{ "/A .L ..\.
S

&= Intro to Database Systems (15-445/645)

2 Distributed OLAP

Databases

Charlie \
Garrod ‘

ADMINISTRIVIA

Homework 5 ongoing
— Due Friday, April 215 at 11:59 p.m.

Project 4 ongoing
— Due Friday, April 28" at 11:59 p.m.

Interested in TAing this course?
— https://forms.gle/AvifUtSaWtrNiJMXA

Final exam Monday, May 1%, 8:30 — 11:30 a.m.

£2CMU-DB

15-445/645 (Spring 2023)

https://forms.gle/AvjfUtSaWtrNiJMXA

LAST TIME

Distributed commit protocols
— Two-phase commit (2PC)

Distributed consensus protocols
— Paxos

Other topics
— Replication
—CAP theorem

— Google Spanner

£2CMU-DB

15-445/645 (Spring 2023)

CAP THEOREM

Proposed by Eric Brewer that it 1s
impossible for a distributed system to
always be: [

Pick Two!

— Consistent Sort of

— Always Available
— Network Partition Tolerant

One flaw 1s that it ighores consistency

vs. latency trade-offs.
— See PACELC Theorem Brewer

$2CMU-DB

15-445/645 (Spring 2023)

https://en.wikipedia.org/wiki/PACELC_theorem

s
Application
Server

£2CMU-DB

555555 /645 (Spring 2023)

CAP - CONSISTENCY

Read A

|

Primary

Z=g
Application
Server

CAP - PARTITION TOLERANCE

AR : AR
Application Application
Server Server

CAP FOR OLTP DBMSs

How a DBMS handles failures determines which
elements of the CAP theorem they support.

Traditional /Distributed Relational DBMSs

— Stop allowing updates until a majority of nodes are
reconnected.

NoSQL DBMSs

— Provide mechanisms to resolve conflicts after nodes are
reconnected.

£2CMU-DB

15-445/645 (Spring 2023)

DISTRIBUTED TRANSACTIONS CONCLUSION

Maintaining transactional consistency across

multiple nodes 1s hard. Bad things happen.

More info (and humiliation):
— Kyle Kingsbury's Jepsen Project

£2CMU-DB

15-445/645 (Spring 2023)

https://aphyr.com/tags/jepsen

BIFURCATED ENVIRONMENT

OLTP Databases OLAP Database

$2CMU-DB

15-445/645 (Spring 2023)

10

$2CMU-DB

15-445/645 (Spring 2023)

DECISION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema

11

STAR SCHEMA

PRODUCT_DIM

CUSTOMER_DIM

£2CMU-DB

15-445/645 (Spring 2023)

CATEGORY_NAME ID
CATEGORY_DESC FIRST_NAME
PRODUCT _CODE SALES FACT LAST_NAME
PRODUCT _NAME EMAIL
PRODUCT _DESC PRODUCT_FK ZIP_CODE

TIME_FK

LOCATION_FK

CUSTOMER_FK
LOCATION_DIM TIME_DIM
COUNTRY PRICE YEAR
STATE_CODE / QUANTITY \ DAY_OF _YEAR
STATE_NAME MONTH_NUM
ZIP_CODE MONTH_NAME
CITY DAY_OF_MONTH

CAT _LOOKUP

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

PRODUCT DIM
CATEGORY_FK

SALES FACT

SNOWFLAKE SCHEMA

CUSTOMER_DIM

PRODUCT_CODE
PRODUCT _NAME
PRODUCT_DESC

LOCATION_DIM

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

ID
FIRST_NAME
LAST_NAME
EMAIL

ZIP_CODE

TIME_DIM

PRICE
QUANTITY

YEAR
DAY_OF_YEAR
MONTH_FK

DAY_OF _MONTH

COUNTRY
STATE_FK
ZIP_CODE —~—
CITY
STATE_LOOKUP

STATE_ID

STATE_CODE —

STATE_NAME

& -D5

15-445/645 (Spring 2023)

MONTH_LOOKUP

MONTH_NUM
ey MONTH_NAME
MONTH_SEASON

£2CMU-DB

15-445/645 (Spring 2023)

STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization

— Snowtlake schemas take up less storage space.

— Denormalized data models may incur integrity and
consistency violations.

Issue #2: Query Complexity

— Snowtlake schemas require more joins to get the data
needed for a query.

— Queries on star schemas will (usually) be faster.

14

PROBLEM SETUP

SELECT * FROM R JOIN S
ON R.id = S.id

o e |
IZZE
7

Application
Server

£2CMU-DB

15-445/645 (Spring 2023)

Partitions

15

£2CMU-DB

15-445/645 (Spring 2023)

TODAY'S AGENDA

Execution Models

Query Planning

Distributed Join Algorithms
Cloud Systems

16

PDF | Rss

With Amazon s3

Query Blob Contents

Article « 07/20/2021 + 10 minutes to read * 3 contributors Y Feedback

The Query Blob contents APl applies a simple Structured Query Language (SQL) statementon a blob's
contents and returns only the queried subset of the data. You can also call Query glob Contents toquery

the contents of a version or snapshot.

Request

The Query Blob contents request may be constructed as follows. HTTPS is recommended. Replace

myaccount with the name of your storage account:

pOST Method Request URI HTTP Version
https://myaccount. blob.core.windows. net/mycontainer/myblob?comp:query HTTP/1.0
https://myaccount _plob.core.windows. net/mycontainer/myblob?comp:query&snapshot=<DateTime> HTTP/1.1

https: //myaccount. plob.core.windows. net/mycontainer/myblob?comp:query&versionid:<DateTime>

Filteri
tering and retrieving data usin

- Microsoft

uery [anQUa e
S
at you neengy(u?;;) s;atements to filter the content
’ g Amazo nts of an
ch reduces t n S3 Select to fi)
he cost and latency to retrieVef;:er this data, you can
is data.

r Apache Par
u
only), and SEC:VZ: f(_);mat. It also works with object
etermine how the ? € encrypted objects. You cjan s that are
ecords in the re ' specify th
sult are delimi e
ited.

zon S3 Select
c supports a
Select, s subset of S
ee SQL reference for Amazon?; ;or more information
elect.

dDbject Cont
ent
e limits the am:EST API, the AWS Command Lj
unt of data returned to 40 MBlne Interface
. To retrieve

17

uting a query that

PUSH QUERY TO DATA

SELECT * FROM R JOIN S , Node]
ON R.id = S.id P1>R.id:1-100
P1+S.id:1-100
g |

A

A

7 RS

IZZ3K IDs [101,200] Qﬂ:sult: RD< S
3

Application

A 4

erver (Node]
P2->R.id:101-200
2220 755 1d:101-200

£2CMU-DB

15-445/645 (Spring 2023)

PULL DATA TO QUERY

SELECT * FROM R JOIN S
ON R.id = S.id

P1>ID:1-100

Node

Application
Server

£2CMU-DB

15-445/645 (Spring 2023)

RIS
IDs [101,200]
ZZ

Page ABC

P2->ID:101-200

19

£2CMU-DB

15-445/645 (Spring 2023)

20

OBSERVATION

The data that a node recetves from remote sources

are cached in the buffer pool.

— This allows the DBMS to support intermediate results
that are large than the amount of memory available.

— Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

£2CMU-DB

15-445/645 (Spring 2023)

QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs
are designed to assume that nodes do not fail

during query execution.
— If one node fails during query execution, then the whole
query fails.

The DBMS could take a snapshot of the

intermediate results for a query during execution to
allow it to recover if nodes fail.

21

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S Node (
ON R.1d = S.1d ﬂ%—% Result: R S
A
ZZ
m RN& Result:

Application !

Server %
£ CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

23

QUERY PLANNING

All the optimizations that we talked about before

are still applicable in a distributed environment.
— Predicate Pushdown

— Early Projections

— Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.

£2CMU-DB

15-445/645 (Spring 2023)

QUERY PLAN FRAGMENTS

Approach #1: Physical Operators

— Generate a single query plan and then break it up into
partition-specific fragments.

— Most systems implement this approach.

Approach #2: SQL

— Rewrite original query into partition-specific queries.

— Allows for local optimization at each node.

— SingleStore + Vitess are the only systems we know that
use this approach.

24

https://www.singlestore.com/
https://vitess.io/

Union the output of

each join to produce

!

25

FRAGMENTS

the final ’f;’:kaM R JOIN S
ON\id = S.id

8

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 101 AND 200

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 201 AND 300

id:1-100

£2CMU-DB

15-445/645 (Spring 2023)

id:101-200

1id:201-300

£2CMU-DB

15-445/645 (Spring 2023)

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single

node and then perform the join.

— You lose the parallelism of a distributed DBMS.
— Costly data transfer over the network.

26

£2CMU-DB

15-445/645 (Spring 2023)

DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then

executes the same join algorithms that we
discussed earlier in the semestet.

27

28

SCENARIO #1

One table is replicated at every node.
FEach node joins its local data in
parallel and then sends their results to

a coordinating node.

$2CMU-DB

15-445/645 (Spring 2023)

SELECT * FROM R JOIN S
ON R.id = S.id

RIS

id:101-200

Replicated

SCENARIO #2

Tables are partitioned on the join

attribute. Fach node performs the join
on local data and then sends to a
coordinator node for coalescing.

id:1-150

id:1-150

$2CMU-DB

15-445/645 (Spring 2023)

29

SELECT * FROM R JOIN S
ON R.id = S.id

RIS

id:151-250

id:151-250

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables 1s
small, then the DBMS "broadcasts"
that table to all nodes.

id:1-100

val:1-50

$2CMU-DB

15-445/645 (Spring 2023)

30

SELECT * FROM R JOIN S
ON R.id = S.id

id:101-200

val:51-100

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by "shuffling" them across nodes.

id:1-100

id:1-100

name: A-M

val:1-50

£2CMU-DB

15-445/645 (Spring 2023)

8”3

0“
* o

.

31

SELECT * FROM R JOIN S
ON R.id = S.id

ad R>IS

id:101-200

id:101-200

name:N-Z

val:51-100

SEMI-JOIN

Join type where the result only
contains columns from the left table.

Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.

— This 1s like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

£2CMU-DB

15-445/645 (Spring 2023)

SELECT R.1id
FROM R JOIN S
ON R.id = S.id
WHERE R.id IS NOT NULL

SELECT R.id FROM R

WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

32

£2CMU-DB

15-445/645 (Spring 2023)

CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaal)

otferings that are managed DBMS environments.

Newer systems are starting to blur the lines

between shared-nothing and shared-disk.

— Example: You can do simple filtering on Amazon S3
before copying data to compute nodes.

33

£2CMU-DB

15-445/645 (Spring 2023)

CLOUD SYSTEMS

Approach #1: Managed DBMSs

— No significant modification to the DBMS to be "aware"
that it is running in a cloud environment.
— Examples: Most vendors

Approach #2: Cloud-Native DBMS

— The system is designed explicitly to run in a cloud
environment.

— Usually based on a shared-disk architecture.

— Examples: Snowflake, Google BigQuery, Amazon
Redshift, Microsoft SQL Azure

34

35

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "servetless" DBMS evicts

tenants when they become idle.
W olanetscale

¢ CockroachDB

()

Storage
Buffer Pool

Page Table

L J

Buffer Pool
Page Table

™~ e

36

DATA LAKES

CREATE TABLE foo (...);

JOLLECT X T'IKUM T OO |

RCPOSitOI‘y for StOI‘iﬂg large amounts INSEMNTWW. D;

of structured, semi-structured, and 1
unstructured data without having to r
define a schema or ingest the data into
proprietary internal formats.

amazon Google
% trino . REDSHIFT Big Query

< databricks 3¢zsnowflake presto

OO
P A A
1
(0
1l

A
n
n
n
n
n
n
n

J
‘.
lll““‘

anr

@

laVaVlaVla¥Val
" A A A A 4

£=CMU-DB W\ J
15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

UNIVERSAL FORMATS

Most DBMSs use a proprietary on-disk binary file

format for their databases.
— Think of the BusTub page types...

The only way to share data between systems 1s to

convert data into a common format
— Examples: CSV, JSON, XML

There are new open-source binary file formats that
make 1t easier to access data across systems.

37

https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

38

UNIVERSAL FORMATS

Apache Parquet

— Compressed columnar storage from
Cloudera/Twitter

Apache ORC

— Compressed columnar storage from

Apache Hive.
Apache CarbonData

— Compressed columnar storage with
indexes from Huawei.

£2CMU-DB

15-445/645 (Spring 2023)

Apache Iceberg
— Flexible data format that supports
schema evolution from Netflix.

HDF5

— Multi-dimensional arrays for
scientific workloads.

Apache Arrow

— In-memory compressed columnar
storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

£2CMU-DB

15-445/645 (Spring 2023)

DISAGGREGATED COMPONENTS

System Catalogs
— HCatalog, Google Data Catalog, Amazon Glue Data

Catalog

Node Management
— Kubernetes, Apache YARN, Cloud Vendor Tools

Query Optimizers
— Greenplum Orca, Apache Calcite

39

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://kubernetes.io/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://github.com/greenplum-db/gporca
https://calcite.apache.org/

CONCLUSION

The cloud has made the distributed OLLAP DBMS

market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems...

£2CMU-DB

15-445/645 (Spring 2023)

£2CMU-DB

15-445/645 (Spring 2023)

NEXT CLASS

Andy's potentially frivolous attempt to convince
you to put as much application logic as you can
into the DBMS but then you will go into the real

world and find out that few people do these things.

41

