
Intro to Database Systems (15-445/645)

SPRING
2023

Charlie
Garrod

24 Application Logic
Inside the DB

15-445/645 (Spring 2023)

ADMINISTRIVIA

Homework 5 ongoing
→ Due Friday, April 21st at 11:59 p.m.

Project 4 ongoing
→ Due Friday, April 28th at 11:59 p.m.

Guest lecture on Monday is in Zoom
→ https://bit.ly/3KPmJLI

Final exam Monday, May 1st, 8:30 – 11:30 a.m.

2

https://bit.ly/3KPmJLI

15-445/645 (Spring 2023)

LAST TIME

CAP theorem

Distributed OLAP for decision support
→ Various topics
→ Distributed join algorithms

3

15-445/645 (Spring 2023)

OBSERVATION

Until now, we have assumed that all the logic for
an application is external to the database.

The application has a "conversation" with the
DBMS to store/retrieve data.
→ Each DBMS has its own network protocol.
→ Client-side APIs: JDBC, ODBC

4

15-445/645 (Spring 2023)

BEGIN
execute(SQL)
<Program Logic>
execute(SQL)
<Program Logic>
⋮
COMMIT

CONVERSATIONAL DATABASE API

5

Application Parser
Planner
Optimizer
Query Execution

15-445/645 (Spring 2023)

APPLICATION LOGIC IN THE DATABASE

Moving application logic into the DBMS can
(potentially) provide several benefits:
→ Fewer network round-trips.
→ Immediate notification of changes.
→ DBMS spends less time waiting during transactions.
→ Developers do not have to reimplement functionality.

6

15-445/645 (Spring 2023)

TODAY'S AGENDA

User-defined Functions
Stored Procedures
Triggers
Change Notifications
User-defined Types
Views

7

15-445/645 (Spring 2023)

USER-DEFINED FUNCTIONS

A user-defined function (UDF) is a function
written by the application developer that extends
the system's functionality beyond its built-in
operations.
→ It takes in input arguments (scalars)
→ Perform some computation
→ Return a result (scalars, tables)

8

15-445/645 (Spring 2023)

UDF DEFINITION

Return Types:
→ Scalar Functions: Return a single data value
→ Table Functions: Return a single result table.

Computation Definition:
→ SQL Functions
→ External Programming Language

9

15-445/645 (Spring 2023)

UDF – SQL FUNCTIONS

A SQL-based UDF contains a list of queries that
the DBMS executes in order when invoked.
→ The function returns the result of the last query executed.

10

CREATE FUNCTION get_foo(int)
RETURNS foo
LANGUAGE SQL AS $$
SELECT * FROM foo WHERE foo.id = $1;

$$;
Function Body

Input Args
Return Args

SELECT get_foo(1); SELECT * FROM get_foo(1);

15-445/645 (Spring 2023)

UDF – SQL FUNCTIONS

SQL Standard provides the ATOMIC keyword to tell
the DBMS that it should track dependencies
between SQL UDFs.

11

CREATE FUNCTION get_foo(int)
RETURNS foo
LANGUAGE SQL
BEGIN ATOMIC;
SELECT * FROM foo WHERE foo.id = $1;

END;

15-445/645 (Spring 2023)

UDF – EXTERNAL PROGRAMMING LANGUAGE

Some DBMSs support writing UDFs in languages
other than SQL.
→ SQL Standard: SQL/PSM
→ Oracle/DB2: PL/SQL
→ Postgres: PL/pgSQL
→ MSSQL/Sybase: Transact-SQL

Other systems support more common
programming languages:
→ Sandbox vs. non-Sandbox

12

15-445/645 (Spring 2023)

PL/PGSQL UDF EXAMPLE (1)

13

CREATE OR REPLACE FUNCTION get_foo(int)
RETURNS SETOF foo
LANGUAGE plpgsql AS $$
BEGIN
RETURN QUERY

SELECT * FROM foo WHERE foo.id = $1;
END;

$$;

15-445/645 (Spring 2023)

PL/PGSQL UDF EXAMPLE (2)

14

CREATE OR REPLACE FUNCTION sum_foo(i int)
RETURNS int AS $$
DECLARE foo_rec RECORD;
DECLARE out INT;
BEGIN

out := 0;
FOR foo_rec IN SELECT id FROM foo

WHERE id > i LOOP
out := out + foo_rec.id;

END LOOP;
RETURN out;

END;
$$ LANGUAGE plpgsql;

Variable Declaration

15-445/645 (Spring 2023)

UDF ADVANTAGES

They encourage modularity and code reuse
→ Different queries can reuse the same application logic

without having to reimplement it each time.

Fewer network round-trips between application
server and DBMS for complex operations.

Some types of application logic are easier to
express and read as UDFs than SQL.

15

15-445/645 (Spring 2023)

UDF DISADVANTAGES (1)

Query optimizers treat UDFs as black boxes.
→ Unable to estimate cost if you don't know what a UDF is

going to do when you run it.

It is difficult to parallelize UDFs due to correlated
queries inside of them.
→ Some DBMSs will only execute queries with a single

thread if they contain a UDF.
→ Some UDFs incrementally construct queries.

16

15-445/645 (Spring 2023)

UDF DISADVANTAGES (2)

Complex UDFs in SELECT / WHERE clauses force
the DBMS to execute iteratively.
→ RBAR = "Row By Agonizing Row"
→ Things get even worse if UDF invokes queries due to

implicit joins that the optimizer cannot "see".

Since the DBMS executes the commands in the
UDF one-by-one, it is unable to perform cross-
statement optimizations.

17

15-445/645 (Spring 2023)

UDF PERFORMANCE

TPC-H Q12 using a UDF (SF=1).
→ Original Query: 0.8 sec
→ Query + UDF: 13 hr 30 min

SELECT l_shipmode,
SUM(CASE

WHEN o_orderpriority <> '1-URGENT'
THEN 1 ELSE 0 END

) AS low_line_count
FROM orders, lineitem
WHERE o_orderkey = l_orderkey
AND l_shipmode IN ('MAIL','SHIP')
AND l_commitdate < l_receiptdate
AND l_shipdate < l_commitdate
AND l_receiptdate >= '1994-01-01'
AND dbo.cust_name(o_custkey) IS NOT NULL

GROUP BY l_shipmode
ORDER BY l_shipmode

CREATE FUNCTION cust_name(@ckey int)
RETURNS char(25) AS
BEGIN
DECLARE @n char(25);
SELECT @n = c_name
FROM customer WHERE c_custkey = @ckey;

RETURN @n;
END

Source: Karthik Ramachandra

Microsoft SQL Server

https://www.microsoft.com/en-us/research/people/karam/

15-445/645 (Spring 2023)

STORED PROCEDURES

A stored procedure is a self-contained function
that performs more complex logic inside of the
DBMS.
→ Can have many input/output parameters.
→ Can modify the database table/structures.
→ Not normally used within a SQL query.

Some DBMSs distinguish UDFs vs. stored
procedures, but not all.

19

15-445/645 (Spring 2023)

STORED PROCEDURES

20

CALL PROC(x=99)

Application PROC(x)
BEGIN
execute(SQL)
<Program Logic>
execute(SQL)
<Program Logic>
⋮
COMMIT

15-445/645 (Spring 2023)

STORED PROCEDURE EXAMPLE

21

CREATE OR REPLACE PROCEDURE transfer(sender INT, receiver INT, amount FLOAT)
LANGUAGE plpgsql AS $$

DECLARE sndr_bal INT;
DECLARE sndr_name VARCHAR;
BEGIN

SELECT name, balance INTO sndr_name, sndr_bal
FROM accounts WHERE id = sender;

IF sndr_bal < amount THEN
RAISE EXCEPTION '% does not have enough money!', sndr_name;

END IF;
UPDATE accounts SET balance = balance - amount WHERE id = sender;
UPDATE accounts SET balance = balance + amount WHERE id = receiver;
COMMIT;

END;
$$;

CALL transfer(1, 2, 50);

15-445/645 (Spring 2023)

STORED PROCEDURE VS. UDF

A UDF is meant to perform a subset of a read-
only computation within a query.

A stored procedure is meant to perform a
complete computation that is independent of a
query.

22

15-445/645 (Spring 2023)

DATABASE TRIGGERS

A trigger instructs the DBMS to invoke a UDF
when some event occurs in the database.

The developer has to define:
→ What type of event will cause it to fire.
→ The scope of the event.
→ When it fires relative to that event.

23

15-445/645 (Spring 2023)

CREATE TABLE foo (
id INT PRIMARY KEY,
val VARCHAR(16)

);

TRIGGER EXAMPLE

24

CREATE TABLE foo_audit (
id SERIAL PRIMARY KEY,
foo_id INT REFERENCES foo (id),
orig_val VARCHAR,
cdate TIMESTAMP

);

CREATE OR REPLACE FUNCTION log_foo_updates()
RETURNS trigger AS $$

BEGIN
IF NEW.val <> OLD.val THEN

INSERT INTO foo_audit
(foo_id, orig_val, cdate)

VALUES (OLD.id, OLD.val, NOW());
END IF;
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER foo_updates
BEFORE UPDATE ON foo FOR EACH ROW

EXECUTE PROCEDURE log_foo_updates();

Tuple Versions

15-445/645 (Spring 2023)

TRIGGER DEFINITION

25

Event Type:
→ INSERT
→ UPDATE
→ DELETE
→ TRUNCATE
→ CREATE
→ ALTER
→ DROP

Event Scope:
→ TABLE
→ DATABASE
→ VIEW
→ SYSTEM

Trigger Timing:
→ Before the query

executes.
→ After the query

executes
→ Before each row the

query affects.
→ After each row the

query affects.
→ Instead of the query.

15-445/645 (Spring 2023)

CHANGE NOTIFICATIONS

A change notification is like a trigger except that
the DBMS sends a message to an external entity
that something notable has happened in the
database.
→ Think a "pub/sub" system.
→ Can be chained with a trigger to pass along whenever a

change occurs.

SQL standard: LISTEN + NOTIFY

26

15-445/645 (Spring 2023)

NOTIFICATION EXAMPLE

27

CREATE OR REPLACE FUNCTION notify_foo_updates()
RETURNS trigger AS $$

DECLARE notification JSON;
BEGIN

notification = row_to_json(NEW);
PERFORM pg_notify('foo_update',

notification::text);
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

Notification
Payload

CREATE TRIGGER foo_notify
AFTER INSERT ON foo_audit FOR EACH ROW
EXECUTE PROCEDURE notify_foo_updates();

15-445/645 (Spring 2023)

OBSERVATION

All DBMSs support the basic primitive types in the
SQL standard. They also support basic arithmetic
and string manipulation on them.

But what if we want to store data that doesn't
match any of the built-in types?

28

coordinate (x, y, label)

15-445/645 (Spring 2023)

COMPLEX TYPES

Approach #1: Attribute Splitting
→ Store each primitive element in the

complex type as its own attribute in the
table.

Approach #2: Application
Serialization
→ Java serialize, Python pickle
→ Google Protobuf, Facebook Thrift
→ JSON / XML

29

INSERT INTO location (coord)
VALUES (
'{x:10, y:20, label:"OTB"}'

);

INSERT INTO locations
(x, y, label)

VALUES
(10, 20, "OTB");

CREATE TABLE locations (
coord JSON NOT NULL

);

15-445/645 (Spring 2023)

USER-DEFINED TYPES

A user-defined type is a special data type that is
defined by the application developer that the
DBMS can stored natively.
→ First introduced by Postgres in the 1980s.
→ Added to the SQL:1999 standard as part of the "object-

relational database" extensions.

Sometimes called structured user-defined types
or structured types.

30

15-445/645 (Spring 2023)

USER-DEFINED TYPES

Each DBMS exposes a different API that allows
you to create a UDT.
→ Postgres/DB2 supports creating composite types using

built-in types.
→ Oracle supports PL/SQL.
→ MSSQL/Postgres only support type definition using

external languages (.NET, C)

31

CREATE TYPE coordinates AS OBJECT (
x INT NOT NULL,
y INT NOT NULL,
label VARCHAR(32) NOT NULL

);

CREATE TYPE coordinates AS (
x INT, y INT, label VARCHAR(32)

);

15-445/645 (Spring 2023)

VIEWS

Creates a "virtual" table containing the output
from a SELECT query. The view can then be
accessed as if it was a real table.

This allows programmers to simplify a complex
query that is executed often.
→ It won't make the DBMS magically run faster though.

Often used as a mechanism for hiding a subset of
a table's attributes from certain users.

32

15-445/645 (Spring 2023)

VIEW EXAMPLE (1)

Create a view of the CS student
records with just their id, name, and
login.

33

Original Table

CREATE VIEW cs_students AS
SELECT sid, name, login

FROM student
WHERE login LIKE '%@cs';

sid name login age gpa
53666 RZA rza@cs 53 3.5
53677 Justin Bieber jb@ece 23 2.25
53688 Tone Loc tloc@mld 56 3.8
53699 Andy Pavlo pavlo@cs 41 3.0

sid name login
53666 RZA rza@cs
53699 Andy Pavlo pavlo@cs

SELECT * FROM cs_students;

15-445/645 (Spring 2023)

VIEW EXAMPLE (2)

Create a view with the average age of all of the
students.

34

CREATE VIEW cs_gpa AS
SELECT AVG(gpa) AS avg_gpa
FROM student
WHERE login LIKE '%@cs';

15-445/645 (Spring 2023)

VIEWS VS. SELECT INTO

VIEW
→ Dynamic results are only materialized

when needed.

SELECT…INTO
→ Creates static table that does not get

updated when student gets updated.

35

CREATE VIEW cs_gpa AS
SELECT AVG(gpa) AS avg_gpa

FROM student
WHERE login LIKE '%@cs';

SELECT AVG(gpa) AS avg_gpa
INTO cs_gpa
FROM student

WHERE login LIKE '%@cs';

15-445/645 (Spring 2023)

UPDATING VIEWS

The SQL-92 standard specifies that an application
is allowed to modify a VIEW if it has the following
properties:
→ It only contains one base table.
→ It does not contain grouping, distinction, union, or

aggregation.

36

15-445/645 (Spring 2023)

MATERIALIZED VIEWS

Creates a view containing the output from a
SELECT query that is retained (i.e., not recomputed
each time it is accessed).
→ Some DBMSs automatically update matviews when the

underlying tables change.
→ Other DBMSs (PostgreSQL) require manual refresh.

37

CREATE MATERIALIZED VIEW cs_gpa AS
SELECT AVG(gpa) AS avg_gpa
FROM student
WHERE login LIKE '%@cs';

15-445/645 (Spring 2023)

CONCLUSION

Moving application logic into the DBMS has lots
of benefits.
→ Better efficiency
→ Reusable across applications

But it has problems:
→ Not portable
→ DBAs don't like constant change.
→ Potentially need to maintain different versions.

38

