
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

21 Introduction to
Distributed Databases

15-445/645 (Spring 2023)

ADMINISTRIVIA

Project 3 due last night

Homework 5 released today
→ Due Friday, April 21st at 11:59 p.m.

Project 4 released today
→ Due Friday, April 28th at 11:59 p.m.

Interested in TAing this course?
→ https://forms.gle/AvjfUtSaWtrNiJMXA

Final exam Monday, May 1st, 8:30 – 11:30 a.m.

2

https://forms.gle/AvjfUtSaWtrNiJMXA

15-445/645 (Spring 2023)

LAST TIME: RECOVERY

Fuzzy checkpoints
ARIES

3

15-445/645 (Spring 2023)

RECALL: PARALLEL VS. DISTRIBUTED

Parallel DBMSs:
→ Nodes are physically close to each other.
→ Nodes connected with high-speed LAN.
→ Communication cost is assumed to be small.

Distributed DBMSs:
→ Nodes can be far from each other.
→ Nodes connected using public network.
→ Communication cost and problems cannot be ignored.

4

15-445/645 (Spring 2023)

DISTRIBUTED DBMSs

Use the building blocks that we covered in single-
node DBMSs to now support transaction
processing and query execution in distributed
environments.
→ Optimization & Planning
→ Concurrency Control
→ Logging & Recovery

5

15-445/645 (Spring 2023)

TODAY'S AGENDA

System Architectures
Design Issues
Partitioning Schemes
Distributed Concurrency Control

6

15-445/645 (Spring 2023)

SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
what shared resources are directly accessible to
CPUs.

This affects how CPUs coordinate with each other
and where they retrieve/store objects in the
database.

7

15-445/645 (Spring 2023)

SYSTEM ARCHITECTURE

8

Shared
Nothing

Network

Distributed
Shared
Memory

Network

Shared
Disk

Network

Shared
Everything

15-445/645 (Spring 2023)

DISTRIBUTED SHARED MEMORY

CPUs have access to common
memory address space via a fast
interconnect.
→ Each processor has a global view of all the

in-memory data structures.
→ Each DBMS instance on a processor must

"know" about the other instances.

9

Network

15-445/645 (Spring 2023)

SHARED DISK

All CPUs can access a single logical
disk directly via an interconnect, but
each have their own private memories.
→ Can scale execution layer independently

from the storage layer.
→ Must send messages between CPUs to

learn about their current state.

10

Network

15-445/645 (Spring 2023)

Storage

SHARED DISK EXAMPLE

11

Node

Application
Server Node

Node

Update 101

Get Id=102

Get Id=101
Page ABC

Page XYZ

Get Id=101 Page ABC

15-445/645 (Spring 2023)

SHARED NOTHING

Each DBMS instance has its own
CPU, memory, and local disk.
Nodes only communicate with each
other via network.
→ Harder to scale capacity.
→ Harder to ensure consistency.
→ Better performance & efficiency.

12

Network

15-445/645 (Spring 2023)

SHARED NOTHING EXAMPLE

13

Node

Application
Server Node

P1→ID:1-150

P2→ID:151-300

Node
P3→ID:101-200

P1→ID:1-100

P2→ID:201-300

Get Id=200

Get Id=100
Get Id=200

Get Id=200 Id=200

15-445/645 (Spring 2023)

EARLY DISTRIBUTED DATABASE SYSTEMS

MUFFIN – UC Berkeley (1979)
SDD-1 – CCA (1979)
System R* – IBM Research (1984)
Gamma – Univ. of Wisconsin (1986)
NonStop SQL – Tandem (1987)

14

Bernstein

Mohan DeWitt

Gray

Stonebraker

15-445/645 (Spring 2023)

DESIGN ISSUES

How does the application find data?
Where does the application send queries?
How to execute queries on distributed data?
→ Push query to data.
→ Pull data to query.
How does the DBMS ensure correctness?
How do we divide the database across resources?

15

Next Class

15-445/645 (Spring 2023)

HOMOGENOUS VS. HETEROGENOUS

Approach #1: Homogenous Nodes
→ Every node in the cluster can perform the same set of

tasks (albeit on potentially different partitions of data).
→ Makes provisioning and failover "easier".

Approach #2: Heterogenous Nodes
→ Nodes are assigned specific tasks.
→ Can allow a single physical node to host multiple "virtual"

node types for dedicated tasks.

16

15-445/645 (Spring 2023)

MONGODB HETEROGENOUS ARCHITECTURE

17

Router
(mongos)

Shards (mongod)

P3 P4

P1 P2

P1→ID:1-100
P2→ID:101-200
P3→ID:201-300
P4→ID:301-400

Config Server
(mongod)

Router
(mongos)

⋮

⋮

Application
Server

Get Id=101

15-445/645 (Spring 2023)

DATA TRANSPARENCY

Applications should not be required to know
where data is physically located in a distributed
DBMS.
→ Any query that run on a single-node DBMS should

produce the same result on a distributed DBMS.

In practice, developers need to be aware of the
communication costs of queries to avoid
excessively "expensive" data movement.

18

15-445/645 (Spring 2023)

DATABASE PARTITIONING

Split database across multiple resources:
→ Disks, nodes, processors.
→ Often called "sharding" in NoSQL systems.

The DBMS executes query fragments on each
partition and then combines the results to produce
a single answer.

The DBMS can partition a database physically
(shared nothing) or logically (shared disk).

19

15-445/645 (Spring 2023)

NAÏVE TABLE PARTITIONING

Assign an entire table to a single node.
Assumes that each node has enough storage space
for an entire table.

Ideal if queries never join data across tables stored
on different nodes and access patterns are
uniform.

20

15-445/645 (Spring 2023)

NAÏVE TABLE PARTITIONING

21

Table1

SELECT * FROM table
Ideal Query:

Table2 Partitions

Table1

Table2

15-445/645 (Spring 2023)

VERTICAL PARTITIONING

Split a table's attributes into separate
partitions.
Must store tuple information to
reconstruct the original record.

22

Tuple#1

Tuple#2

Tuple#3

Tuple#4

attr1 attr2 attr3

attr1 attr2 attr3

attr1 attr2 attr3

attr1 attr2 attr3

attr4

attr4

attr4

attr4

Tuple#1

Tuple#2

Tuple#3

Tuple#4

Partition #1 Partition #2

CREATE TABLE foo (
attr1 INT,
attr2 INT,
attr3 INT,
attr4 TEXT

);

15-445/645 (Spring 2023)

HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on
some partitioning key and scheme.
→ Choose column(s) that divides the database equally in

terms of size, load, or usage.

Partitioning Schemes:
→ Hashing
→ Ranges
→ Predicates

24

15-445/645 (Spring 2023)

HORIZONTAL PARTITIONING

25

SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2022-11-29

102 b XXY 2022-11-28

103 c XYZ 2022-11-29

104 d XYX 2022-11-27

105 e XYY 2022-11-29

P3 P4

P1 P2
hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key

15-445/645 (Spring 2023)

Storage

LOGICAL PARTITIONING

26

Node

Application
Server Node

Get Id=1

Get Id=3

Id=1
Id=2

Id=3
Id=4

Id=1
Id=2
Id=3
Id=4

Get Id=3
Get Id=2

15-445/645 (Spring 2023)

Node

Node

PHYSICAL PARTITIONING

27

Application
Server

Get Id=1

Get Id=3

Id=1
Id=2

Id=3
Id=4

15-445/645 (Spring 2023)

HORIZONTAL PARTITIONING

28

SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2022-11-29

102 b XXY 2022-11-28

103 c XYZ 2022-11-29

104 d XYX 2022-11-27

105 e XYY 2022-11-29

P3 P4

P1 P2
hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key

hash(a)%5 = P4

hash(b)%5 = P3

hash(c)%5 = P5

hash(d)%5 = P1

hash(e)%5 = P3

15-445/645 (Spring 2023)

CONSISTENT HASHING

29

01

0.5

Replication Factor = 3

hash(key2)

hash(key1)

If hash(key)=P4

P5

P1

P3

P4
P2

P6

15-445/645 (Spring 2023)

SINGLE-NODE VS. DISTRIBUTED

A single-node txn only accesses data that is
contained on one partition.
→ The DBMS may not need check the behavior concurrent

txns running on other nodes.

A distributed txn accesses data at one or more
partitions.
→ Requires expensive coordination.

30

15-445/645 (Spring 2023)

TRANSACTION COORDINATION

If our DBMS supports multi-operation and
distributed txns, we need a way to coordinate their
execution in the system.

Two different approaches:
→ Centralized: Global "traffic cop".
→ Decentralized: Nodes organize themselves.

31

15-445/645 (Spring 2023)

TP MONITORS

A TP Monitor is an example of a centralized
coordinator for distributed DBMSs.
Originally developed in the 1970-80s to provide
txns between terminals and mainframe databases.
→ Examples: ATMs, Airline Reservations.

Standardized protocol from 1990s: X/Open XA

32

https://en.wikipedia.org/wiki/Teleprocessing_monitor
https://en.wikipedia.org/wiki/X/Open_XA

15-445/645 (Spring 2023)

Coordinator

CENTRALIZED COORDINATOR

33

PartitionsLock Request

Acknowledgement

Commit Request

Safe to commit?Application
Server P3 P4

P1 P2

P1
P2
P3
P4

15-445/645 (Spring 2023)

CENTRALIZED COORDINATOR

34

M
iddlew

are

Query Requests Safe to commit?

Application
Server P3 P4

P1 P2

P1→ID:1-100
P2→ID:101-200
P3→ID:201-300
P4→ID:301-400

Commit Request
Partitions

15-445/645 (Spring 2023)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

35

Application
Server

Safe to commit?

Begin Request

Query Request

Commit Request

PartitionsLeader Node

15-445/645 (Spring 2023)

DISTRIBUTED CONCURRENCY CONTROL

Need to allow multiple txns to execute
simultaneously across multiple nodes.
→ Many of the same protocols from single-node DBMSs

can be adapted.

This is harder because of:
→ Replication.
→ Network Communication Overhead.
→ Node Failures.
→ Clock Skew.

36

15-445/645 (Spring 2023)

DISTRIBUTED 2PL

37

Node 1 Node 2
NETWORK

Set A=2

A=1A=2

Set B=7

B=8B=7

Application
Server

Application
ServerSet B=9 Set A=0

Waits-For Graph

T1 T2

15-445/645 (Spring 2023)

CONCLUSION

I have barely scratched the surface on distributed
database systems…

It is hard to get this right.

38

15-445/645 (Spring 2023)

PROJECT #4 – CONCURRENCY CONTROL

You will add support for concurrent
transactions using two-phase locking
in BusTub!
→ Deadlock Detection
→ Hierarchical Locking (Table, Tuple)
→ Multiple Isolation Levels
→ Aborts/Rollbacks

You do not need to worry about
logging txns to disk.

39

Prompt: A dramatic and vibrant painting of a
giant eye in the clouds looking down on a field
of grazing sheep with padlocks as their heads.

https://15445.courses.cs.cmu.edu/spring2023/project4/

https://15445.courses.cs.cmu.edu/spring2023/project4/

15-445/645 (Spring 2023)

PROJECT #4 – TASKS

Lock Manager
→ Maintain internal lock table and queues.
→ Track the growing/shrinking phases of txns.
→ Notify waiting txns when their locks are available.

Deadlock Detector:
→ Build the waits-for graph and deterministically identify

what txn to kill to break deadlocks

Execution Engine
→ Modify Project #3 executors to support txn requests.

40

15-445/645 (Spring 2023)

PROJECT #4 - LEADERBOARD

We have designed the Terrier benchmark to
measure who has the fastest BusTub
implementation.

Tasks:
→ UpdateExecutor
→ Predicate Pushdown

41

15-445/645 (Spring 2023)

THINGS TO NOTE

Do not change any file other than the ones that
you submit to Gradescope.

Make sure you pull in the latest changes from the
BusTub main branch.

Post your questions on Piazza or come to TA
office hours.

Compare against our solution in your browser.

42

https://15445.courses.cs.cmu.edu/spring2023/bustub/

15-445/645 (Spring 2023)

NEXT CLASS

Distributed OLTP Systems
Replication
CAP Theorem
Real-World Examples

43

