
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

20 Database
Recovery

15-445/645 (Spring 2023)

ADMINISTRIVIA

Homework 4 ongoing
→ Due Friday, April 7th at 11:59 p.m.

Project 3 ongoing
→ Due Sunday, April 9th at 11:59 p.m.

Final exam Monday, May 1st, 8:30 – 11:30 a.m.

2

15-445/645 (Spring 2023)

LAST TIME: LOGGING

Failure Classification
Buffer Pool Policies
Shadow Paging
Write-Ahead Log
Logging Schemes
Checkpoints

3

15-445/645 (Spring 2023)

WAL
<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮

CHECKPOINTS

Use the <CHECKPOINT> record as the
starting point for analyzing the WAL.
Any txn that committed before the
checkpoint is ignored (T1).
T2 + T3 did not commit before the last
checkpoint.
→ Need to redo T2 because it committed

after checkpoint.
→ Need to undo T3 because it did not

commit before the crash.

4

15-445/645 (Spring 2023)

CHECKPOINTS – CHALLENGES

In this example, the DBMS must stall txns when it
takes a checkpoint to ensure a consistent snapshot.
→ We will see how to get around this problem next class.

Scanning the log to find uncommitted txns can
take a long time.
→ Unavoidable but we will add hints to the <CHECKPOINT>

record to speed things up next class.

How often the DBMS should take checkpoints
depends on many different factors…

5

15-445/645 (Spring 2023)

CHECKPOINTS – FREQUENCY

Checkpointing too often causes the runtime
performance to degrade.
→ System spends too much time flushing buffers.

But waiting a long time is just as bad:
→ The checkpoint will be large and slow.
→ Makes recovery time much longer.

Tunable option that depends on application
recovery time requirements.

6

15-445/645 (Spring 2023)

LOGGING CONCLUSION

Write-Ahead Logging is (almost) always the best
approach to handle loss of volatile storage.

Use incremental updates (STEAL + NO-FORCE)
with checkpoints.

On Recovery: undo uncommitted txns and redo
committed txns.

7

15-445/645 (Spring 2023)

CRASH RECOVERY

Recovery algorithms are techniques to ensure
database consistency, transaction atomicity, and
durability despite failures.

Recovery algorithms have two parts:
→ Actions during normal txn processing to ensure that the

DBMS can recover from a failure.
→ Actions after a failure to recover the database to a state

that ensures atomicity, consistency, and durability.

8

Today

15-445/645 (Spring 2023)

ARIES

Algorithms for Recovery and
Isolation Exploiting Semantics

Developed at IBM Research in early
1990s for the DB2 DBMS.

Not all systems implement ARIES
exactly as defined in this paper but
they're close enough.

9

https://en.wikipedia.org/wiki/Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics

15-445/645 (Spring 2023)

ARIES – MAIN IDEAS

Normal execution: Write-Ahead Logging:
→ Any change is recorded in log on stable storage before

the database change is written to disk.
→ Works with STEAL + NO-FORCE buffer pool policies.

Recovery: Three phases
→ Analysis: Use log to determine what transaction were

executing and what pages were dirty before the crash.
→ Redo: Replay history to restore database to exact state

before the crash.
→ Undo: Undo transactions that had not committed before

the crash.

10

15-445/645 (Spring 2023)

ARIES – OVERVIEW

Analysis: Figure out which txns
committed or failed since checkpoint
& which bufferpool pages were dirty.
Redo: Repeat all actions.
Undo: Reverse effects of failed txns.

11

CRASH!

Oldest log
record of txn

active at crash

Log record from
oldest dirty

page at crash

TI
M
E

A
1

R
2

U
3

Start of last
checkpoint

WAL

15-445/645 (Spring 2023)

TODAY'S AGENDA

Log Sequence Numbers
Normal Commit & Abort Operations
Fuzzy Checkpointing
Recovery Algorithm

12

15-445/645 (Spring 2023)

WAL RECORDS

We need to extend our log record format from last
class to include additional info.

Every log record now includes a globally unique
log sequence number (LSN).
→ LSNs represent the physical order that txns make changes

to the database.

Various components in the system keep track of
LSNs that pertain to them…

13

15-445/645 (Spring 2023)

LOG SEQUENCE NUMBERS

14

Name Location Definition
flushedLSN Memory Last LSN in log on disk
pageLSN pagex Newest update to

pagex

recLSN pagex
Oldest update to pagex
since it was last flushed

lastLSN Ti Latest record of txn Ti

MasterRecord Disk LSN of latest
checkpoint

15-445/645 (Spring 2023)

WRITING LOG RECORDS

Each data page contains a pageLSN.
→ The LSN of the most recent update to that page.

System keeps track of flushedLSN.
→ The max LSN flushed so far.

Before the DBMS can write page x to disk, it must
flush the log at least to the point where:
→ pageLSNx ≤ flushedLSN

15

15-445/645 (Spring 2023)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WRITING LOG RECORDS

16

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>

⋮

MasterRecord
flushedLSN

pageLSN recLSN

A=9 B=5 C=2

pageLSN recLSN

A=9 B=5 C=2

?
Log Sequence Numbers Log Sequence Numbers

? Safe to evict because
pageLSN ≤ flushedLSN

Not safe to evict because
pageLSN > flushedLSN

15-445/645 (Spring 2023)

WRITING LOG RECORDS

All log records have an LSN.

Update the pageLSN every time a txn modifies a
record in the page.

Update the flushedLSN in memory every time the
DBMS writes out the WAL buffer to disk.

17

15-445/645 (Spring 2023)

NORMAL EXECUTION

Each txn invokes a sequence of reads and writes,
followed by commit or abort.

Assumptions in this lecture:
→ All log records fit within a single page.
→ Disk writes are atomic.
→ Single-versioned tuples with Strong Strict 2PL.
→ STEAL + NO-FORCE buffer management with WAL.

18

15-445/645 (Spring 2023)

TRANSACTION COMMIT

When a txn commits, the DBMS writes a COMMIT
record to log and guarantees that all log records up
to txn's COMMIT record are flushed to disk.
→ Log flushes are sequential, synchronous writes to disk.
→ Many log records per log page.

When the commit succeeds, write a special TXN-
END record to log.
→ Indicates that no new log record for a txn will appear in

the log ever again.
→ This does not need to be flushed immediately.

19

15-445/645 (Spring 2023)

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 4, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>

TRANSACTION COMMIT

20

WAL

Database
MasterRecord

flushedLSN

pageLSN recLSN

A=9 B=5 C=2

pageLSN recLSN

A=9 B=5 C=2

012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>

⋮
099:<T4 TXN-END>

flushedLSN = 015

We can trim the in-memory
log up to flushedLSN

15-445/645 (Spring 2023)

TRANSACTION ABORT

Aborting a txn is a special case of the ARIES undo
operation applied to only one txn.

We add another field to our log records:
→ prevLSN: The previous LSN for the txn.
→ This maintains a linked-list for each txn that makes it easy

to walk through its records.

21

15-445/645 (Spring 2023)

WAL (Tail)

TRANSACTION ABORT

22

WAL

Database

Buffer Pool

MasterRecord
flushedLSN

pageLSN recLSN

A=9 B=5 C=2

pageLSN recLSN

A=9 B=5 C=2

012|nil:<T4 BEGIN>
013|012:<T4, A, 9, 8>
014|013:<T4, B, 5, 1>
015|014:<T4 ABORT>

???
099|098:<T4 TXN-END>

LSN | prevLSN

Important: Need to record what
steps we took to undo the txn.

15-445/645 (Spring 2023)

COMPENSATION LOG RECORDS

A CLR describes the actions taken to undo the
actions of a previous update record.

It has all the fields of an update log record plus the
undoNext pointer (the next-to-be-undone LSN).

CLRs are added to log records but the DBMS does
not wait for them to be flushed before notifying
the application that the txn aborted.

23

15-445/645 (Spring 2023)

TRANSACTION ABORT – CLR EXAMPLE

24
TI
M
E

LSN prevLSN TxnId Type Object Before After UndoNext
001 nil T1 BEGIN - - - -
002 001 T1 UPDATE A 30 40 -
⋮

011 002 T1 ABORT - - - -

15-445/645 (Spring 2023)

LSN prevLSN TxnId Type Object Before After UndoNext
001 nil T1 BEGIN - - - -
002 001 T1 UPDATE A 30 40 -
⋮

011 002 T1 ABORT - - - -
⋮

026 011 T1 CLR-002 A 40 30 001

TRANSACTION ABORT – CLR EXAMPLE

25
TI
M
E

The LSN of the next log
record to be undone.

15-445/645 (Spring 2023)

LSN prevLSN TxnId Type Object Before After UndoNext
001 nil T1 BEGIN - - - -
002 001 T1 UPDATE A 30 40 -
⋮

011 002 T1 ABORT - - - -
⋮

026 011 T1 CLR-002 A 40 30 001
027 026 T1 TXN-END - - - nil

TRANSACTION ABORT – CLR EXAMPLE

26
TI
M
E

15-445/645 (Spring 2023)

ABORT ALGORITHM

First write an ABORT record to log for the txn.
Then undo the txn's updates in reverse order. For
each update record:
→ Write a CLR entry to the log.
→ Restore old value.
Lastly, write a TXN-END record and release locks.

Notice: CLRs never need to be undone.

27

15-445/645 (Spring 2023)

TODAY’S AGENDA

Log Sequence Numbers
Normal Commit & Abort Operations
Fuzzy Checkpointing
Recovery Algorithm

28

15-445/645 (Spring 2023)

NON-FUZZY CHECKPOINTS

The DBMS halts everything when it takes a
checkpoint to ensure a consistent snapshot:
→ Halt the start of any new txns.
→ Wait until all active txns finish executing.
→ Flushes dirty pages on disk.

This is bad for runtime performance but makes
recovery easy.

29

15-445/645 (Spring 2023)

SLIGHTLY BETTER CHECKPOINTS

Pause modifying txns while the DBMS
takes the checkpoint.
→ Prevent queries from acquiring write latch

on table/index pages.
→ Don't have to wait until all txns finish

before taking the checkpoint.

We must record internal state as of
the beginning of the checkpoint.
→ Active Transaction Table (ATT)
→ Dirty Page Table (DPT)

30

Page #1

Page #2

Page #3Ch
ec

kp
oi

nt

TransactionPage #3

Page #1

Page #1 Page #2 Page #3

15-445/645 (Spring 2023)

ACTIVE TRANSACTION TABLE

One entry per currently active txn.
→ txnId: Unique txn identifier.
→ status: The current "mode" of the txn.
→ lastLSN: Most recent LSN created by txn.

Remove entry after the TXN-END record.

Txn Status Codes:
→ R → Running
→ C → Committing
→ U → Candidate for Undo

31

15-445/645 (Spring 2023)

DIRTY PAGE TABLE

Keep track of which pages in the buffer pool
contain changes that have not been flushed to disk.

One entry per dirty page in the buffer pool:
→ recLSN: The LSN of the log record that first caused the

page to be dirty.

32

15-445/645 (Spring 2023)

SLIGHTLY BETTER CHECKPOINTS

At the first checkpoint, assuming P11
was flushed, T2 is still running and
there is only one dirty page (P22),
At the second checkpoint, assuming
P22 was flushed, T2 and T3 are active
and the dirty pages are (P11, P33).

This still is not ideal because the
DBMS must stall txns during
checkpoint…

33

WAL
<T1 BEGIN>
<T2 BEGIN>
<T1, A→P11, 100, 120>
<T1 COMMIT>
<T2, C→P22, 100, 120>
<T1 TXN-END >
<CHECKPOINT

ATT={T2},
DPT={P22}>

<T3 BEGIN>
<T2, A→P11, 120, 130>
<T2 COMMIT>
<T3, B→P33, 200, 400>
<CHECKPOINT

ATT={T2,T3},
DPT={P11,P33}>

<T3, B→P33, 400, 600>

15-445/645 (Spring 2023)

FUZZY CHECKPOINTS

A fuzzy checkpoint is where the DBMS allows
active txns to continue the run while the system
writes the log records for checkpoint.
→ No attempt to force dirty pages to disk.

New log records to track checkpoint boundaries:
→ CHECKPOINT-BEGIN: Indicates start of checkpoint
→ CHECKPOINT-END: Contains ATT + DPT.

34

15-445/645 (Spring 2023)

FUZZY CHECKPOINTS

Assume the DBMS flushes P11 before
the first checkpoint starts.

Any txn that begins after the
checkpoint starts is excluded from the
ATT in the CHECKPOINT-END record.

The LSN of the CHECKPOINT-BEGIN
record is written to the
MasterRecord when it completes.

35

WAL
<T1 BEGIN>
<T2 BEGIN>
<T1, A→P11, 100, 120>
<T1 COMMIT>
<T2, C→P22, 100, 120>
<T1 TXN-END >
<CHECKPOINT-BEGIN>
<T3 BEGIN>
<T2, A→P11, 120, 130>
<CHECKPOINT-END

ATT={T2},
DPT={P22} >

<T2 COMMIT>
<T3, B→P33, 200, 400>
<CHECKPOINT-BEGIN>
<T3, B→P33, 10, 12>
<CHECKPOINT-END

ATT={T2,T3},
DPT={P11,P33}>

15-445/645 (Spring 2023)

ARIES – RECOVERY PHASES

Phase #1 – Analysis
→ Examine the WAL in forward direction starting at

MasterRecord to identify dirty pages in the buffer pool
and active txns at the time of the crash.

Phase #2 – Redo
→ Repeat all actions starting from an appropriate point in

the log (even txns that will abort).

Phase #3 – Undo
→ Reverse the actions of txns that did not commit before

the crash.

36

15-445/645 (Spring 2023)

ARIES – OVERVIEW

Start from last BEGIN-CHECKPOINT
found via MasterRecord.

Analysis: Figure out which txns
committed or failed since checkpoint.
Redo: Repeat all actions.
Undo: Reverse effects of failed txns.

37

CRASH!

Oldest log
record of txn

active at crash

Smallest recLSN
in DPT after

Analysis

TI
M
E

A
1

R
2

U
3

Start of last
checkpoint

WAL

15-445/645 (Spring 2023)

ANALYSIS PHASE

Scan log forward from last successful checkpoint.
If the DBMS finds a TXN-END record, remove its
corresponding txn from ATT.
All other records:
→ If txn not in ATT, add it with status UNDO.
→ On commit, change txn status to COMMIT.

For update log records:
→ If page P not in DPT, add P to DPT, set its

recLSN=LSN.

38

15-445/645 (Spring 2023)

ANALYSIS PHASE

At end of the Analysis Phase:
→ ATT identifies which txns were active at time of crash.
→ DPT identifies which dirty pages might not have made it

to disk.

39

15-445/645 (Spring 2023)

ANALYSIS PHASE EXAMPLE

40

WAL
010:<CHECKPOINT-BEGIN>
⋮

020:<T96, A→P33, 10, 15>
⋮

030:<CHECKPOINT-END
ATT={T96,T97},
DPT={P20,P33}>

⋮
040:<T96 COMMIT>
⋮

050:<T96 TXN-END>
⋮

CRASH!

LSN ATT DPT

010

020 (T96,U) (P33,020)

030 (T96,U), (T97,U) (P33,020), (P20,008)

040 (T96,C), (T97,U) (P33,020), (P20,008)

050 (T97,U) (P33,020), (P20,008)

Modify A in page P33
(TxnId, Status) (PageId, RecLSN)

15-445/645 (Spring 2023)

REDO PHASE

The goal is to repeat history to reconstruct the
database state at the moment of the crash:
→ Reapply all updates (even aborted txns!) and redo CLRs.

There are techniques that allow the DBMS to
avoid unnecessary reads/writes, but we will ignore
that in this lecture…

41

15-445/645 (Spring 2023)

REDO PHASE

Scan forward from the log record containing
smallest recLSN in DPT.

For each update log record or CLR with a given
LSN, redo the action unless:
→ Affected page is not in DPT, or
→ Affected page is in DPT but that record's LSN is less

than the page's recLSN.

42

15-445/645 (Spring 2023)

REDO PHASE

To redo an action:
→ Reapply logged update.
→ Set pageLSN to log record's LSN.
→ No additional logging, no forced flushes!

At the end of Redo Phase, write TXN-END log
records for all txns with status C and remove them
from the ATT.

43

15-445/645 (Spring 2023)

UNDO PHASE

Undo all txns that were active at the time of crash
and therefore will never commit.
→ These are all the txns with U status in the ATT after the

Analysis Phase.

Process them in reverse LSN order using the
lastLSN to speed up traversal.
Write a CLR for every modification.

44

15-445/645 (Spring 2023)

FULL EXAMPLE

45

<CHECKPOINT-BEGIN>

<CHECKPOINT-END>

<T1, A→P5, 1, 2>

<T2, B→P3, 2, 3>

<T1 ABORT>

<CLR: Undo T1 LSN 10>

<T1 TXN-END>

<T3, C→P1, 4, 5>

<T2, D→P5, 6, 7>

00

05

10

20

30

40

45

50

60

prevLSNs

LSN LOG

X CRASH!

TI
M
E

15-445/645 (Spring 2023)

FULL EXAMPLE

46

<CHECKPOINT-BEGIN>, <CHECKPOINT-END>

<T1, A→P5, 1, 2>

<T2, B→P3, 2, 3>

<T1 ABORT>

<CLR: Undo T1 LSN 10>, <T1 TXN-END>

<T3, C→P1, 4, 5>

<T2, D→P5, 6, 7>
CRASH! RESTART!

00,05

10

20

30

40,45

50

60
DPT

ATT
TxnId Status lastLSN

T2 U 60

T3 U 50

- - -

PageId recLSN

P1 50
P3 08
P5 10

flushedLSN

LSN LOG

X

X

<CLR: Undo T2 LSN 60, UndoNext 20>

<CLR: Undo T3 LSN 50>, <T3 TXN-END>
CRASH! RESTART!

70

80,85

Flush dirty pages
+ WAL to disk!

15-445/645 (Spring 2023)

FULL EXAMPLE

47

<CHECKPOINT-BEGIN>, <CHECKPOINT-END>

<T1, A→P5, 1, 2>

<T2, B→P3, 2, 3>

<T1 ABORT>

<CLR: Undo T1 LSN 10>, <T1 TXN-END>

<T3, C→P1, 4, 5>

<T2, D→P5, 6, 7>
CRASH! RESTART!

00,05

10

20

30

40,45

50

60
DPT

ATT
TxnId Status lastLSN

T2 U 70
- - -

- - -

PageId recLSN

P1 50
P3 08
P5 10

flushedLSN

LSN LOG

X

X

<CLR: Undo T2 LSN 60, UndoNext 20>

<CLR: Undo T3 LSN 50>, <T3 TXN-END>
CRASH! RESTART!

70

80,85

90,95 <CLR: Undo T2 LSN 20>, <T2 TXN-END>

15-445/645 (Spring 2023)

ADDITIONAL CRASH ISSUES (1)

What does the DBMS do if it crashes during
recovery in the Analysis Phase?
→ Nothing. Just run recovery again.

What does the DBMS do if it crashes during
recovery in the Redo Phase?
→ Again nothing. Redo everything again.

48

15-445/645 (Spring 2023)

ADDITIONAL CRASH ISSUES (2)

How can the DBMS improve performance during
recovery in the Redo Phase?
→ Assume that it is not going to crash again and flush all

changes to disk asynchronously in the background.

How can the DBMS improve performance during
recovery in the Undo Phase?
→ Lazily rollback changes before new txns access pages.
→ Rewrite the application to avoid long-running txns.

49

15-445/645 (Spring 2023)

CONCLUSION

Mains ideas of ARIES:
→ WAL with STEAL/NO-FORCE
→ Fuzzy Checkpoints (snapshot of dirty page ids)
→ Redo everything since the earliest dirty page
→ Undo txns that never commit
→ Write CLRs when undoing, to survive failures during

restarts

Log Sequence Numbers:
→ LSNs identify log records; linked into backwards chains

per transaction via prevLSN.
→ pageLSN allows comparison of data page and log records.

50

15-445/645 (Spring 2023)

NEXT CLASS

You now know how to build a single-node DBMS.

So now we can talk about distributed databases!

51

