
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

23 Distributed OLAP
Databases

15-445/645 (Spring 2023)

ADMINISTRIVIA

Homework 5 ongoing
→ Due Friday, April 21st at 11:59 p.m.

Project 4 ongoing
→ Due Friday, April 28th at 11:59 p.m.

Interested in TAing this course?
→ https://forms.gle/AvjfUtSaWtrNiJMXA

Final exam Monday, May 1st, 8:30 – 11:30 a.m.

2

https://forms.gle/AvjfUtSaWtrNiJMXA

15-445/645 (Spring 2023)

LAST TIME

Distributed commit protocols
→ Two-phase commit (2PC)

Distributed consensus protocols
→ Paxos

Other topics
→ Replication
→ CAP theorem
→ Google Spanner

3

15-445/645 (Spring 2023)

CAP THEOREM

Proposed by Eric Brewer that it is
impossible for a distributed system to
always be:
→ Consistent
→ Always Available
→ Network Partition Tolerant

One flaw is that it ignores consistency
vs. latency trade-offs.
→ See PACELC Theorem

4

Brewer

Pick Two!
Sort of…

https://en.wikipedia.org/wiki/PACELC_theorem

15-445/645 (Spring 2023)

CAP – CONSISTENCY

5

Primary Replica
NETWORK

Set A=2

A=1
B=8
A=2

Read A

A=2

A=1
B=8
A=2

Application
Server

Application
ServerACK

15-445/645 (Spring 2023)

CAP – PARTITION TOLERANCE

7

Primary Replica
NETWORK

Set A=2

A=1
B=8
A=2

Set A=3

ACK

A=1
B=8
A=3

Application
Server

Application
ServerACK

Primary

15-445/645 (Spring 2023)

CAP FOR OLTP DBMSs

How a DBMS handles failures determines which
elements of the CAP theorem they support.

Traditional/Distributed Relational DBMSs
→ Stop allowing updates until a majority of nodes are

reconnected.

NoSQL DBMSs
→ Provide mechanisms to resolve conflicts after nodes are

reconnected.

8

15-445/645 (Spring 2023)

DISTRIBUTED TRANSACTIONS CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things happen.

More info (and humiliation):
→ Kyle Kingsbury's Jepsen Project

9

https://aphyr.com/tags/jepsen

15-445/645 (Spring 2023)

BIFURCATED ENVIRONMENT

10

Extract
Transform

Load

OLAP DatabaseOLTP Databases

15-445/645 (Spring 2023)

DECISION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema

11

15-445/645 (Spring 2023)

STAR SCHEMA

12

CATEGORY_NAME
CATEGORY_DESC
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_CODE
STATE_NAME
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_NUM
MONTH_NAME
DAY_OF_MONTH

TIME_DIM

SALES_FACT
PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

15-445/645 (Spring 2023)

SNOWFLAKE SCHEMA

13

CATEGORY_FK
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_FK
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_FK
DAY_OF_MONTH

TIME_DIM

SALES_FACT
PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

CAT_LOOKUP

STATE_ID
STATE_CODE
STATE_NAME

STATE_LOOKUP
MONTH_NUM
MONTH_NAME
MONTH_SEASON

MONTH_LOOKUP

15-445/645 (Spring 2023)

STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization
→ Snowflake schemas take up less storage space.
→ Denormalized data models may incur integrity and

consistency violations.

Issue #2: Query Complexity
→ Snowflake schemas require more joins to get the data

needed for a query.
→ Queries on star schemas will (usually) be faster.

14

15-445/645 (Spring 2023)

P3 P4

P1 P2

PROBLEM SETUP

15

Application
Server

PartitionsSELECT * FROM R JOIN S
ON R.id = S.id

P2P4P3

15-445/645 (Spring 2023)

TODAY'S AGENDA

Execution Models
Query Planning
Distributed Join Algorithms
Cloud Systems

16

15-445/645 (Spring 2023)

PUSH VS. PULL

Approach #1: Push Query to Data
→ Send the query (or a portion of it) to the node that

contains the data.
→ Perform as much filtering and processing as possible

where data resides before transmitting over network.

Approach #2: Pull Data to Query
→ Bring the data to the node that is executing a query that

needs it for processing.

17

15-445/645 (Spring 2023)

PUSH QUERY TO DATA

18

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

R ⨝ S
IDs [101,200] Result: R ⨝ S

15-445/645 (Spring 2023)

Storage

PULL DATA TO QUERY

19

Node

Application
Server Node

Page ABC

Page XYZ
R ⨝ S

IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

Result: R ⨝ S

15-445/645 (Spring 2023)

OBSERVATION

The data that a node receives from remote sources
are cached in the buffer pool.
→ This allows the DBMS to support intermediate results

that are large than the amount of memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

20

15-445/645 (Spring 2023)

QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs
are designed to assume that nodes do not fail
during query execution.
→ If one node fails during query execution, then the whole

query fails.

The DBMS could take a snapshot of the
intermediate results for a query during execution to
allow it to recover if nodes fail.

21

15-445/645 (Spring 2023)

Storage

QUERY FAULT TOLERANCE

22

Node

Application
Server Node

R ⨝ S

SELECT * FROM R JOIN S
ON R.id = S.id

Result: R ⨝ S

Result: R ⨝ S

15-445/645 (Spring 2023)

QUERY PLANNING

All the optimizations that we talked about before
are still applicable in a distributed environment.
→ Predicate Pushdown
→ Early Projections
→ Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.

23

15-445/645 (Spring 2023)

QUERY PLAN FRAGMENTS

Approach #1: Physical Operators
→ Generate a single query plan and then break it up into

partition-specific fragments.
→ Most systems implement this approach.

Approach #2: SQL
→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ SingleStore + Vitess are the only systems we know that

use this approach.

24

https://www.singlestore.com/
https://vitess.io/

15-445/645 (Spring 2023)

QUERY PLAN FRAGMENTS

25

SELECT * FROM R JOIN S
ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
ON R.id = S.id

WHERE R.id BETWEEN 201 AND 300

Union the output of
each join to produce

the final result.

15-445/645 (Spring 2023)

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single
node and then perform the join.
→ You lose the parallelism of a distributed DBMS.
→ Costly data transfer over the network.

26

15-445/645 (Spring 2023)

DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we
discussed earlier in the semester.

27

15-445/645 (Spring 2023)

SCENARIO #1

One table is replicated at every node.
Each node joins its local data in
parallel and then sends their results to
a coordinating node.

28

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
ON R.id = S.id

P1:R⨝S P2:R⨝S
R⨝S

15-445/645 (Spring 2023)

SCENARIO #2

Tables are partitioned on the join
attribute. Each node performs the join
on local data and then sends to a
coordinator node for coalescing.

29

R{id}

S{id}

id:1-150 R{id}

S{id}

id:151-250

id:1-150 id:151-250

P1:R⨝S P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
ON R.id = S.id

15-445/645 (Spring 2023)

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

30

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

P1:R⨝S P2:R⨝S
R⨝S

SELECT * FROM R JOIN S
ON R.id = S.id

15-445/645 (Spring 2023)

SCENARIO #4

Both tables are not partitioned on the
join key. The DBMS copies the tables
by "shuffling" them across nodes.

31

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S P2:R⨝S
R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
ON R.id = S.id

15-445/645 (Spring 2023)

SEMI-JOIN

Join type where the result only
contains columns from the left table.
Distributed DBMSs use semi-join to
minimize the amount of data sent
during joins.
→ This is like a projection pushdown.

Some DBMSs support SEMI JOIN
SQL syntax. Otherwise you fake it
with EXISTS.

32

SELECT R.id
FROM R JOIN S

ON R.id = S.id
WHERE R.id IS NOT NULL

R S

SELECT R.id FROM R
WHERE EXISTS (
SELECT 1 FROM S
WHERE R.id = S.id)

S R.id
R.id

R

15-445/645 (Spring 2023)

CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines
between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3

before copying data to compute nodes.

33

15-445/645 (Spring 2023)

CLOUD SYSTEMS

Approach #1: Managed DBMSs
→ No significant modification to the DBMS to be "aware"

that it is running in a cloud environment.
→ Examples: Most vendors

Approach #2: Cloud-Native DBMS
→ The system is designed explicitly to run in a cloud

environment.
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery, Amazon

Redshift, Microsoft SQL Azure

34

15-445/645 (Spring 2023)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

35

Application
Server

NodeNode

Storage
Buffer Pool
Page Table

Buffer Pool
Page Table

15-445/645 (Spring 2023)

Data Lake

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

36

Storage

Node

INSERT INTO foo VALUES (...);
SELECT * FROM foo

CREATE TABLE foo (...);

15-445/645 (Spring 2023)

UNIVERSAL FORMATS

Most DBMSs use a proprietary on-disk binary file
format for their databases.
→ Think of the BusTub page types…

The only way to share data between systems is to
convert data into a common format
→ Examples: CSV, JSON, XML

There are new open-source binary file formats that
make it easier to access data across systems.

37

https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

15-445/645 (Spring 2023)

UNIVERSAL FORMATS

Apache Parquet
→ Compressed columnar storage from

Cloudera/Twitter

Apache ORC
→ Compressed columnar storage from

Apache Hive.
Apache CarbonData
→ Compressed columnar storage with

indexes from Huawei.

38

Apache Iceberg
→ Flexible data format that supports

schema evolution from Netflix.
HDF5
→ Multi-dimensional arrays for

scientific workloads.
Apache Arrow
→ In-memory compressed columnar

storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

15-445/645 (Spring 2023)

DISAGGREGATED COMPONENTS

System Catalogs
→ HCatalog, Google Data Catalog, Amazon Glue Data

Catalog

Node Management
→ Kubernetes, Apache YARN, Cloud Vendor Tools

Query Optimizers
→ Greenplum Orca, Apache Calcite

39

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://kubernetes.io/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://github.com/greenplum-db/gporca
https://calcite.apache.org/

15-445/645 (Spring 2023)

CONCLUSION

The cloud has made the distributed OLAP DBMS
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems…

40

15-445/645 (Spring 2023)

NEXT CLASS

Andy's potentially frivolous attempt to convince
you to put as much application logic as you can
into the DBMS but then you will go into the real
world and find out that few people do these things.

41

