{ "/A .L ..\.
S

&= Intro to Database Systems (15-445/645)

2 Distributed OLTP

Databases

Charlie \
Garrod ‘

ADMINISTRIVIA

Homework 5 available
— Due Friday, April 215 at 11:59 p.m.

Project 4 available
— Due Friday, April 28% at 11:59 p.m.

Interested in TAing this course?
— https://forms.gle/AvifUtSaWtrNiJMXA

Final exam Monday, May 1%, 8:30 — 11:30 a.m.

£2CMU-DB

15-445/645 (Spring 2023)

https://forms.gle/AvjfUtSaWtrNiJMXA

LAST TIME

System architectures
— Shared memory, shared disk, shared nothing

Partitioning/sharding
— Hash vs. range

Transaction coordination
— Centralized vs. decentralized

£2CMU-DB

15-445/645 (Spring 2023)

OLTP VS. OLAP

On-line Transaction Processing (OLTP):
— Short-lived read /write txns.

— Small footprint.

— Repetitive operations.

On-line Analytical Processing (OLAP):

— Long-running, read-only queries.
— Complex joins.
— Exploratory queries.

£2CMU-DB

15-445/645 (Spring 2023)

DECENTRALIZED COORDINATOR

Commit Request! I

Wprimary Node

Application
Server

£2CMU-DB

15-445/645 (Spring 2023)

Partitions

OBSERVATION

We have not discussed how to ensure that all nodes
agree to commit a txn and then to make sure it

does commit if we decide that it should.

— What happens if a node fails?

— What happens if our messages show up late?

— What happens if we don't wait for every node to agree?

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

IMPORTANT ASSUMPTION

We will assume that all nodes in a distributed
DBMS are well-behaved and under the same

administrative domain.
— If we tell a node to commit a txn, then it will commit the
txn (if there is not a failure).

If you do not trust the other nodes in a distributed
DBMS, then you need to use a Byzantine Fault
Tolerant protocol for txns (e.g;, blockchain).

https://en.wikipedia.org/wiki/Byzantine_fault
https://en.wikipedia.org/wiki/Byzantine_fault

TODAY'S AGENDA

Atomic Commit Protocols
Replication

Consistency Issues (CAP / PACELC)
Google Spanner

£2CMU-DB

15-445/645 (Spring 2023)

ATOMIC COMMIT PROTOCOL

When a multi-node txn finishes, the DBMS needs

to ask all the nodes involved whether it is safe to
commit.

Examples:

— Two-Phase Commit
— Three-Phase Commit (not used)
— Paxos
— Raft
— ZAB (Apache Zookeeper)
— Viewstamped Replication

£2CMU-DB

15-445/645 (Spring 2023)

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Raft_(algorithm)
https://en.wikipedia.org/wiki/Apache_ZooKeeper

TWO-PHASE COMMIT (SUCCESS)

s
Application
Server

Coord‘inator

£2CMU-DB

555555 /645 (Spring 2023)

S

Success! }est

|
qundidinying

|
qundidning

TWO-PHASE COMMIT (ABORT)

Aborted liest

s
Application
Server

asel: Prepare

RT!

OK

Coord‘inator

£2CMU-DB

15-445/645 (Spring 2023)

|
qundidinying

|
qundidning

£2CMU-DB

15-445/645 (Spring 2023)

TWO-PHASE COMMIT

Each node records the inbound/outbound
messages and outcome of each phase in a non-
volatile storage log.

On recovery, examine the log for 2PC messages:
— If local txn in prepared state, contact coordinator.

— If local txn not in prepared, abort it.

— If local txn was committing and node is the coordinator,

send COMMIT message to nodes.

12

TWO-PHASE COMMIT FAILURES

What happens if coordinator crashes?
— Participants must decide what to do after a timeout.
— System is not available during this time.

What happens if participant crashes?

— Coordinator assumes that it responded with an abort if it
hasn't sent an acknowledgement yet.

— Again, nodes use a timeout to determine that participant

is dead.

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

14

2PC OPTIMIZATIONS

Early Prepare Voting (Rare)

— If you send a query to a remote node that you know will
be the last one you execute there, then that node will also
return their vote for the prepare phase with the query
result.

Early Ack After Prepare (Comimon)

— If all nodes vote to commit a txn, the coordinator can
send the client an acknowledgement that their txn was
successful before the commit phase finishes.

EARLY ACKNOWLEDGEMENT

Application
Server

Coord‘inator

£2CMU-DB

15-445/645 (Spring 2023)

S

Success! }est ~

|
qundidinying

|
qundidning

PAXOS

Consensus protocol where a

coordinator proposes an Outcom;)
(e.g., commit or abort) and then
2

participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has

provably minimal message delays in
the best case.

£CMU-DB

15-445/645 (Spring 2023)

Consensus on Transaction Commit

JIM GRAY and LESLIE LAMPORT
Microsoft Research

The distributed transaction commi problem requires reaching agreement on Whether a transaction
is committed or aborted. The clagss, wo-Phase Commit protocol bloeks it the coordinator fails
Fault-tolerant consensus algorihm glon reach agreement, but do not blck Whenever any majority
ofthe processes are working, The paye Commitalgorithm rung a Paxos €onsensus algorithm on the
commit/abort decision of each participant tg obtain a transaction commit progee] that uses 277 4 1
coordinators and makes progress if o; least 7'+ 1 of them are working properly. Paxos Compmit

Categories and Subject Deseriptors; D41 [Operating Systems]: Progess Management—Cop.
urrency; Dd.5 [Operating Systemal: Reliability—Fuult-tolerance: 1,4 7 [Operating Systems|.
Organization and Design—Diyryippert systems

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Consensus, Paxos, two-phase commit

1. INTRODUCTION

Adistributeq transaction consists of a number of operations, performed at mul-
tiple sites, terminated by a Tequest to commit o abort the transaction. The
sites then use a transaction commit protocol to decide whether the transac-
tion is committed or aborted. The transaction can be committed only if a]] sites
are willing to commit j¢. Achieving thig all-or»nothing atomicity Property in a
distributed system is not trivial. The Tequirements for transaction commit are
stated precisely in Section 2.

the outcome, untj] the coordinator is repaired. In Section 4. we use the Paxog
consensus algorithm [Lamport 1998] to obtain a transaction commit protoco]

Authors’ addresses: J. Gray, Microsoft, Research, 455 Market St., San Francisco, CA 94105; email:
Jim.Grayomicrosoft, com; L. Lamport, Microsofy Research, 1065 La Avenida, Mountain View, CA
94043,

Permission to make digital or hard copies of part or all of this work for Personal or classroom use is
ide

Stanted without fee provided that capteg gpe not made or distributed for profit or dipees commercial
advantage and that copies show (e notice on the first page or initial sorper, of a display along

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006, Pages 133160,

£2CMU-DB

15-445/645 (Spring 2023)

Propose(n)

PAXOS

Acceptors
Agree(n)

uv__(

1

1

1

[P

| o

Proposer

——

o
Propose(n+1)

\L

Commit(n,v1)
™ Reject(n,n+1) |
| —>]
| 1
mree(nﬂ)

€

0
(1//

Commit(n+1,v2)

|
| - |
|
|
|
|
|

Accept(n+1, VZH?——.
T~ T

18

£2CMU-DB

15-445/645 (Spring 2023)

19

MULTI-PAXOS

If the system elects a single leader that oversees
proposing changes for some period, then it can

skip the Propose phase.

— Fall back to full Paxos whenever there is a failure.

The system periodically renews the leader (known

as a lease) using another Paxos round.
— Nodes must exchange log entries during leader election to
make sure that everyone is up-to-date.

£2CMU-DB

15-445/645 (Spring 2023)

2PC VS. PAXOS SUMMARY

Two-Phase Commit

— Atomic commit for distributed transactions

— Blocks if coordinator fails after the prepare message is
sent, until coordinator recovers.

Paxos

— Distributed consensus, can implement atomic commit on
top of Paxos

— Non-blocking if a majority participants are alive,
provided there is a sufficiently long period without
further failures.

20

£2CMU-DB

15-445/645 (Spring 2023)

REPLICATION

The DBMS can replicate data across redundant
nodes to increase availability.

Design Decisions:

— Replica Configuration
— Propagation Scheme
— Propagation Timing
— Update Method

21

£2CMU-DB

15-445/645 (Spring 2023)

22

REPLICA CONFIGURATIONS

Approach #1: Primary-Replica
— All updates go to a designated primary for each object.

— The primary propagates updates to its replicas without an
atomic commit protocol.

— Read-only txns may be allowed to access replicas.
— If the primary goes down, then hold an election to select
a New primary.

Approach #2: Multi-Primary
— Txns can update data objects at any replica.

— Replicas must synchronize with each other using an
atomic commit protocol.

£2CMU-DB

15-445/645 (Spring 2023)

REPLICA CONFIGURATIONS

Primary-Replica

Writes Reads

Primary
Replicas

Multi-Primary

Writes —
Reads »

Writes —yf
Reads »

K-SAFETY

K-safety is a threshold for determining the fault
tolerance of the replicated database.

The value K represents the number of replicas per
data object that must always be available.

If the number of replicas goes below this

threshold, then the DBMS halts execution and
takes itself offline.

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

PROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS decides whether it must wait for that txn's
changes to propagate to other nodes before it can
send the acknowledgement to application.

Propagation levels:

— Synchronous (S#rong Consistency)
— Asynchronous (Eventual Consistency)

25

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that

they fully applied (i.e., logged) the changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

$2CMU-DB

15-445/645 (Spring 2023)

Commit?l

26

Flush!

£2CMU-DB

15-445/645 (Spring 2023)

PROPAGATION TIMING

Approach #1: Continuous

— The DBMS sends log messages immediately as it
generates them.

— Also need to send a commit/abort message.

Approach #2: On Commit

— The DBMS only sends the log messages for a txn to the
replicas once the txn 1s commits.

— Do not waste time sending log records for aborted txns.

— Assumes that a txn's log records fits entirely in memory.

28

£2CMU-DB

15-445/645 (Spring 2023)

ACTIVE VS. PASSIVE

Approach #1: Active-Active

— A txn executes at each replica independently.

— Need to check at the end whether the txn ends up with
the same result at each replica.

Approach #2: Active-Passive

— FHach txn executes at a single location and propagates the
changes to the replica.

— Can either do physical or logical replication.

— Not the same as Primary-Replica vs. Multi-Primary

29

£2CMU-DB

15-445/645 (Spring 2023)

GOOGLE SPANNER

Google’s geo-replicated DBMS (>2011)
Schematized, semi-relational data model.
Decentralized shared-disk architecture.
Log-structured on-disk storage.

Concurrency Control:

— Strict 2PL. + MVCC + Multi-Paxos + 2PC

— Externally consistent global write-transactions with
synchronous replication.

— Lock-free read-only transactions.

30

£2CMU-DB

15-445/645 (Spring 2023)

SPANNER: CONCURRENCY CONTROL

MVCC + Strict 2PL with Wound-Wait Deadlock

Prevention

DBMS ensures ordering through globally unique
timestamps generated from atomic clocks and GPS
devices.

Database 1s broken up into tablets (partitions):
— Use Paxos to elect leader in tablet group.
— Use 2PC for txns that span tablets.

31

32

SPANNER TABLETS
2P<:

Snapshot Reads Writes + Reads Snapshot Reads

L/
4
’0
‘$
s®

[\
Q1 i
S| Tablet A |
O, !
~ l
O, I
@ | l
o
S| i
Qi :

i Data Center 1 Data Center 2 Data Center 3 :

N Leader) 3

$2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

SPANNER: TRANSACTION ORDERING

DBMS orders transactions based on physical "wall-

clock" time.
— This 1s necessary to guarantee strict serializability.

— If T, finishes before T,, then T, should see the result of
T,.

Each Paxos group decides in what order
transactions should be committed according to the

timestamps.
— If T, commits at time, and T, starts at time, > time,,
then T;'s timestamp should be less than T,'s.

33

CAP THEOREM

Proposed by Eric Brewer that it 1s
impossible for a distributed system to
always be: [

Pick Two!

— Consistent Sort of

— Always Available
— Network Partition Tolerant

One flaw 1s that it ighores consistency

vs. latency trade-offs.
— See PACELC Theorem Brewer

$2CMU-DB

15-445/645 (Spring 2023)

34

https://en.wikipedia.org/wiki/PACELC_theorem

35

CAP THEOREM

All up nodes can
Linearizability < satisfy all requests.
C &
’0\\\\ \ \
: \
Consistency 0@
Ava ilabil |ty _ Impossible

Partition Tolerant

Still operate correctly
£2CMU-DB despite message loss.

36

CAP

If Primary says the txn
committed, then it should be
immediately visible on replicas.

- | A
ZzzZan Set A=2 ! Read A
Application | Application
Server ACK | A=2 Server
|

£2CMU-DB

15-445/645 (Spring 2023)

|

Primary

CAP - AVAILABILITY

Read B

Application
A= Server

Application
Server

Primary
£CMU-DB

15-445/645 (Spring 2023)

37

CAP - PARTITION TOLERANCE

AR : AR
Application Application
Server Server

38

CAP FOR OLTP DBMSs

How a DBMS handles failures determines which
elements of the CAP theorem they support.

Traditional /Distributed Relational DBMSs

— Stop allowing updates until a majority of nodes are
reconnected.

NoSQL DBMSs

— Provide mechanisms to resolve conflicts after nodes are
reconnected.

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

CONCLUSION

Maintaining transactional consistency across

multiple nodes 1s hard. Bad things will happen.

Blockchain databases assume that the nodes are
adversartal. You must use different protocols to
commit transactions. This 1s stupid.

More info (and humiliation):
— Kyle Kingsbury's Jepsen Project

40

https://aphyr.com/tags/jepsen

NEXT CLASS

Distributed OLAP Systems

£2CMU-DB

15-445/645 (Spring 2023)

