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ADMINISTRIVIA

Homework 5 ongoing
→ Due Friday, April 21st at 11:59 p.m.

Project 4 ongoing
→ Due Friday, April 28th at 11:59 p.m.

Interested in TAing this course?
→ https://forms.gle/AvjfUtSaWtrNiJMXA

Final exam Monday, May 1st, 8:30 – 11:30 a.m.
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LAST TIME

Distributed commit protocols
→ Two-phase commit (2PC)

Distributed consensus protocols
→ Paxos

Other topics
→ Replication
→ CAP theorem
→ Google Spanner
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CAP THEOREM

Proposed by Eric Brewer that it is 
impossible for a distributed system to 
always be:
→ Consistent
→ Always Available
→ Network Partition Tolerant

One flaw is that it ignores consistency 
vs. latency trade-offs.
→ See PACELC Theorem 
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Brewer

Pick Two!
Sort of…

https://en.wikipedia.org/wiki/PACELC_theorem
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CAP – CONSISTENCY
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CAP – PARTITION TOLERANCE
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CAP FOR OLTP DBMSs

How a DBMS handles failures determines which 
elements of  the CAP theorem they support.

Traditional/Distributed Relational DBMSs
→ Stop allowing updates until a majority of nodes are 

reconnected.

NoSQL DBMSs
→ Provide mechanisms to resolve conflicts after nodes are 

reconnected.
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DISTRIBUTED TRANSACTIONS CONCLUSION

Maintaining transactional consistency across 
multiple nodes is hard. Bad things happen.

More info (and humiliation):
→ Kyle Kingsbury's Jepsen Project
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https://aphyr.com/tags/jepsen
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BIFURCATED ENVIRONMENT
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DECISION SUPPORT SYSTEMS

Applications that serve the management, 
operations, and planning levels of  an organization 
to help people make decisions about future issues 
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema
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STAR SCHEMA
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SNOWFLAKE SCHEMA
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STAR VS.  SNOWFLAKE SCHEMA

Issue #1: Normalization
→ Snowflake schemas take up less storage space.
→ Denormalized data models may incur integrity and 

consistency violations.

Issue #2: Query Complexity
→ Snowflake schemas require more joins to get the data 

needed for a query.
→ Queries on star schemas will (usually) be faster.
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P3 P4

P1 P2

PROBLEM SETUP
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TODAY'S  AGENDA

Execution Models
Query Planning
Distributed Join Algorithms
Cloud Systems
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PUSH VS.  PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of  it) to the node that 

contains the data.
→ Perform as much filtering and processing as possible 

where data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query that 

needs it for processing.
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PUSH QUERY TO DATA
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Storage

PULL DATA TO QUERY
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OBSERVATION

The data that a node receives from remote sources 
are cached in the buffer pool.
→ This allows the DBMS to support intermediate results 

that are large than the amount of  memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if  a 
node crashes during execution?
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QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs 
are designed to assume that nodes do not fail 
during query execution. 
→ If  one node fails during query execution, then the whole 

query fails.

The DBMS could take a snapshot of  the 
intermediate results for a query during execution to 
allow it to recover if  nodes fail.
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Storage

QUERY FAULT TOLERANCE
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QUERY PLANNING

All the optimizations that we talked about before 
are still applicable in a distributed environment.
→ Predicate Pushdown
→ Early Projections
→ Optimal Join Orderings

Distributed query optimization is even harder 
because it must consider the physical location of  
data and network transfer costs.
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QUERY PLAN FRAGMENTS

Approach #1: Physical Operators
→ Generate a single query plan and then break it up into 

partition-specific fragments.
→ Most systems implement this approach.

Approach #2: SQL
→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ SingleStore + Vitess are the only systems we know that 

use this approach.
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https://www.singlestore.com/
https://vitess.io/
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QUERY PLAN FRAGMENTS
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SELECT * FROM R JOIN S
ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 201 AND 300

Union the output of 
each join to produce 

the final result.
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OBSERVATION

The efficiency of  a distributed join depends on the 
target tables' partitioning schemes.

One approach is to put entire tables on a single 
node and then perform the join.
→ You lose the parallelism of  a distributed DBMS.
→ Costly data transfer over the network.
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DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the 
proper tuples on the same node.

Once the data is at the node, the DBMS then 
executes the same join algorithms that we 
discussed earlier in the semester.
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SCENARIO #1

One table is replicated at every node.
Each node joins its local data in 
parallel and then sends their results to 
a coordinating node.
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SCENARIO #2

Tables are partitioned on the join 
attribute. Each node performs the join 
on local data and then sends to a 
coordinator node for coalescing.
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SCENARIO #3

Both tables are partitioned on 
different keys. If  one of  the tables is 
small, then the DBMS "broadcasts" 
that table to all nodes.
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SCENARIO #4

Both tables are not partitioned on the 
join key. The DBMS copies the tables 
by "shuffling" them across nodes.
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SEMI-JOIN

Join type where the result only 
contains columns from the left table.
Distributed DBMSs use semi-join to 
minimize the amount of  data sent 
during joins. 
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it 
with EXISTS.
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SELECT R.id
FROM R JOIN S

ON R.id = S.id
WHERE R.id IS NOT NULL

R S

SELECT R.id FROM R
WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

S R.id
R.id

R
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CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS) 
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines 
between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3 

before copying data to compute nodes.
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CLOUD SYSTEMS

Approach #1: Managed DBMSs
→ No significant modification to the DBMS to be "aware" 

that it is running in a cloud environment.
→ Examples: Most vendors

Approach #2: Cloud-Native DBMS
→ The system is designed explicitly to run in a cloud 

environment. 
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery, Amazon 

Redshift, Microsoft SQL Azure
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.
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Data Lake

DATA LAKES

Repository for storing large amounts 
of  structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.
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INSERT INTO foo VALUES (...);
SELECT * FROM foo

CREATE TABLE foo (...);
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UNIVERSAL FORMATS

Most DBMSs use a proprietary on-disk binary file 
format for their databases.
→ Think of  the BusTub page types…

The only way to share data between systems is to 
convert data into a common format
→ Examples: CSV, JSON, XML

There are new open-source binary file formats that 
make it easier to access data across systems.
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https://github.com/cmu-db/bustub/tree/master/src/include/storage/page
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UNIVERSAL FORMATS

Apache Parquet
→ Compressed columnar storage from 

Cloudera/Twitter

Apache ORC
→ Compressed columnar storage from 

Apache Hive.
Apache CarbonData
→ Compressed columnar storage with 

indexes from Huawei.
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Apache Iceberg
→ Flexible data format that supports 

schema evolution from Netflix.
HDF5
→ Multi-dimensional arrays for 

scientific workloads.
Apache Arrow
→ In-memory compressed columnar 

storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/
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DISAGGREGATED COMPONENTS

System Catalogs
→ HCatalog, Google Data Catalog, Amazon Glue Data 

Catalog

Node Management
→ Kubernetes, Apache YARN, Cloud Vendor Tools

Query Optimizers
→ Greenplum Orca, Apache Calcite
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https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://kubernetes.io/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://github.com/greenplum-db/gporca
https://calcite.apache.org/
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CONCLUSION

The cloud has made the distributed OLAP DBMS 
market flourish. Lots of  vendors. Lots of  money.

But more money, more data, more problems…
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NEXT CLASS

Andy's potentially frivolous attempt to convince 
you to put as much application logic as you can 
into the DBMS but then you will go into the real 
world and find out that few people do these things.

41


