?
B None

26

Few

B Most H All

Read Uncommitted] Read Committed

Cursor Stability

Repeatable Read Snapshot Isolation

Serializable

SQL-92 ACCESS MODES

You can provide hints to the DBMS
about whether a txn will modity the
database during its lifetime.

Only two possible modes:

—> READ WRITE (Default)
—> READ ONLY

Not all DBMSs will optimize
execution if you set a txn to in READ
ONLY mode.

£2CMU-DB

15-445/645 (Spring 2023)

SET TRANSACTION <access-mode>;

BEGIN TRANSACTION <access-mode>;

15

16

MULTI-VERSION CONCURRENCY CONTROL

$2CMU-DB

15-445/645 (Spring 2023)

The DBMS maintains multiple physical versions

of a single logical object in the database:

— When a txn writes to an object, the DBMS creates a new
version of that object.

— When a txn reads an object, it reads the newest version
that existed when the txn started.

MVCC HISTORY

Protocol was first proposed in 1978
MIT PhD dissertation.

First implementations was Rdb/VMS
and InterBase at DEC in early 1980s.

— Both were by Jim Starkey, co-founder of
NuoDB.
— DEC Rdb/VMS is now "Oracle Rdb"

— InterBase was open-sourced as Firebird.

$2CMU-DB

15-445/645 (Spring 2023)

Rdb/VMS

\ 4

Oracle Rdb

the Database for HP
OpenVMS Platform

17

http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://en.wikipedia.org/wiki/Jim_Starkey
https://dbdb.io/db/rdbvms
https://www.embarcadero.com/products/interbase
https://firebirdsql.org/

MULTI-VERSION CONCURRENCY CONTROL

Writers do not block readers
Readers do not block writers

Read-only txns can read a consistent snapshot

without acquiring locks

— Use timestamps to determine visibility

— Txn T can see values written by txns #hat committed before
T’s timestamp

Hasily support time-travel queries

$2CMU-DB

15-445/645 (Spring 2023)

18

MVCC - EXAMPLE #1

(rsry=1 Jes rs(ry=2) Daebae
T, \ - v

|
I 2
|

=

BEGIN
W(CA)

’----
AT T

T, creates version A;| I:(D_Sfft_u _s_'lla_b_le_ L
and sets A, End-TS. |\

TxnId Timestamp Status

T, 1 Active
T, 2 Active

T; reads version A,.

AT T

’----
’----

$2CMU-DB i

15-445/645 (Spring 2023)

MVCC - EXAMPLE #2

(rs(m)= Je rsry=2) Daebase
T, T,) —

I 1

1, | BEGIN : 1 1A 123 o 1 I
I

R(A) I 1 14, 456 |1 2 | |

W(A) BEGIN | N T i

R(A) : 1 2 I

! N e e e e /

=
.2
U

wis T,reads version Ay f==========- -

COMMEL because T, has not
committed yet.

—

Now T, can create
I the new version.
E'ECMU'DB e ——————— v 4 CENENE S . - - . .

15-445/645 (Spring 2023)

‘imestamp Status
Committed
Active

T, reads version A,
that it wrote earlier.

AT T

21

SNAPSHOT ISOLATION (SI)

When a txn starts, it sees a consistent snapshot of
the database

— (Can see all data committed before that txn started
— No torn writes from active txns.

— If two txns update the same object, then first writer wins.

Snapshot 1solation is not the same as serializable.
It 1s susceptible to the Write Skew Anomaly.

£2CMU-DB

15-445/645 (Spring 2023)

WRITE SKEW ANOMALY

A possible outcome with MVCC:

Both transactions read
the same snapshot

Both transactions
commit because there

is no write conflict
£2CMU-DB

15-445/645 (Spring 2023)

24

25

MULTI-VERSION CONCURRENCY CONTROL

MVCC 1s more than just a concurrency control
protocol. It completely affects how the DBMS

manages transactions and the database. SR!!ENGE
ATIBASE veconuse oeted gxasol JnfiNiDB
eXtreme — o
TIMESCALE = INgiR=s WIREDTIGER m \a
T mm (N)NETEZZA .
NnUuo FOUNDATIONDBE yicouor slaffodil,,
PostgreSQL a . SQL Server Hekaton ~ ™emeemeres A H Per
~). CUBRID y
Q Couchbase lMDB WANA
(& UMBRA & AranqoDB . @ QO sSingleStore
Clustri L onips meacus SN ORACLE
USIriX ~ OrientDB
: HERSE arm? @ream [l

< CM??;ENDB Bglgsg ? RethinkDB RM U S QL —6— Cockroach LaBs —

15-445/645 (Spring 2023)

MVCC DESIGN DECISIONS

Concurrency Control Protocol
Version Storage

Garbage Collection

Index Management

Deletes

$2CMU-DB

15-445/645 (Spring 2023)

$2CMU-DB

15-445/645 (Spring 2023)

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering

— Assign txns timestamps that determine serial order.

Approach #2: Optimistic Concurrency Control
— Three-phase protocol from last class.
— Use private workspace for new versions.

Approach #3: Two-Phase Locking

— T'xns acquire appropriate lock on physical version before
they can write a tuple.

27

£2CMU-DB

15-445/645 (Spring 2023)

VERSION STORAGE

The DBMS uses the tuples' pointer field to create a

version chain per logical tuple.

— This allows the DBMS to find the version that is visible
to a particular txn at runtime.

— Indexes always point to the "head" of the chain.

Different storage schemes determine where/what
to store for each version.

28

£2CMU-DB

15-445/645 (Spring 2023)

VERSION STORAGE

Approach #1: Append-Only Storage

— New versions are appended to the same table space.

Approach #2: Time-Travel Storage

— Old versions are copied to separate table space.

Approach #3: Delta Storage

— The original values of the modified attributes are copied
into a separate delta record space.

29

APPEND-ONLY STORAGE

Main Table
All the physical versions of a logical
tuple are stored in the same table ‘ 0
space. The versions are inter-mixed. Ao | 8777
» A, $222

On every update, append a new B, $70

ersion of the tuple into an em X
VErsIor P pty A, | $333| o
space in the table.

$2CMU-DB

15-445/645 (Spring 2023)

30

$2CMU-DB

15-445/645 (Spring 2023)

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Append new version to end of the chain.
— Must traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N20)

— Must update index pointers for every new version.
— Do not have to traverse chain on look-ups.

31

32

TIME-TRAVEL STORAGE

Main Table

VALUE POINTER

Time-Travel Table

VALUE

POINTER

a4 N T

On every update, copy the
current version to the time-
travel table. Update
pointers.

=ZCMU-DB

Overwrite master version in

the main table and update
pointers.

Main Table

ssssssssssss

On every update, copy only

VALUE

$333

DELTA STORAGE

POINTER

Delta Storage Segment

the values that were
modified to the delta

storage and overwrite the

master version.
f—?CMU-DB

>| A | (vALuessTiT) | o

| A, | (aLuess222)| @

Txns can recreate old
versions by applying the
delta in reverse order.

33

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical

versions from the database over time.
— No active txn in the DBMS can "see" that version (SI).
— The version was created by an aborted txn.

Two additional design decisions:
— How to look for expired versions?
— How to decide when it is safe to reclaim memory?

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

GARBAGE COLLECTION

Approach #1: Tuple-level
— Find old versions by examining tuples directly.
— Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level

— Txns keep track of their old versions so the DBMS does
not have to scan tuples to determine visibility.

35

TUPLE-LEVEL GC

Tig=25 =y’ O

Background Vacuuming:
Separate thread(s)
periodically scan the table
and look for reclaimable
versions. Works with any

OCMU DB St!p ra ge

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they

traverse version chain. Only
works with O2N.

36

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

On commit/abort, the txn provides this
information to a centralized vacuum worketr.

The DBMS periodically determines when all
versions created by a finished txn are no longer
visible.

£2CMU-DB

15-445/645 (Spring 2023)

TRANSACTION-LEVEL GC

BEGIN-TS END-TS DATA

Txn #1 E/'
BEGIN @ 10 UPORTE()
COMMIT @ 15

N

Old Versions E/'

Vacuum

TS<10 O‘

£2CMU-DB

15-445/645 (Spring 2023)

38

£2CMU-DB

15-445/645 (Spring 2023)

INDEX MANAGEMENT

Primary key indexes point to version chain head.

— How often the DBMS must update the pkey index
depends on whether the system creates new versions
when a tuple 1s updated.

— If a txn updates a tuple's pkey attribute(s), then this is
treated as a DELETE followed by an INSERT.

Secondary indexes are more complicated. ..

39

UBER Engineering JOIN THE TEAM MEET THE PEOPLE

ARCHITECTU

WHY UBER ENGINEERING
SWITCHED FROM
POSTGRES TO MYSQL

BY EVAN KLITZKE

Secondary Index | A B C D

Primary Index 1 2 3 4 ’

Disk [[LM []

76 103 107 211

£ CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

SECONDARY INDEXES

Approach #1: Logical Pointers

— Use a fixed 1dentifier per tuple that does not change.

— Requires an extra indirection layer.

— Primary Key vs. Tuple Id

Approach #2: Physical Pointers

— Use the physical address to the version chain head.

41

42

INDEX POINTERS

GET(A)
5 PRIMARY INDEX 5 SECONDARY INDEX

Record Id

Newest-to-
Oldest

Recqrd Id l
’l Ay I""Ag =>{[A,] A, }Append-Only

£2CMU-DB

£2CMU-DB

15-445/645 (Spring 2023)

MVCC INDEXES

MVCC DBMS indexes (usually) do not store

version information about tuples with their keys.

— Exception: Index-organized tables (e.g., MySQL)

Every index must support duplicate keys from

different snapshots:

— The same key may point to different logical tuples in
different snapshots.

43

44

MVCC DUPLICATE KEY PROBLEM

Txn #1 Index
BEGIN @ 10 66 66

READ(A) READ(A) v | v
Txn #2

BEGIN @ 20 |2' x ?T
COMMIT @ 25 UPDATE(A) DELETE(A)

BEGIN-TS END-TS POINTER

Txn #3 A, 7 20 O
1
g 20 20 @

BEGIN @ 30 @]
INSERT(A) — A 30 0o 0

$2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

MVCC INDEXES

Each index's underlying data structure must
support the storage of non-unique keys.

Use additional execution logic to perform

conditional inserts for pkey / unique indexes.
— Atomically check whether the key exists and then insert.

Workers may get back multiple entries for a single
fetch. They then must follow the pointers to find
the proper physical version.

45

£2CMU-DB

15-445/645 (Spring 2023)

MVCC DELETES

The DBMS physically deletes a tuple from the

database only when all versions of a logically
deleted tuple are not visible.
— If a tuple 1s deleted, then there cannot be a new version

of that tuple after the newest version.
— No write-write conflicts / first-writer wins

We need a way to denote that tuple has been
logically delete at some point in time.

46

£2CMU-DB

15-445/645 (Spring 2023)

MVCC DELETES

Approach #1: Deleted Flag

— Maintain a flag to indicate that the logical tuple has been
deleted after the newest physical version.
— Can either be in tuple header or a separate column.

Approach #2: Tombstone Tuple

— Create an empty physical version to indicate that a logical
tuple 1s deleted.

— Use a separate pool for tombstone tuples with only a
special bit pattern in version chain pointer to reduce the
storage overhead.

47

MVCC IMPLEMENTATIONS

Protocol Version Storage Garbage Indexes
Collection

Oracle MV2PL Delta Vacuum Logical
Postgres MV-2PL/MV-TO Append-Only Vacuum Physical
MySQL-InnoDB MV-2PL Delta Vacuum Logical
HYRISE MV-0CC Append-Only - Physical
Hekaton MV-0CC Append-Only Cooperative Physical
MemSQL (2015) MV-0CC Append-Only Vacuum Physical
SAP HANA MV-2PL Time-travel Hybrid Logical
NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-0CC Delta Txn-level Logical
szcMuGsckroachDB MV-2PL Delta (LSM) Compaction Logical

15-445/645 (Spring 2023)

48

CONCLUSION

MVCC is the widely used scheme in DBMS:s.
Even systems that do not support multi-statement

txns (e.g., NoSQL) use it.

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

NEXT CLASS

Logging and recovery!

50

