
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

18 Multi-Version
Concurrency Control

15-445/645 (Spring 2023)

ADMINISTRIVIA

Project 3 ongoing
→ Due Sunday, April 9th at 11:59 p.m.

Homework 4 released today
→ Due Friday, April 7th at 11:59 p.m.

Final exam Monday, May 1st, 8:30 – 11:30 a.m.

2

15-445/645 (Spring 2023)

LAST TIME: TIMESTAMP ORDERING

Basic timestamp ordering
Optimistic concurrency control
The phantom problem
→ Re-execute scans
→ Predicate locking
→ Index locking schemes

Key-value locks
Gap locks
Key-range locks
Hierarchical locking

3

15-445/645 (Spring 2023)

TODAY’S PLAN

Isolation levels
Multi-version concurrency control

4

15-445/645 (Spring 2023)

WEAKER LEVELS OF ISOLATION

Serializability is useful because it allows
programmers to ignore concurrency issues.

But enforcing it may allow too little concurrency
and limit performance.

We may want to use a weaker level of consistency
to improve scalability.

5

15-445/645 (Spring 2023)

ISOLATION LEVELS

Controls the extent that a txn is exposed to the
actions of other concurrent txns.

Provides for greater concurrency at the cost of
exposing txns to uncommitted changes:
→ Dirty Reads
→ Unrepeatable Reads
→ Phantom Reads

6

15-445/645 (Spring 2023)

ISOLATION LEVELS

SERIALIZABLE: No phantoms, all reads repeatable,
no dirty reads.
REPEATABLE READS: Phantoms may happen.
READ COMMITTED: Phantoms and unrepeatable
reads may happen.
READ UNCOMMITTED: All of them may happen.

7

Isolation (Low
→

H
igh)

15-445/645 (Spring 2023)

ISOLATION LEVELS

SERIALIZABLE: No phantoms, all reads repeatable,
no dirty reads.
REPEATABLE READS: Phantoms may happen.
READ COMMITTED: Phantoms and unrepeatable
reads may happen.
READ UNCOMMITTED: All of them may happen.

8

Isolation (Low
→

H
igh)

15-445/645 (Spring 2023)

ISOLATION LEVELS

9

Dirty Read
Unrepeatable

Read Phantom

SERIALIZABLE No No No

REPEATABLE READ No No Maybe

READ COMMITTED No Maybe Maybe

READ UNCOMMITTED Maybe Maybe Maybe

15-445/645 (Spring 2023)

ISOLATION LEVELS

SERIALIZABLE: Obtain all locks first; plus index
locks, plus strict 2PL.
REPEATABLE READS: Same as above, but no index
locks.
READ COMMITTED: Same as above, but S locks are
released immediately.
READ UNCOMMITTED: Same as above but allows
dirty reads (no S locks).

10

15-445/645 (Spring 2023)

SQL-92 ISOLATION LEVELS

You set a txn's isolation level before
you execute any queries in that txn.

Not all DBMS support all isolation
levels in all execution scenarios
→ Replicated Environments
The default depends on
implementation…

11

SET TRANSACTION ISOLATION LEVEL
<isolation-level>;

BEGIN TRANSACTION ISOLATION LEVEL
<isolation-level>;

15-445/645 (Spring 2023)

ISOLATION LEVELS

12

Default Maximum
Actian Ingres SERIALIZABLE SERIALIZABLE

IBM DB2 CURSOR STABILITY SERIALIZABLE

CockroachDB SERIALIZABLE SERIALIZABLE

Google Spanner STRICT SERIALIZABLE STRICT SERIALIZABLE

MSFT SQL Server READ COMMITTED SERIALIZABLE

MySQL REPEATABLE READS SERIALIZABLE

Oracle READ COMMITTED SNAPSHOT ISOLATION

PostgreSQL READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

VoltDB SERIALIZABLE SERIALIZABLE

YugaByte SNAPSHOT ISOLATION SERIALIZABLE

15-445/645 (Spring 2023)

13

REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

SERIALIZABLE

READ COMMITTED

CURSOR STABILITY

STRICT SERIALIZABLE

15-445/645 (Spring 2023)

DATABASE ADMIN SURVEY

What isolation level do transactions execute at on
this DBMS?

14

10

2

12
10 11

8
12

6
10

12

3

11
8

26

1
5

3 2
4

22

1 2
5

0
0

10

20

30

Read Uncommitted Read Committed Cursor Stability Repeatable Read Snapshot Isolation Serializable

of

 R
es

po
ns

es

None Few Most All

15-445/645 (Spring 2023)

SQL-92 ACCESS MODES

You can provide hints to the DBMS
about whether a txn will modify the
database during its lifetime.
Only two possible modes:
→ READ WRITE (Default)
→ READ ONLY

Not all DBMSs will optimize
execution if you set a txn to in READ
ONLY mode.

15

SET TRANSACTION <access-mode>;

BEGIN TRANSACTION <access-mode>;

15-445/645 (Spring 2023)

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions
of a single logical object in the database:
→ When a txn writes to an object, the DBMS creates a new

version of that object.
→ When a txn reads an object, it reads the newest version

that existed when the txn started.

16

15-445/645 (Spring 2023)

MVCC HISTORY

Protocol was first proposed in 1978
MIT PhD dissertation.

First implementations was Rdb/VMS
and InterBase at DEC in early 1980s.
→ Both were by Jim Starkey, co-founder of

NuoDB.
→ DEC Rdb/VMS is now "Oracle Rdb"
→ InterBase was open-sourced as Firebird.

17

http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://en.wikipedia.org/wiki/Jim_Starkey
https://dbdb.io/db/rdbvms
https://www.embarcadero.com/products/interbase
https://firebirdsql.org/

15-445/645 (Spring 2023)

MULTI-VERSION CONCURRENCY CONTROL

Writers do not block readers
Readers do not block writers

Read-only txns can read a consistent snapshot
without acquiring locks
→ Use timestamps to determine visibility
→ Txn T can see values written by txns that committed before

T’s timestamp

Easily support time-travel queries

18

15-445/645 (Spring 2023)

TxnId Timestamp Status
T1 1 Active
T2 2 Active

Txn Status Table

Version Value Begin End
A0 123 0 -

TI
M
E

Schedule
T1 T2

MVCC – EXAMPLE #1

19

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

T1 reads version A0.

-2456A1

TS(T1)=1 TS(T2)=2 Database

T2 creates version A1
and sets A0 End-TS.

15-445/645 (Spring 2023)

TxnId Timestamp Status
T1 1 Active

Txn Status Table

Version Value Begin End
A0 123 0

TI
M
E

Schedule
T1 T2

MVCC – EXAMPLE #2

20

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

T1 reads version A1
that it wrote earlier.

-1456A1 2
-2789A2

TS(T1)=1 TS(T2)=2 Database

Active2T2
Committed1T1

Now T2 can create
the new version.

T2 must stall until T1
commits.

T2 reads version A0
because T1 has not

committed yet.

15-445/645 (Spring 2023)

SNAPSHOT ISOLATION (SI)

When a txn starts, it sees a consistent snapshot of
the database
→ Can see all data committed before that txn started
→ No torn writes from active txns.
→ If two txns update the same object, then first writer wins.

Snapshot isolation is not the same as serializable.
It is susceptible to the Write Skew Anomaly.

21

15-445/645 (Spring 2023)

WRITE SKEW ANOMALY

24

A possible outcome with MVCC:

Both transactions
commit because there
is no write conflict

Txn #1

Txn #2

Both transactions read
the same snapshot

15-445/645 (Spring 2023)

MULTI-VERSION CONCURRENCY CONTROL

MVCC is more than just a concurrency control
protocol. It completely affects how the DBMS
manages transactions and the database.

25

15-445/645 (Spring 2023)

MVCC DESIGN DECISIONS

Concurrency Control Protocol
Version Storage
Garbage Collection
Index Management
Deletes

26

15-445/645 (Spring 2023)

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
→ Assign txns timestamps that determine serial order.

Approach #2: Optimistic Concurrency Control
→ Three-phase protocol from last class.
→ Use private workspace for new versions.

Approach #3: Two-Phase Locking
→ Txns acquire appropriate lock on physical version before

they can write a tuple.

27

15-445/645 (Spring 2023)

VERSION STORAGE

The DBMS uses the tuples' pointer field to create a
version chain per logical tuple.
→ This allows the DBMS to find the version that is visible

to a particular txn at runtime.
→ Indexes always point to the "head" of the chain.

Different storage schemes determine where/what
to store for each version.

28

15-445/645 (Spring 2023)

VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied

into a separate delta record space.

29

15-445/645 (Spring 2023)

APPEND-ONLY STORAGE

All the physical versions of a logical
tuple are stored in the same table
space. The versions are inter-mixed.

On every update, append a new
version of the tuple into an empty
space in the table.

30

Main Table

VALUE

A0 $111

POINTER

A1 $222 Ø

A2 $333 Ø

B0 $10 Ø

15-445/645 (Spring 2023)

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)
→ Append new version to end of the chain.
→ Must traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N2O)
→ Must update index pointers for every new version.
→ Do not have to traverse chain on look-ups.

31

15-445/645 (Spring 2023)

TIME-TRAVEL STORAGE

32

Overwrite master version in
the main table and update
pointers.

Main Table

VALUE

A2 $222

POINTER

B0 $10

A3 $333

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update
pointers.

15-445/645 (Spring 2023)

DELTA STORAGE

33

Txns can recreate old
versions by applying the
delta in reverse order.

Main Table

VALUE

A1 $111

POINTER

B0 $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

On every update, copy only
the values that were
modified to the delta
storage and overwrite the
master version.

15-445/645 (Spring 2023)

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical
versions from the database over time.
→ No active txn in the DBMS can "see" that version (SI).
→ The version was created by an aborted txn.

Two additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?

34

15-445/645 (Spring 2023)

GARBAGE COLLECTION

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does

not have to scan tuples to determine visibility.

35

15-445/645 (Spring 2023)

Txn #1
Tid=12

Txn #2
Tid=25

BEGIN-TS END-TS

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

36

Background Vacuuming:
Separate thread(s)
periodically scan the table
and look for reclaimable
versions. Works with any
storage.

Vacuum

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

D
irty Block

BitM
ap A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

15-445/645 (Spring 2023)

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.
On commit/abort, the txn provides this
information to a centralized vacuum worker.

The DBMS periodically determines when all
versions created by a finished txn are no longer
visible.

37

15-445/645 (Spring 2023)

TRANSACTION-LEVEL GC

38

UPDATE(B)

Txn #1
UPDATE(A)BEGIN @ 10

Vacuum

Old Versions
A2

B6

A2
B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-

-

A3 10 ∞ -

B7 10 ∞ -

10
10

TS<10

COMMIT @ 15 10
10

10
10

15-445/645 (Spring 2023)

INDEX MANAGEMENT

Primary key indexes point to version chain head.
→ How often the DBMS must update the pkey index

depends on whether the system creates new versions
when a tuple is updated.

→ If a txn updates a tuple's pkey attribute(s), then this is
treated as a DELETE followed by an INSERT.

Secondary indexes are more complicated…

39

15-445/645 (Spring 2023)

INDEX MANAGEMENT

Primary key indexes point to version chain head.
→ How often the DBMS must update the pkey index

depends on whether the system creates new versions
when a tuple is updated.

→ If a txn updates a tuple's pkey attribute(s), then this is
treated as a DELETE followed by an INSERT.

Secondary indexes are more complicated…

40

15-445/645 (Spring 2023)

SECONDARY INDEXES

Approach #1: Logical Pointers
→ Use a fixed identifier per tuple that does not change.
→ Requires an extra indirection layer.
→ Primary Key vs. Tuple Id

Approach #2: Physical Pointers
→ Use the physical address to the version chain head.

41

15-445/645 (Spring 2023)

SECONDARY INDEX
SECONDARY INDEX

SECONDARY INDEX

INDEX POINTERS

42

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1

GET(A)

Append-Only
Newest-to-
Oldest

GET(A)

TupleId→Addres
s

Record Id
Record Id

Primary
Key

TupleId

Record Id

15-445/645 (Spring 2023)

MVCC INDEXES

MVCC DBMS indexes (usually) do not store
version information about tuples with their keys.
→ Exception: Index-organized tables (e.g., MySQL)

Every index must support duplicate keys from
different snapshots:
→ The same key may point to different logical tuples in

different snapshots.

43

15-445/645 (Spring 2023)

MVCC DUPLICATE KEY PROBLEM

44

Index

DELETE(A)

Txn #2
BEGIN @ 20

INSERT(A)

Txn #3
BEGIN @ 30

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

A1 30 ∞ Ø

READ(A)

Txn #1
BEGIN @ 10

COMMIT @ 25

20 20

20

READ(A)

15-445/645 (Spring 2023)

MVCC INDEXES

Each index's underlying data structure must
support the storage of non-unique keys.

Use additional execution logic to perform
conditional inserts for pkey / unique indexes.
→ Atomically check whether the key exists and then insert.

Workers may get back multiple entries for a single
fetch. They then must follow the pointers to find
the proper physical version.

45

15-445/645 (Spring 2023)

MVCC DELETES

The DBMS physically deletes a tuple from the
database only when all versions of a logically
deleted tuple are not visible.
→ If a tuple is deleted, then there cannot be a new version

of that tuple after the newest version.
→ No write-write conflicts / first-writer wins

We need a way to denote that tuple has been
logically delete at some point in time.

46

15-445/645 (Spring 2023)

MVCC DELETES

Approach #1: Deleted Flag
→ Maintain a flag to indicate that the logical tuple has been

deleted after the newest physical version.
→ Can either be in tuple header or a separate column.

Approach #2: Tombstone Tuple
→ Create an empty physical version to indicate that a logical

tuple is deleted.
→ Use a separate pool for tombstone tuples with only a

special bit pattern in version chain pointer to reduce the
storage overhead.

47

15-445/645 (Spring 2023)

MVCC IMPLEMENTATIONS

48

Protocol Version Storage Garbage
Collection

Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

HYRISE MV-OCC Append-Only – Physical

Hekaton MV-OCC Append-Only Cooperative Physical

MemSQL (2015) MV-OCC Append-Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-OCC Delta Txn-level Logical

CockroachDB MV-2PL Delta (LSM) Compaction Logical

15-445/645 (Spring 2023)

CONCLUSION

MVCC is the widely used scheme in DBMSs.
Even systems that do not support multi-statement
txns (e.g., NoSQL) use it.

49

15-445/645 (Spring 2023)

NEXT CLASS

Logging and recovery!

50

