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ADMINISTRIVIA

Project 3 due last night

Homework 5 released today
→ Due Friday, April 21st at 11:59 p.m.

Project 4 released today
→ Due Friday, April 28th at 11:59 p.m.

Interested in TAing this course?
→ https://forms.gle/AvjfUtSaWtrNiJMXA

Final exam Monday, May 1st, 8:30 – 11:30 a.m.
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LAST TIME:   RECOVERY

Fuzzy checkpoints
ARIES
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RECALL:   PARALLEL VS.  DISTRIBUTED

Parallel DBMSs:
→ Nodes are physically close to each other.
→ Nodes connected with high-speed LAN.
→ Communication cost is assumed to be small.

Distributed DBMSs:
→ Nodes can be far from each other.
→ Nodes connected using public network.
→ Communication cost and problems cannot be ignored.
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DISTRIBUTED DBMSs

Use the building blocks that we covered in single-
node DBMSs to now support transaction 
processing and query execution in distributed 
environments.
→ Optimization & Planning
→ Concurrency Control
→ Logging & Recovery
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TODAY'S  AGENDA

System Architectures
Design Issues
Partitioning Schemes
Distributed Concurrency Control
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SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies 
what shared resources are directly accessible to 
CPUs.

This affects how CPUs coordinate with each other 
and where they retrieve/store objects in the 
database.
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SYSTEM ARCHITECTURE
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DISTRIBUTED SHARED MEMORY

CPUs have access to common 
memory address space via a fast 
interconnect.
→ Each processor has a global view of  all the 

in-memory data structures. 
→ Each DBMS instance on a processor must 

"know" about the other instances.
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SHARED DISK

All CPUs can access a single logical 
disk directly via an interconnect, but 
each have their own private memories.
→ Can scale execution layer independently 

from the storage layer.
→ Must send messages between CPUs to 

learn about their current state.
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Storage

SHARED DISK EXAMPLE
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SHARED NOTHING

Each DBMS instance has its own 
CPU, memory, and local disk.
Nodes only communicate with each 
other via network.
→ Harder to scale capacity.
→ Harder to ensure consistency.
→ Better performance & efficiency.
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SHARED NOTHING EXAMPLE
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P1→ID:1-150
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EARLY DISTRIBUTED DATABASE SYSTEMS

MUFFIN – UC Berkeley (1979)
SDD-1 – CCA (1979)
System R* – IBM Research (1984)
Gamma – Univ. of  Wisconsin (1986)
NonStop SQL – Tandem (1987)
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DESIGN ISSUES

How does the application find data?
Where does the application send queries?
How to execute queries on distributed data?
→ Push query to data.
→ Pull data to query.
How does the DBMS ensure correctness?
How do we divide the database across resources?
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HOMOGENOUS VS.  HETEROGENOUS

Approach #1: Homogenous Nodes
→ Every node in the cluster can perform the same set of  

tasks (albeit on potentially different partitions of  data).
→ Makes provisioning and failover "easier".

Approach #2: Heterogenous Nodes
→ Nodes are assigned specific tasks.
→ Can allow a single physical node to host multiple "virtual" 

node types for dedicated tasks.
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MONGODB HETEROGENOUS ARCHITECTURE
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DATA TRANSPARENCY

Applications should not be required to know 
where data is physically located in a distributed 
DBMS.
→ Any query that run on a single-node DBMS should 

produce the same result on a distributed DBMS.

In practice, developers need to be aware of  the 
communication costs of  queries to avoid 
excessively "expensive" data movement.
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DATABASE PARTITIONING

Split database across multiple resources:
→ Disks, nodes, processors.
→ Often called "sharding" in NoSQL systems.

The DBMS executes query fragments on each 
partition and then combines the results to produce 
a single answer. 

The DBMS can partition a database physically
(shared nothing) or logically (shared disk).
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NAÏVE TABLE PARTITIONING

Assign an entire table to a single node.
Assumes that each node has enough storage space 
for an entire table.

Ideal if  queries never join data across tables stored 
on different nodes and access patterns are 
uniform.
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NAÏVE TABLE PARTITIONING
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VERTICAL PARTITIONING

Split a table's attributes into separate 
partitions.
Must store tuple information to 
reconstruct the original record.
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CREATE TABLE foo (
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attr2 INT,
attr3 INT,
attr4 TEXT

);
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HORIZONTAL PARTITIONING

Split a table's tuples into disjoint subsets based on 
some partitioning key and scheme. 
→ Choose column(s) that divides the database equally in 

terms of  size, load, or usage.

Partitioning Schemes:
→ Hashing
→ Ranges
→ Predicates
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HORIZONTAL PARTITIONING
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SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2022-11-29

102 b XXY 2022-11-28

103 c XYZ 2022-11-29

104 d XYX 2022-11-27

105 e XYY 2022-11-29

P3 P4

P1 P2
hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key
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Storage

LOGICAL PARTITIONING
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Node

Node

PHYSICAL PARTITIONING
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HORIZONTAL PARTITIONING
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SELECT * FROM table
WHERE partitionKey = ?

Ideal Query:

PartitionsTable1
101 a XXX 2022-11-29

102 b XXY 2022-11-28

103 c XYZ 2022-11-29

104 d XYX 2022-11-27

105 e XYY 2022-11-29

P3 P4

P1 P2
hash(a)%4 = P2

hash(b)%4 = P4

hash(c)%4 = P3

hash(d)%4 = P2

hash(e)%4 = P1

Partitioning Key

hash(a)%5 = P4

hash(b)%5 = P3

hash(c)%5 = P5

hash(d)%5 = P1

hash(e)%5 = P3
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CONSISTENT HASHING
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SINGLE-NODE VS.  DISTRIBUTED

A single-node txn only accesses data that is 
contained on one partition.
→ The DBMS may not need check the behavior concurrent 

txns running on other nodes.

A distributed txn accesses data at one or more 
partitions.
→ Requires expensive coordination.
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TRANSACTION COORDINATION

If  our DBMS supports multi-operation and 
distributed txns, we need a way to coordinate their 
execution in the system.

Two different approaches:
→ Centralized: Global "traffic cop".
→ Decentralized: Nodes organize themselves.
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TP MONITORS

A TP Monitor is an example of  a centralized 
coordinator for distributed DBMSs.
Originally developed in the 1970-80s to provide 
txns between terminals and mainframe databases.
→ Examples: ATMs, Airline Reservations.

Standardized protocol from 1990s: X/Open XA
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https://en.wikipedia.org/wiki/Teleprocessing_monitor
https://en.wikipedia.org/wiki/X/Open_XA
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Coordinator

CENTRALIZED COORDINATOR
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PartitionsLock Request
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Commit Request

Safe to commit?Application
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CENTRALIZED COORDINATOR
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P3 P4

P1 P2

DECENTRALIZED COORDINATOR
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DISTRIBUTED CONCURRENCY CONTROL

Need to allow multiple txns to execute 
simultaneously across multiple nodes.
→ Many of  the same protocols from single-node DBMSs 

can be adapted.

This is harder because of:
→ Replication.
→ Network Communication Overhead.
→ Node Failures.
→ Clock Skew.
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DISTRIBUTED 2PL
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NETWORK
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Set B=7
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Application
Server

Application
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CONCLUSION

I have barely scratched the surface on distributed 
database systems…

It is hard to get this right.
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PROJECT #4 – CONCURRENCY CONTROL

You will add support for concurrent 
transactions using two-phase locking 
in BusTub!
→ Deadlock Detection
→ Hierarchical Locking (Table, Tuple)
→ Multiple Isolation Levels
→ Aborts/Rollbacks

You do not need to worry about 
logging txns to disk.
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Prompt: A dramatic and vibrant painting of a 
giant eye in the clouds looking down on a field 
of grazing sheep with padlocks as their heads.

https://15445.courses.cs.cmu.edu/spring2023/project4/

https://15445.courses.cs.cmu.edu/spring2023/project4/
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PROJECT #4 – TASKS

Lock Manager
→ Maintain internal lock table and queues.
→ Track the growing/shrinking phases of  txns.
→ Notify waiting txns when their locks are available.

Deadlock Detector:
→ Build the waits-for graph and deterministically identify 

what txn to kill to break deadlocks

Execution Engine
→ Modify Project #3 executors to support txn requests.
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PROJECT #4 - LEADERBOARD

We have designed the Terrier benchmark to 
measure who has the fastest BusTub
implementation.

Tasks:
→ UpdateExecutor
→ Predicate Pushdown
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THINGS TO NOTE

Do not change any file other than the ones that 
you submit to Gradescope.

Make sure you pull in the latest changes from the 
BusTub main branch.

Post your questions on Piazza or come to TA 
office hours.

Compare against our solution in your browser.
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https://15445.courses.cs.cmu.edu/spring2023/bustub/
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NEXT CLASS

Distributed OLTP Systems
Replication
CAP Theorem 
Real-World Examples
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