Carnegie Mellon University
 Computer Science Department
 15-445/645 - Database Systems (Spring 2024)
 Prof. Jignesh Patel
 Homework \#3 (by Yuchen and Ruijie)
 Due: Sunday, Feb 25, 2024 @ 11:59pm

IMPORTANT:

- Enter all of your answers into Gradescope by 11:59pm on Sunday, Feb 25, 2024.
- Plagiarism: Homework may be discussed with other students, but all homework is to be completed individually.
For your information:
- Graded out of $\mathbf{1 0 0}$ points; $\mathbf{3}$ questions total
- Rough time estimate: $\approx 2-3$ hours (0.5-1 hours for each question)

Revision : 2024/02/20 13:55

Question	Points	Score
Sorting Algorithms	36	
Join Algorithms	43	
Bloom Filter	21	
Total:	100	

Question 1: Sorting Algorithms

We have a database file with 1 million pages ($N=1,000,000$ pages), and we want to sort it using external merge sort. Assume that the DBMS is not using double buffering or blocked I / O, and that it uses quicksort for in-memory sorting. Let B denote the number of buffers.
(a) [6 points] Assume that the DBMS has $3 \underline{0}$ buffers. How many sorted runs are generated? Note that the final sorted file does not count towards the sorted run count.
$\square 34521$345243452534526 34528
(b) [6 points] Again, assuming that the DBMS has $\underline{30}$ buffers. How many passes does the DBMS need to perform in order to sort the file?12
345
(c) [6 points] Again, assuming that the DBMS has 30 buffers. How many pages does each sorted run have after the third pass (i.e. Note: this is Pass \#2 if you start counting from Pass \#0)?3031841 \square 8709002438925230
(d) [6 points] Again, assuming that the DBMS has $\underline{30}$ buffers. What is the total I/O cost to sort the file?
$\square 2,000,000$5,000,000
10,000,000
20,000,000
100,000,000
(e) [6 points] What is the smallest number of buffers B such that the DBMS can sort the target file using only three passes?
$\square 97$9899
100
101102 103
(f) [6 points] Suppose the DBMS has 410 buffers. What is the largest database file (expressed in terms of the number of pages) that can be sorted with external merge sort using three passes?
$\square 167,281 \quad \square$
167,690168,100
68,417,929
68,585,210
$\square 68,752,900$
$\square 68,921,000$28,051,350,890
28,119,936,100

Question 2: Join Algorithms

Consider relations $X(a, b), Y(a, c, d)$, and $Z(a, e, f)$ to be joined on the common attribute a. Assume that there are no indexes available on the tables to speed up the join algorithms.

- There are $B=645$ pages in the buffer
- Table X spans $M=2,400$ pages with 60 tuples per page
- Table Y spans $N=500$ pages with 240 tuples per page
- Table Z spans $O=1,800$ pages with 100 tuples per page
- The join result of Y and Z spans $P=300$ pages

For the following questions, assume a simple cost model where pages are read and written one at a time. Also assume that one buffer block is needed for the evolving output block and one input block is needed for the current input block of the inner relation. You may ignore the cost of the writing of the final results.
(a) [3 points] What is the I/O cost of a simple nested loop join with Y as the outer relation and X as the inner relation?
\square 200,600
$\square 576,500$1,200,500
72,002,400
120,000,600
\square 288,000,500
(b) [3 points] What is the I/O cost of a block nested loop join with Y as the outer relation and Z as the inner relation?
1,500
1,900
2,300
3,0003,3003,6003,900
$\square 5,100$
(c) [3 points] What is the I/O cost of a block nested loop join with Z as the outer relation and Y as the inner relation?$1,500 \quad \square 1,900 \quad \square$
2,300
3,000

- 3,3003,6003,900
$\square 5,100$
(d) For a sort-merge join with Z as the outer relation and X as the inner relation:
i. [3 points] What is the cost of sorting the tuples in X on attribute a ?2,4004,8007,2009,600 14,400
ii. [3 points] What is the cost of sorting the tuples in Z on attribute a ?2,4004,8009,60014,400
iii. [3 points] What is the cost of the merge phase in the worst-case scenario?1,5002,000
2,500
4,200
900,000
2,000,000
$\square 3,250,000$ 3,750,000
\square 4,320,000

iv. [3 points] What is the cost of the merge phase assuming there are no duplicates in the join attribute?
- 1,5002,000
2,500
4,200
900,000
$\square 2,000,000$
$\square 3,250,000$
3,750,000 4,500,000
5,000,000
v. [3 points] Now consider joining Y, Z and then joining the result with X. What is the cost of the final merge phase assuming there are no duplicates in the join attribute?
1,000
2,000
2,700
4,700
4,320,000
(e) Consider a hash join with Y as the outer relation and X as the inner relation. You may ignore recursive partitioning and partially filled blocks.
i. [3 points] What is the cost of the probe phase?
$\square 2,000$2,7002,800
2,900
3,000
5,40010,000
ii. [3 points] What is the cost of the partition phase?

2,0002,4002,9005,800 6,0008,700 10,000
(f) [3 points] Assume that the tables do not fit in main memory and that a large number of distinct values hash to the same bucket using hash function h_{1}. Which of the following approaches works the best?

Create two hashtables half the size of the original one, run the same hash join algorithm on the tables, and then merge the hashtables together.
Create hashtables for the inner and outer relation using h_{1} and rehash into an embedded hash table using $h_{2}!=h_{1}$ for large buckets.
\square Use linear probing for collisions and page in and out parts of the hashtable needed at a given time.

Create hashtables for the inner and outer relation using h_{1} and rehash into an embedded hash table using h_{1} for large buckets.
(g) For each of the following statements about joins, pick True or False.
i. [2 points] In a simple nested loop join where one of the tables fits entirely in memory, it is beneficial to use that table as the inner table.True False
ii. [2 points] If neither table fits entirely in memory, I/O costs would be lower if we process both tables on a per-block basis rather than per-tuple basis.TrueFalse
iii. [2 points] For a block nested loop join, in the worst case, each block in the inner table has to be read once for each tuple in the outer table.TrueFalse
iv. [2 points] A sort-merge join is slower than a hash join on all circumstances.TrueFalse
v. [2 points] For a hash join to work, the inner table (or its partitions) need to fit into memory.TrueFalse

Question 3: Bloom Filter

Assume that we have a bloom filter that is used to register database names. The filter uses two hash functions h_{1} and h_{2} which hash the following strings to the following values:

input	h_{1}	h_{2}
"ChiDB"	999	996
"YourSQL"	233	666
"RusTub"	235	468
"GooseDB"	721	445

(a) [7 points] Suppose the filter has 7 bits initially set to 0 :

bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
0	0	0	0	0	0	0

Which bits will be set to 1 after "ChiDB" and "YourSQL" have been inserted?
01\square 456
(b) [7 points] Suppose the filter has 7 bits set to the following values:

bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
0	1	0	0	1	1	1

What will we learn if we lookup "RusTub"?RusTub has been insertedRusTub has not been insertedRusTub may have been inserted
(c) [7 points] What will we learn using the filter from part (b) if we lookup "GooseDB"?GooseDB has been insertedGooseDB has not been insertedGooseDB may have been inserted

